mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
llama : add phi3 support (#6852)
* add explicit phi3 support * add explicit phi3 support * remove unused code * convert : add BOS token * llama : match EOT token <|end|> * llama : minor / style * llama : tabs -> spaces * convert : fix lint checks --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
4e96a812b3
commit
c8297c6af5
@ -1979,6 +1979,91 @@ class Phi2Model(Model):
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
|
||||
|
||||
@Model.register("Phi3ForCausalLM")
|
||||
class Phi3MiniModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.PHI3
|
||||
|
||||
def set_vocab(self):
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||||
|
||||
if not tokenizer_path.is_file():
|
||||
print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
||||
|
||||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||
|
||||
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||||
scores: list[float] = [-10000.0] * vocab_size
|
||||
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
|
||||
|
||||
for token_id in range(tokenizer.vocab_size()):
|
||||
|
||||
piece = tokenizer.id_to_piece(token_id)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.get_score(token_id)
|
||||
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
if tokenizer.is_unknown(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||
elif tokenizer.is_control(token_id):
|
||||
toktype = SentencePieceTokenTypes.CONTROL
|
||||
elif tokenizer.is_unused(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNUSED
|
||||
elif tokenizer.is_byte(token_id):
|
||||
toktype = SentencePieceTokenTypes.BYTE
|
||||
|
||||
tokens[token_id] = text
|
||||
scores[token_id] = score
|
||||
toktypes[token_id] = toktype
|
||||
|
||||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||||
if added_tokens_file.is_file():
|
||||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||||
added_tokens_json = json.load(f)
|
||||
|
||||
for key in added_tokens_json:
|
||||
token_id = added_tokens_json[key]
|
||||
if (token_id >= vocab_size):
|
||||
print(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||||
continue
|
||||
|
||||
tokens[token_id] = key.encode("utf-8")
|
||||
scores[token_id] = -1000.0
|
||||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("llama")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
|
||||
|
||||
rot_pct = 1.0
|
||||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||||
rms_eps = self.find_hparam(["rms_norm_eps"])
|
||||
|
||||
self.gguf_writer.add_name("Phi3")
|
||||
self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
|
||||
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
self.gguf_writer.add_feed_forward_length(8192)
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
self.gguf_writer.add_head_count_kv(n_head)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
|
||||
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
|
||||
@Model.register("PlamoForCausalLM")
|
||||
class PlamoModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.PLAMO
|
||||
|
@ -124,6 +124,7 @@ class MODEL_ARCH(IntEnum):
|
||||
QWEN2 = auto()
|
||||
QWEN2MOE = auto()
|
||||
PHI2 = auto()
|
||||
PHI3 = auto()
|
||||
PLAMO = auto()
|
||||
CODESHELL = auto()
|
||||
ORION = auto()
|
||||
@ -200,6 +201,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.QWEN2: "qwen2",
|
||||
MODEL_ARCH.QWEN2MOE: "qwen2moe",
|
||||
MODEL_ARCH.PHI2: "phi2",
|
||||
MODEL_ARCH.PHI3: "phi3",
|
||||
MODEL_ARCH.PLAMO: "plamo",
|
||||
MODEL_ARCH.CODESHELL: "codeshell",
|
||||
MODEL_ARCH.ORION: "orion",
|
||||
@ -550,6 +552,20 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.PHI3: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_QKV,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.CODESHELL: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.POS_EMBD,
|
||||
|
@ -117,6 +117,7 @@ class TensorNameMap:
|
||||
"h.{bid}.attn.c_attn", # gpt2
|
||||
"transformer.h.{bid}.mixer.Wqkv", # phi2
|
||||
"encoder.layers.{bid}.attn.Wqkv", # nomic-bert
|
||||
"model.layers.{bid}.self_attn.qkv_proj" # phi3
|
||||
),
|
||||
|
||||
# Attention query
|
||||
@ -234,6 +235,7 @@ class TensorNameMap:
|
||||
"h.{bid}.mlp.c_fc", # gpt2
|
||||
"transformer.h.{bid}.mlp.fc1", # phi2
|
||||
"model.layers.{bid}.mlp.fc1", # phi2
|
||||
"model.layers.{bid}.mlp.gate_up_proj", # phi3
|
||||
"model.layers.layers.{bid}.mlp.up_proj", # plamo
|
||||
"model.layers.{bid}.feed_forward.w3", # internlm2
|
||||
"encoder.layers.{bid}.mlp.fc11", # nomic-bert
|
||||
|
192
llama.cpp
192
llama.cpp
@ -211,6 +211,7 @@ enum llm_arch {
|
||||
LLM_ARCH_QWEN2,
|
||||
LLM_ARCH_QWEN2MOE,
|
||||
LLM_ARCH_PHI2,
|
||||
LLM_ARCH_PHI3,
|
||||
LLM_ARCH_PLAMO,
|
||||
LLM_ARCH_CODESHELL,
|
||||
LLM_ARCH_ORION,
|
||||
@ -246,6 +247,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_QWEN2, "qwen2" },
|
||||
{ LLM_ARCH_QWEN2MOE, "qwen2moe" },
|
||||
{ LLM_ARCH_PHI2, "phi2" },
|
||||
{ LLM_ARCH_PHI3, "phi3" },
|
||||
{ LLM_ARCH_PLAMO, "plamo" },
|
||||
{ LLM_ARCH_CODESHELL, "codeshell" },
|
||||
{ LLM_ARCH_ORION, "orion" },
|
||||
@ -793,6 +795,23 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_PHI3,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_PLAMO,
|
||||
{
|
||||
@ -3955,6 +3974,16 @@ static void llm_load_hparams(
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 24: model.type = e_model::MODEL_1B; break;
|
||||
case 32: model.type = e_model::MODEL_3B; break;
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_PHI3:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 24: model.type = e_model::MODEL_1B; break;
|
||||
case 32: model.type = e_model::MODEL_3B; break;
|
||||
@ -4352,6 +4381,7 @@ static void llm_load_vocab(
|
||||
//vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
|
||||
(t.first == "<|eot_id|>" ||
|
||||
t.first == "<|im_end|>" ||
|
||||
t.first == "<|end|>" ||
|
||||
t.first == "<end_of_turn>"
|
||||
)
|
||||
) {
|
||||
@ -5375,6 +5405,33 @@ static bool llm_load_tensors(
|
||||
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_PHI3:
|
||||
{
|
||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
|
||||
|
||||
// output
|
||||
{
|
||||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
|
||||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
ggml_context* ctx_layer = ctx_for_layer(i);
|
||||
ggml_context* ctx_split = ctx_for_layer_split(i);
|
||||
|
||||
auto& layer = model.layers[i];
|
||||
|
||||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
|
||||
|
||||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, false);
|
||||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
|
||||
|
||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
|
||||
|
||||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
|
||||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_PLAMO:
|
||||
{
|
||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
@ -6326,7 +6383,7 @@ static struct ggml_tensor * llm_build_kqv(
|
||||
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
|
||||
cb(kq, "kq", il);
|
||||
|
||||
if (model.arch == LLM_ARCH_PHI2) {
|
||||
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
|
||||
// for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
|
||||
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
|
||||
@ -8967,12 +9024,140 @@ struct llm_build_context {
|
||||
|
||||
cur = ggml_add(ctx0, cur, model.output_b);
|
||||
cb(cur, "result_output", -1);
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_phi3() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
auto residual = inpL;
|
||||
|
||||
// self-attention
|
||||
{
|
||||
struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
|
||||
model.layers[il].attn_norm,
|
||||
NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(attn_norm_output, "attn_norm", il);
|
||||
|
||||
struct ggml_tensor * Qcur = nullptr;
|
||||
struct ggml_tensor * Kcur = nullptr;
|
||||
struct ggml_tensor * Vcur = nullptr;
|
||||
|
||||
if (model.layers[il].wqkv) {
|
||||
cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
|
||||
cb(cur, "wqkv", il);
|
||||
|
||||
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
|
||||
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
|
||||
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
|
||||
}
|
||||
else {
|
||||
Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
|
||||
Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
|
||||
Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
|
||||
}
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
Qcur = ggml_rope_custom(
|
||||
ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
|
||||
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Kcur = ggml_rope_custom(
|
||||
ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
|
||||
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
||||
model.layers[il].wo, NULL,
|
||||
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor* inp_out_ids = build_inp_out_ids();
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
residual = ggml_get_rows(ctx0, residual, inp_out_ids);
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx0, cur, residual);
|
||||
residual = cur;
|
||||
|
||||
cur = llm_build_norm(ctx0, cur, hparams,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
// FF
|
||||
// special-case: the up and gate tensors are merged into a single tensor
|
||||
// TOOD: support into llm_build_ffn
|
||||
{
|
||||
struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
|
||||
cb(up, "ffn_up", il);
|
||||
|
||||
auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
|
||||
auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
|
||||
|
||||
y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
|
||||
cb(y, "ffn_gate", il);
|
||||
|
||||
auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
|
||||
cb(down, "ffn_down", il);
|
||||
|
||||
cur = down;
|
||||
cb(cur, "ffn_out", il);
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx0, residual, cur);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
model.output_norm,
|
||||
NULL,
|
||||
LLM_NORM_RMS, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
|
||||
struct ggml_cgraph * build_plamo() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
|
||||
@ -10474,6 +10659,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm.build_phi2();
|
||||
} break;
|
||||
case LLM_ARCH_PHI3:
|
||||
{
|
||||
result = llm.build_phi3();
|
||||
} break;
|
||||
case LLM_ARCH_PLAMO:
|
||||
{
|
||||
result = llm.build_plamo();
|
||||
@ -15393,6 +15582,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_QWEN2:
|
||||
case LLM_ARCH_QWEN2MOE:
|
||||
case LLM_ARCH_PHI2:
|
||||
case LLM_ARCH_PHI3:
|
||||
case LLM_ARCH_GEMMA:
|
||||
case LLM_ARCH_STARCODER2:
|
||||
return LLAMA_ROPE_TYPE_NEOX;
|
||||
|
Loading…
x
Reference in New Issue
Block a user