mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 05:17:21 +01:00
llama : add classifier-free guidance (#2135)
* Initial implementation * Remove debug print * Restore signature of llama_init_from_gpt_params * Free guidance context * Make freeing of guidance_ctx conditional * Make Classifier-Free Guidance a sampling function * Correct typo. CFG already means context-free grammar. * Record sampling time in llama_sample_classifier_free_guidance * Shift all values by the max value before applying logsoftmax * Fix styling based on review
This commit is contained in:
parent
3ec7e596b2
commit
c9c74b4e3f
@ -236,6 +236,24 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
params.mirostat_tau = std::stof(argv[i]);
|
params.mirostat_tau = std::stof(argv[i]);
|
||||||
|
} else if (arg == "--cfg-negative-prompt") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params.cfg_negative_prompt = argv[i];
|
||||||
|
} else if (arg == "--cfg-scale") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params.cfg_scale = std::stof(argv[i]);
|
||||||
|
} else if (arg == "--cfg-smooth-factor") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params.cfg_smooth_factor = std::stof(argv[i]);
|
||||||
} else if (arg == "-b" || arg == "--batch-size") {
|
} else if (arg == "-b" || arg == "--batch-size") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
@ -469,6 +487,10 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||||||
fprintf(stderr, " modifies the likelihood of token appearing in the completion,\n");
|
fprintf(stderr, " modifies the likelihood of token appearing in the completion,\n");
|
||||||
fprintf(stderr, " i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
|
fprintf(stderr, " i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
|
||||||
fprintf(stderr, " or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
|
fprintf(stderr, " or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
|
||||||
|
fprintf(stderr, " --cfg-negative-prompt PROMPT \n");
|
||||||
|
fprintf(stderr, " negative prompt to use for guidance. (default: empty)\n");
|
||||||
|
fprintf(stderr, " --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
|
||||||
|
fprintf(stderr, " --cfg-smooth-factor N smooth factor between old and new logits (default: %f, 1.0 = no smoothing)\n", params.cfg_smooth_factor);
|
||||||
fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||||
fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
|
fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
|
||||||
fprintf(stderr, " --no-penalize-nl do not penalize newline token\n");
|
fprintf(stderr, " --no-penalize-nl do not penalize newline token\n");
|
||||||
@ -535,7 +557,7 @@ std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::s
|
|||||||
return res;
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params) {
|
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
|
||||||
auto lparams = llama_context_default_params();
|
auto lparams = llama_context_default_params();
|
||||||
|
|
||||||
lparams.n_ctx = params.n_ctx;
|
lparams.n_ctx = params.n_ctx;
|
||||||
@ -551,6 +573,12 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
|||||||
lparams.logits_all = params.perplexity;
|
lparams.logits_all = params.perplexity;
|
||||||
lparams.embedding = params.embedding;
|
lparams.embedding = params.embedding;
|
||||||
|
|
||||||
|
return lparams;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params) {
|
||||||
|
auto lparams = llama_context_params_from_gpt_params(params);
|
||||||
|
|
||||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), lparams);
|
llama_model * model = llama_load_model_from_file(params.model.c_str(), lparams);
|
||||||
if (model == NULL) {
|
if (model == NULL) {
|
||||||
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
|
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
|
||||||
|
@ -48,6 +48,12 @@ struct gpt_params {
|
|||||||
float mirostat_tau = 5.00f; // target entropy
|
float mirostat_tau = 5.00f; // target entropy
|
||||||
float mirostat_eta = 0.10f; // learning rate
|
float mirostat_eta = 0.10f; // learning rate
|
||||||
|
|
||||||
|
// Classifier-Free Guidance
|
||||||
|
// https://arxiv.org/abs/2306.17806
|
||||||
|
std::string cfg_negative_prompt; // string to help guidance
|
||||||
|
float cfg_scale = 1.f; // How strong is guidance
|
||||||
|
float cfg_smooth_factor = 1.f; // Smooth factor between old and new logits
|
||||||
|
|
||||||
std::string model = "models/7B/ggml-model.bin"; // model path
|
std::string model = "models/7B/ggml-model.bin"; // model path
|
||||||
std::string model_alias = "unknown"; // model alias
|
std::string model_alias = "unknown"; // model alias
|
||||||
std::string prompt = "";
|
std::string prompt = "";
|
||||||
@ -99,6 +105,7 @@ std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::s
|
|||||||
//
|
//
|
||||||
|
|
||||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params);
|
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params);
|
||||||
|
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
|
||||||
|
|
||||||
//
|
//
|
||||||
// Console utils
|
// Console utils
|
||||||
|
@ -109,10 +109,16 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
llama_model * model;
|
llama_model * model;
|
||||||
llama_context * ctx;
|
llama_context * ctx;
|
||||||
|
llama_context * ctx_guidance = NULL;
|
||||||
g_ctx = &ctx;
|
g_ctx = &ctx;
|
||||||
|
|
||||||
// load the model and apply lora adapter, if any
|
// load the model and apply lora adapter, if any
|
||||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||||
|
if (params.cfg_scale > 1.f) {
|
||||||
|
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
|
||||||
|
ctx_guidance = llama_new_context_with_model(model, lparams);
|
||||||
|
}
|
||||||
|
|
||||||
if (model == NULL) {
|
if (model == NULL) {
|
||||||
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
@ -183,15 +189,28 @@ int main(int argc, char ** argv) {
|
|||||||
// tokenize the prompt
|
// tokenize the prompt
|
||||||
std::vector<llama_token> embd_inp;
|
std::vector<llama_token> embd_inp;
|
||||||
|
|
||||||
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
|
|
||||||
// Add a space in front of the first character to match OG llama tokenizer behavior
|
// Add a space in front of the first character to match OG llama tokenizer behavior
|
||||||
params.prompt.insert(0, 1, ' ');
|
params.prompt.insert(0, 1, ' ');
|
||||||
|
|
||||||
|
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
|
||||||
embd_inp = ::llama_tokenize(ctx, params.prompt, true);
|
embd_inp = ::llama_tokenize(ctx, params.prompt, true);
|
||||||
} else {
|
} else {
|
||||||
embd_inp = session_tokens;
|
embd_inp = session_tokens;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Tokenize negative prompt
|
||||||
|
std::vector<llama_token> guidance_inp;
|
||||||
|
int guidance_offset = 0;
|
||||||
|
int original_prompt_len = 0;
|
||||||
|
if (ctx_guidance) {
|
||||||
|
params.cfg_negative_prompt.insert(0, 1, ' ');
|
||||||
|
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, true);
|
||||||
|
|
||||||
|
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, true);
|
||||||
|
original_prompt_len = original_inp.size();
|
||||||
|
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
|
||||||
|
}
|
||||||
|
|
||||||
const int n_ctx = llama_n_ctx(ctx);
|
const int n_ctx = llama_n_ctx(ctx);
|
||||||
|
|
||||||
if ((int) embd_inp.size() > n_ctx - 4) {
|
if ((int) embd_inp.size() > n_ctx - 4) {
|
||||||
@ -258,6 +277,16 @@ int main(int argc, char ** argv) {
|
|||||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||||
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
|
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (ctx_guidance) {
|
||||||
|
fprintf(stderr, "\n");
|
||||||
|
fprintf(stderr, "%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
|
||||||
|
fprintf(stderr, "%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
|
||||||
|
for (int i = 0; i < (int) guidance_inp.size(); i++) {
|
||||||
|
fprintf(stderr, "%6d -> '%s'\n", guidance_inp[i], llama_token_to_str(ctx, guidance_inp[i]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (params.n_keep > 0) {
|
if (params.n_keep > 0) {
|
||||||
fprintf(stderr, "%s: static prompt based on n_keep: '", __func__);
|
fprintf(stderr, "%s: static prompt based on n_keep: '", __func__);
|
||||||
for (int i = 0; i < params.n_keep; i++) {
|
for (int i = 0; i < params.n_keep; i++) {
|
||||||
@ -334,11 +363,13 @@ int main(int argc, char ** argv) {
|
|||||||
int n_remain = params.n_predict;
|
int n_remain = params.n_predict;
|
||||||
int n_consumed = 0;
|
int n_consumed = 0;
|
||||||
int n_session_consumed = 0;
|
int n_session_consumed = 0;
|
||||||
|
int n_past_guidance = 0;
|
||||||
|
|
||||||
// the first thing we will do is to output the prompt, so set color accordingly
|
// the first thing we will do is to output the prompt, so set color accordingly
|
||||||
console_set_color(con_st, CONSOLE_COLOR_PROMPT);
|
console_set_color(con_st, CONSOLE_COLOR_PROMPT);
|
||||||
|
|
||||||
std::vector<llama_token> embd;
|
std::vector<llama_token> embd;
|
||||||
|
std::vector<llama_token> embd_guidance;
|
||||||
|
|
||||||
// do one empty run to warm up the model
|
// do one empty run to warm up the model
|
||||||
{
|
{
|
||||||
@ -367,11 +398,12 @@ int main(int argc, char ** argv) {
|
|||||||
// if we run out of context:
|
// if we run out of context:
|
||||||
// - take the n_keep first tokens from the original prompt (via n_past)
|
// - take the n_keep first tokens from the original prompt (via n_past)
|
||||||
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
||||||
if (n_past + (int) embd.size() > n_ctx) {
|
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
|
||||||
const int n_left = n_past - params.n_keep;
|
const int n_left = n_past - params.n_keep;
|
||||||
|
|
||||||
// always keep the first token - BOS
|
// always keep the first token - BOS
|
||||||
n_past = std::max(1, params.n_keep);
|
n_past = std::max(1, params.n_keep);
|
||||||
|
n_past_guidance = std::max(1, params.n_keep + guidance_offset);
|
||||||
|
|
||||||
// insert n_left/2 tokens at the start of embd from last_n_tokens
|
// insert n_left/2 tokens at the start of embd from last_n_tokens
|
||||||
embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
|
embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
|
||||||
@ -412,6 +444,48 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
// evaluate tokens in batches
|
// evaluate tokens in batches
|
||||||
// embd is typically prepared beforehand to fit within a batch, but not always
|
// embd is typically prepared beforehand to fit within a batch, but not always
|
||||||
|
|
||||||
|
if (ctx_guidance) {
|
||||||
|
int input_size = 0;
|
||||||
|
llama_token* input_buf = NULL;
|
||||||
|
|
||||||
|
if (n_past_guidance < (int) guidance_inp.size()) {
|
||||||
|
// Guidance context should have the same data with these modifications:
|
||||||
|
//
|
||||||
|
// * Replace the initial prompt
|
||||||
|
// * Shift everything by guidance_offset
|
||||||
|
embd_guidance = guidance_inp;
|
||||||
|
if (embd.begin() + original_prompt_len < embd.end()) {
|
||||||
|
embd_guidance.insert(
|
||||||
|
embd_guidance.end(),
|
||||||
|
embd.begin() + original_prompt_len,
|
||||||
|
embd.end()
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
input_buf = embd_guidance.data();
|
||||||
|
input_size = embd_guidance.size();
|
||||||
|
//fprintf(stderr, "\n---------------------\n");
|
||||||
|
//for (int i = 0; i < (int) embd_guidance.size(); i++) {
|
||||||
|
//fprintf(stderr, "%s", llama_token_to_str(ctx, embd_guidance[i]));
|
||||||
|
//}
|
||||||
|
//fprintf(stderr, "\n---------------------\n");
|
||||||
|
} else {
|
||||||
|
input_buf = embd.data();
|
||||||
|
input_size = embd.size();
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < input_size; i += params.n_batch) {
|
||||||
|
int n_eval = std::min(input_size - i, params.n_batch);
|
||||||
|
if (llama_eval(ctx_guidance, input_buf + i, n_eval, n_past_guidance, params.n_threads)) {
|
||||||
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
n_past_guidance += n_eval;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
|
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
|
||||||
int n_eval = (int) embd.size() - i;
|
int n_eval = (int) embd.size() - i;
|
||||||
if (n_eval > params.n_batch) {
|
if (n_eval > params.n_batch) {
|
||||||
@ -431,6 +505,7 @@ int main(int argc, char ** argv) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
embd.clear();
|
embd.clear();
|
||||||
|
embd_guidance.clear();
|
||||||
|
|
||||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||||
// out of user input, sample next token
|
// out of user input, sample next token
|
||||||
@ -473,6 +548,10 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||||
|
|
||||||
|
if (ctx_guidance) {
|
||||||
|
llama_sample_classifier_free_guidance(ctx, &candidates_p, ctx_guidance, params.cfg_scale, params.cfg_smooth_factor);
|
||||||
|
}
|
||||||
|
|
||||||
// Apply penalties
|
// Apply penalties
|
||||||
float nl_logit = logits[llama_token_nl()];
|
float nl_logit = logits[llama_token_nl()];
|
||||||
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
||||||
@ -668,6 +747,7 @@ int main(int argc, char ** argv) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
llama_print_timings(ctx);
|
llama_print_timings(ctx);
|
||||||
|
if (ctx_guidance) { llama_free(ctx_guidance); }
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
|
|
||||||
|
56
llama.cpp
56
llama.cpp
@ -2167,6 +2167,62 @@ void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, l
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void llama_log_softmax(float * array, size_t size) {
|
||||||
|
float max_l = *std::max_element(array, array + size);
|
||||||
|
float sum = 0.f;
|
||||||
|
for (size_t i = 0; i < size; ++i) {
|
||||||
|
float p = expf(array[i] - max_l);
|
||||||
|
sum += p;
|
||||||
|
array[i] = p;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (size_t i = 0; i < size; ++i) {
|
||||||
|
array[i] = logf(array[i] / sum);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void llama_sample_classifier_free_guidance(
|
||||||
|
struct llama_context * ctx,
|
||||||
|
llama_token_data_array * candidates,
|
||||||
|
struct llama_context * guidance_ctx,
|
||||||
|
float scale,
|
||||||
|
float smooth_factor) {
|
||||||
|
int64_t t_start_sample_us = t_start_sample_us = ggml_time_us();
|
||||||
|
|
||||||
|
assert(ctx);
|
||||||
|
auto n_vocab = llama_n_vocab(ctx);
|
||||||
|
assert(n_vocab == (int)candidates->size);
|
||||||
|
assert(!candidates->sorted);
|
||||||
|
|
||||||
|
std::vector<float> logits_base;
|
||||||
|
logits_base.reserve(candidates->size);
|
||||||
|
for (size_t i = 0; i < candidates->size; ++i) {
|
||||||
|
logits_base.push_back(candidates->data[i].logit);
|
||||||
|
}
|
||||||
|
llama_log_softmax(logits_base.data(), candidates->size);
|
||||||
|
|
||||||
|
float* logits_guidance = llama_get_logits(guidance_ctx);
|
||||||
|
llama_log_softmax(logits_guidance, n_vocab);
|
||||||
|
|
||||||
|
for (int i = 0; i < n_vocab; ++i) {
|
||||||
|
float logit_guidance = logits_guidance[i];
|
||||||
|
float logit_base = logits_base[i];
|
||||||
|
logits_guidance[i] = scale * (logit_base - logit_guidance) + logit_guidance;
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_log_softmax(logits_guidance, n_vocab);
|
||||||
|
|
||||||
|
for (int i = 0; i < n_vocab; ++i) {
|
||||||
|
float logit_base = logits_base[i];
|
||||||
|
float logit_guidance = logits_guidance[i];
|
||||||
|
|
||||||
|
candidates->data[i].logit = smooth_factor * logit_guidance + (1.f - smooth_factor) * logit_base;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (ctx) {
|
||||||
|
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
|
llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
|
||||||
assert(ctx);
|
assert(ctx);
|
||||||
|
12
llama.h
12
llama.h
@ -309,6 +309,18 @@ extern "C" {
|
|||||||
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
||||||
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
|
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
|
||||||
|
|
||||||
|
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
|
||||||
|
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
|
||||||
|
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
|
||||||
|
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
|
||||||
|
/// @params smooth_factor Smooth factor between guidance logits and original logits. 1.0f means only use guidance logits. 0.0f means only original logits.
|
||||||
|
LLAMA_API void llama_sample_classifier_free_guidance(
|
||||||
|
struct llama_context * ctx,
|
||||||
|
llama_token_data_array * candidates,
|
||||||
|
struct llama_context * guidance_ctx,
|
||||||
|
float scale,
|
||||||
|
float smooth_factor);
|
||||||
|
|
||||||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||||
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
|
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user