convert : partially revert PR #4818

This commit is contained in:
Jared Van Bortel 2024-01-19 12:19:25 -05:00
parent a5cacb22b2
commit cb4605fe47

View File

@ -17,58 +17,28 @@ import signal
import struct
import sys
import time
import warnings
import zipfile
from abc import ABCMeta, abstractmethod
from argparse import ArgumentParser
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from dataclasses import dataclass
from pathlib import Path
from typing import (
IO,
TYPE_CHECKING,
Any,
Callable,
Iterable,
Literal,
Optional,
Tuple,
TypeVar,
)
from typing import IO, TYPE_CHECKING, Any, Callable, Iterable, Literal, TypeVar
import numpy as np
from sentencepiece import SentencePieceProcessor
try:
from transformers import AutoTokenizer
except ModuleNotFoundError as e:
warnings.warn(f"Could not import AutoTokenizer from transformers: {e}")
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
# If NO_LOCAL_GGUF is not set, try to import gguf from the local gguf-py directory
if "NO_LOCAL_GGUF" not in os.environ:
# Use absolute path to the gguf-py directory
gguf_py_dir = str(Path(__file__).resolve().parent / "gguf-py")
print(gguf_py_dir) # NOTE: Remove this once path is verified after changes are completed
if gguf_py_dir not in sys.path:
sys.path.insert(1, gguf_py_dir)
if TYPE_CHECKING:
from typing import TypeAlias
# Import gguf module
try:
import gguf
except ModuleNotFoundError as e:
print(f"Could not import gguf: {e}")
sys.exit(1)
if TYPE_CHECKING: # NOTE: This isn't necessary.
from typing import TypeAlias # This can technically be omitted.
if hasattr(faulthandler, "register") and hasattr(signal, "SIGUSR1"):
if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
faulthandler.register(signal.SIGUSR1)
# NOTE: n-dimensional arrays should be directly referenced
NDArray: TypeAlias = "np.ndarray[Any, Any]"
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
# Why is this here? LLAMA and GPT are technically the only compatible ARCHs.
ARCH = gguf.MODEL_ARCH.LLAMA
DEFAULT_CONCURRENCY = 8
@ -78,7 +48,6 @@ DEFAULT_CONCURRENCY = 8
#
# TODO: Clean up and refactor data types
@dataclass(frozen=True)
class DataType:
name: str
@ -183,85 +152,65 @@ GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
@dataclass
class Params:
n_vocab: int
n_embd: int
n_layer: int
n_ctx: int
n_ff: int
n_head: int
n_head_kv: int
f_norm_eps: Optional[float] = None
n_experts: Optional[int] = None
n_experts_used: Optional[int] = None
n_vocab: int
n_embd: int
n_layer: int
n_ctx: int
n_ff: int
n_head: int
n_head_kv: int
n_experts: int | None = None
n_experts_used: int | None = None
f_norm_eps: float | None = None
rope_scaling_type: Optional[gguf.RopeScalingType] = None
f_rope_freq_base: Optional[float] = None
f_rope_scale: Optional[float] = None
n_orig_ctx: Optional[int] = None
rope_finetuned: Optional[bool] = None
rope_scaling_type: gguf.RopeScalingType | None = None
f_rope_freq_base: float | None = None
f_rope_scale: float | None = None
n_orig_ctx: int | None = None
rope_finetuned: bool | None = None
ftype: Optional[GGMLFileType] = None
ftype: GGMLFileType | None = None
# path to the directory containing the model files
path_model: Optional[Path] = None
path_model: Path | None = None
@staticmethod
def guessed(model: LazyModel) -> "Params":
def guessed(model: LazyModel) -> Params:
# try transformer naming first
n_vocab, n_embd = (
model["model.embed_tokens.weight"].shape
if "model.embed_tokens.weight" in model
else model["tok_embeddings.weight"].shape
)
n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
# try transformer naming first
if "model.layers.0.self_attn.q_proj.weight" in model:
n_layer = next(
i
for i in itertools.count()
if f"model.layers.{i}.self_attn.q_proj.weight" not in model
)
elif (
"model.layers.0.self_attn.W_pack.weight" in model
): # next: try baichuan naming
n_layer = next(
i
for i in itertools.count()
if f"model.layers.{i}.self_attn.W_pack.weight" not in model
)
n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
else:
n_layer = next(
i
for i in itertools.count()
if f"layers.{i}.attention.wq.weight" not in model
)
n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
if n_layer < 1:
raise Exception(
"failed to guess 'n_layer'. This model is unknown or unsupported.\n"
"Suggestion: provide 'config.json' of the model in the same directory containing model files."
)
raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n"
"Suggestion: provide 'config.json' of the model in the same directory containing model files.")
n_head = n_embd // 128 # guessed
n_mult = 256 # guessed
n_head = n_embd // 128 # guessed
n_mult = 256 # guessed
# TODO: verify this
n_ff = int(2 * (4 * n_embd) / 3)
n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult)
return Params(
n_vocab=n_vocab,
n_embd=n_embd,
n_layer=n_layer,
n_ctx=-1,
n_ff=n_ff,
n_head=n_head,
n_head_kv=n_head,
f_norm_eps=1e-5,
n_vocab = n_vocab,
n_embd = n_embd,
n_layer = n_layer,
n_ctx = -1,
n_ff = n_ff,
n_head = n_head,
n_head_kv = n_head,
f_norm_eps = 1e-5,
)
@staticmethod
def load_transformers_config(model: LazyModel, config_path: Path) -> "Params":
def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
config = json.load(open(config_path))
rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None
@ -274,22 +223,20 @@ class Params:
rope_scaling_type = gguf.RopeScalingType.LINEAR
elif typ == "yarn":
rope_scaling_type = gguf.RopeScalingType.YARN
n_orig_ctx = rope_scaling["original_max_position_embeddings"]
rope_finetuned = rope_scaling["finetuned"]
n_orig_ctx = rope_scaling['original_max_position_embeddings']
rope_finetuned = rope_scaling['finetuned']
else:
raise NotImplementedError(f"Unknown rope scaling type: {typ}")
raise NotImplementedError(f'Unknown rope scaling type: {typ}')
if "max_sequence_length" in config:
n_ctx = config["max_sequence_length"]
elif "max_position_embeddings" in config:
n_ctx = config["max_position_embeddings"]
else:
raise Exception(
"failed to guess 'n_ctx'. This model is unknown or unsupported.\n"
"Suggestion: provide 'config.json' of the model in the same directory containing model files."
)
raise Exception("failed to guess 'n_ctx'. This model is unknown or unsupported.\n"
"Suggestion: provide 'config.json' of the model in the same directory containing model files.")
n_experts = None
n_experts = None
n_experts_used = None
if "num_local_experts" in config:
@ -297,30 +244,30 @@ class Params:
n_experts_used = config["num_experts_per_tok"]
return Params(
n_vocab=config["vocab_size"],
n_embd=config["hidden_size"],
n_layer=config["num_hidden_layers"],
n_ctx=n_ctx,
n_ff=config["intermediate_size"],
n_head=(n_head := config["num_attention_heads"]),
n_head_kv=config.get("num_key_value_heads", n_head),
n_experts=n_experts,
n_experts_used=n_experts_used,
f_norm_eps=config["rms_norm_eps"],
f_rope_freq_base=config.get("rope_theta"),
rope_scaling_type=rope_scaling_type,
f_rope_scale=f_rope_scale,
n_orig_ctx=n_orig_ctx,
rope_finetuned=rope_finetuned,
n_vocab = config["vocab_size"],
n_embd = config["hidden_size"],
n_layer = config["num_hidden_layers"],
n_ctx = n_ctx,
n_ff = config["intermediate_size"],
n_head = (n_head := config["num_attention_heads"]),
n_head_kv = config.get("num_key_value_heads", n_head),
n_experts = n_experts,
n_experts_used = n_experts_used,
f_norm_eps = config["rms_norm_eps"],
f_rope_freq_base = config.get("rope_theta"),
rope_scaling_type = rope_scaling_type,
f_rope_scale = f_rope_scale,
n_orig_ctx = n_orig_ctx,
rope_finetuned = rope_finetuned,
)
# LLaMA v2 70B params.json
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1}
@staticmethod
def load_torch_params(model: LazyModel, config_path: Path) -> "Params":
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
config = json.load(open(config_path))
n_experts = None
n_experts = None
n_experts_used = None
f_rope_freq_base = None
@ -343,50 +290,50 @@ class Params:
if config.get("moe"):
n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0]
n_experts = config["moe"]["num_experts"]
n_experts = config["moe"]["num_experts"]
n_experts_used = config["moe"]["num_experts_per_tok"]
f_rope_freq_base = 1e6
return Params(
n_vocab=model["tok_embeddings.weight"].shape[0],
n_embd=config["dim"],
n_layer=config["n_layers"],
n_ctx=n_ctx,
n_ff=n_ff,
n_head=(n_head := config["n_heads"]),
n_head_kv=config.get("n_kv_heads", n_head),
n_experts=n_experts,
n_experts_used=n_experts_used,
f_norm_eps=config["norm_eps"],
f_rope_freq_base=config.get("rope_theta", f_rope_freq_base),
n_vocab = model["tok_embeddings.weight"].shape[0],
n_embd = config["dim"],
n_layer = config["n_layers"],
n_ctx = n_ctx,
n_ff = n_ff,
n_head = (n_head := config["n_heads"]),
n_head_kv = config.get("n_kv_heads", n_head),
n_experts = n_experts,
n_experts_used = n_experts_used,
f_norm_eps = config["norm_eps"],
f_rope_freq_base = config.get("rope_theta", f_rope_freq_base),
)
@staticmethod
def load(model_plus: ModelPlus) -> "Params":
hf_config_path = model_plus.paths[0].parent / "config.json"
def load(model_plus: ModelPlus) -> Params:
hf_config_path = model_plus.paths[0].parent / "config.json"
orig_config_path = model_plus.paths[0].parent / "params.json"
if hf_config_path.exists():
params = Params.load_transformers_config(model_plus.model, hf_config_path)
params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
elif orig_config_path.exists():
params = Params.load_torch_params(model_plus.model, orig_config_path)
elif model_plus.format != "none":
params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
elif model_plus.format != 'none':
params = Params.guessed(model_plus.model)
else:
raise ValueError("Cannot guess params when model format is none")
raise ValueError('Cannot guess params when model format is none')
params.path_model = model_plus.paths[0].parent
return params
class BpeVocab: # GPT
def __init__(
self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]
) -> None:
self.bpe_tokenizer = json.loads(
open(str(fname_tokenizer), encoding="utf-8").read()
)
#
# vocab
#
class BpeVocab:
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
self.vocab = self.bpe_tokenizer["model"]["vocab"]
added_tokens: dict[str, int]
if fname_added_tokens is not None:
@ -394,34 +341,31 @@ class BpeVocab: # GPT
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
else:
# Fall back to trying to find the added tokens in tokenizer.json
tokenizer_json_file = fname_tokenizer.parent / "tokenizer.json"
tokenizer_json_file = fname_tokenizer.parent / 'tokenizer.json'
if not tokenizer_json_file.is_file():
added_tokens = {}
else:
tokenizer_json = json.load(open(tokenizer_json_file, encoding="utf-8"))
added_tokens = dict(
(item["content"], item["id"])
for item in tokenizer_json.get("added_tokens", [])
(item['content'], item['id'])
for item in tokenizer_json.get('added_tokens', [])
# Added tokens here can be duplicates of the main vocabulary.
if item["content"] not in self.bpe_tokenizer
)
if item['content'] not in self.bpe_tokenizer)
vocab_size: int = len(self.vocab)
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values())
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values())
if expected_ids != actual_ids:
expected_end_id = vocab_size + len(actual_ids) - 1
raise Exception(
f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range {vocab_size} - {expected_end_id}; got {actual_ids}"
)
raise Exception(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range {vocab_size} - {expected_end_id}; got {actual_ids}")
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
self.added_tokens_dict = added_tokens
self.added_tokens_list = [text for (text, idx) in items]
self.added_tokens_dict = added_tokens
self.added_tokens_list = [text for (text, idx) in items]
self.vocab_size_base: int = vocab_size
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
self.fname_added_tokens = fname_added_tokens
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
self.fname_added_tokens = fname_added_tokens
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()}
@ -442,10 +386,8 @@ class BpeVocab: # GPT
return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
class SentencePieceVocab: # LlaMa
def __init__(
self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]
) -> None:
class SentencePieceVocab:
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
added_tokens: dict[str, int]
if fname_added_tokens is not None:
@ -455,23 +397,19 @@ class SentencePieceVocab: # LlaMa
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
new_tokens = {
id: piece for piece, id in added_tokens.items() if id >= vocab_size
}
new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
actual_new_ids = sorted(new_tokens.keys())
actual_new_ids = sorted(new_tokens.keys())
if expected_new_ids != actual_new_ids:
raise ValueError(
f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}"
)
raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
# Token pieces that were added to the base vocabulary.
self.added_tokens_dict = added_tokens
self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
self.vocab_size_base = vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
self.vocab_size_base = vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
self.fname_added_tokens = fname_added_tokens
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
@ -512,11 +450,15 @@ class SentencePieceVocab: # LlaMa
class HfVocab:
def __init__(
self,
fname_tokenizer: Path,
fname_added_tokens: Optional[Path] = None,
) -> None:
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None = None) -> None:
try:
from transformers import AutoTokenizer
except ImportError as e:
raise ImportError(
"To use HfVocab, please install the `transformers` package. "
"You can install it with `pip install transformers`."
) from e
print("fname_tokenizer:", fname_tokenizer)
# Allow the tokenizer to default to slow or fast versions.
# Explicitly set tokenizer to use local paths.
@ -529,7 +471,7 @@ class HfVocab:
# Initialize lists and dictionaries for added tokens
self.added_tokens_list = []
self.added_tokens_dict = dict()
self.added_tokens_ids = set()
self.added_tokens_ids = set()
# Process added tokens
for tok, tokidx in sorted(
@ -550,12 +492,12 @@ class HfVocab:
# Set vocabulary sizes
self.vocab_size_base = self.tokenizer.vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
self.fname_tokenizer = fname_tokenizer
self.fname_added_tokens = fname_added_tokens
def hf_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
reverse_vocab = {
id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()
}
@ -573,11 +515,9 @@ class HfVocab:
token_id, self.special_ids # Reuse already stored special IDs
)
def get_token_type(self, token_id: int, special_ids: set) -> gguf.TokenType:
def get_token_type(self, token_id: int, special_ids: set[int]) -> gguf.TokenType:
# Determine token type based on whether it's a special token
return (
gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
)
return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
def get_token_score(self, token_id: int) -> float:
# Placeholder for actual logic to determine the token's score
@ -589,7 +529,6 @@ class HfVocab:
if text in self.specials:
toktype = self.get_token_type(self.specials[text], self.special_ids)
score = self.get_token_score(self.specials[text])
else:
toktype = gguf.TokenType.USER_DEFINED
score = -1000.0
@ -783,7 +722,7 @@ def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
else:
model = merge_sharded([mp.model for mp in models_plus])
return ModelPlus(model, paths, format, vocab)
return ModelPlus(model, paths, format, vocab) # pytype: disable=wrong-arg-types
def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor:
@ -871,17 +810,13 @@ class LazyUnpickler(pickle.Unpickler):
CLASSES: dict[tuple[str, str], Any] = {
# getattr used here as a workaround for mypy not being smart enough to determine
# the staticmethods have a __func__ attribute.
("torch._tensor", "_rebuild_from_type_v2"): getattr(
rebuild_from_type_v2, "__func__"
),
("torch._utils", "_rebuild_tensor_v2"): getattr(
lazy_rebuild_tensor_v2, "__func__"
),
("torch", "BFloat16Storage"): LazyStorageKind(DT_BF16),
("torch", "HalfStorage"): LazyStorageKind(DT_F16),
("torch", "FloatStorage"): LazyStorageKind(DT_F32),
("torch", "IntStorage"): LazyStorageKind(DT_I32),
("torch", "Tensor"): LazyTensor,
('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'),
('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
('torch', 'IntStorage'): LazyStorageKind(DT_I32),
('torch', 'Tensor'): LazyTensor,
}
def find_class(self, module: str, name: str) -> Any:
@ -968,7 +903,7 @@ def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], conc
executor_class = ProcessPoolExecutor
else:
executor_class = ThreadPoolExecutor
with executor_class(max_workers = max_workers) as executor:
with executor_class(max_workers=max_workers) as executor:
futures: list[concurrent.futures.Future[Out]] = []
done = False
for _ in range(concurrency):
@ -1022,12 +957,8 @@ def check_vocab_size(params: Params, vocab: Vocab, pad_vocab: bool = False) -> N
class OutputFile:
def __init__(
self, fname_out: Path, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE
) -> None:
self.gguf = gguf.GGUFWriter(
fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess
)
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
def add_meta_arch(self, params: Params) -> None:
name = "LLaMA"
@ -1036,21 +967,16 @@ class OutputFile:
if params.n_ctx == 4096:
name = "LLaMA v2"
elif params.path_model is not None:
name = str(params.path_model.parent).split("/")[-1]
name = str(params.path_model.parent).split('/')[-1]
self.gguf.add_name(name)
self.gguf.add_context_length(params.n_ctx)
self.gguf.add_embedding_length(params.n_embd)
self.gguf.add_block_count(params.n_layer)
self.gguf.add_feed_forward_length(params.n_ff)
self.gguf.add_name (name)
self.gguf.add_context_length (params.n_ctx)
self.gguf.add_embedding_length (params.n_embd)
self.gguf.add_block_count (params.n_layer)
self.gguf.add_feed_forward_length (params.n_ff)
self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
self.gguf.add_head_count(params.n_head)
self.gguf.add_head_count_kv(params.n_head_kv)
if params.f_norm_eps is None:
raise ValueError("f_norm_eps is None")
self.gguf.add_layer_norm_rms_eps(params.f_norm_eps)
self.gguf.add_head_count (params.n_head)
self.gguf.add_head_count_kv (params.n_head_kv)
if params.n_experts:
self.gguf.add_expert_count(params.n_experts)
@ -1058,6 +984,11 @@ class OutputFile:
if params.n_experts_used:
self.gguf.add_expert_used_count(params.n_experts_used)
if params.f_norm_eps:
self.gguf.add_layer_norm_rms_eps(params.f_norm_eps)
else:
raise ValueError('f_norm_eps is None')
if params.f_rope_freq_base is not None:
self.gguf.add_rope_freq_base(params.f_rope_freq_base)
@ -1089,7 +1020,7 @@ class OutputFile:
return tokenizer_model
def extract_vocabulary_from_model(self, vocab: Vocab) -> Tuple[list, list, list]:
def extract_vocabulary_from_model(self, vocab: Vocab) -> tuple[list[bytes], list[float], list[gguf.TokenType]]:
tokens = []
scores = []
toktypes = []
@ -1124,14 +1055,10 @@ class OutputFile:
def add_tensor_info(self, name: str, tensor: LazyTensor) -> None:
n_elements = int(np.prod(tensor.shape))
raw_dtype = getattr(tensor.data_type, "ggml_type", None)
data_type = (
getattr(tensor.data_type, "quantized_type", None) or tensor.data_type.dtype
)
raw_dtype = getattr(tensor.data_type, 'ggml_type', None)
data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype
data_nbytes = tensor.data_type.elements_to_bytes(n_elements)
self.gguf.add_tensor_info(
name, tensor.shape, data_type, data_nbytes, raw_dtype=raw_dtype
)
self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype=raw_dtype)
def write_meta(self) -> None:
self.gguf.write_header_to_file()
@ -1145,14 +1072,10 @@ class OutputFile:
@staticmethod
def write_vocab_only(
fname_out: Path,
params: Params,
vocab: Vocab,
svocab: gguf.SpecialVocab,
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
pad_vocab: bool = False,
fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False,
) -> None:
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
check_vocab_size(params, vocab, pad_vocab = pad_vocab)
of = OutputFile(fname_out, endianess=endianess)
@ -1180,14 +1103,8 @@ class OutputFile:
@staticmethod
def write_all(
fname_out: Path,
ftype: GGMLFileType,
params: Params,
model: LazyModel,
vocab: Vocab,
svocab: gguf.SpecialVocab,
concurrency: int = DEFAULT_CONCURRENCY,
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab,
concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
pad_vocab: bool = False,
) -> None:
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
@ -1207,26 +1124,19 @@ class OutputFile:
of.write_tensor_info()
# tensor data
ndarrays_inner = bounded_parallel_map(
OutputFile.do_item, model.items(), concurrency=concurrency
)
ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency = concurrency)
if ftype == GGMLFileType.MostlyQ8_0:
ndarrays = bounded_parallel_map(
OutputFile.maybe_do_quantize,
ndarrays_inner,
concurrency=concurrency,
max_workers=concurrency,
OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency,
use_processpool_executor=True,
)
else:
ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)
start = time.time()
for i, ((name, lazy_tensor), ndarray) in enumerate(
zip(model.items(), ndarrays)
):
for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
elapsed = time.time() - start
size = " x ".join(f"{dim:6d}" for dim in lazy_tensor.shape)
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
padi = len(str(len(model)))
print(
f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}"
@ -1363,7 +1273,7 @@ def load_some_model(path: Path) -> ModelPlus:
class VocabFactory:
def __init__(self, path: Path):
self.path = path
self.files = {
self.files: dict[str, Path | None] = {
"tokenizer.model": None,
"vocab.json": None,
"tokenizer.json": None,
@ -1380,24 +1290,18 @@ class VocabFactory:
self.files[file] = parent_file_path
print(f"Found vocab files: {self.files}")
def _select_file(self, vocabtype: Optional[str]) -> Path:
def _select_file(self, vocabtype: str | None) -> Path:
if vocabtype in ["spm", "bpe"]:
for file_key in self.files.keys():
if self.files[file_key]:
return self.files[file_key]
if (file := self.files[file_key]) is not None:
return file
raise FileNotFoundError(f"{vocabtype} vocab not found.")
elif vocabtype == "hfft":
if vocabtype == "hfft":
# For Hugging Face Fast Tokenizer, return the directory path instead of a specific file
return self.path
else:
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
def _create_special_vocab(
self,
vocab: Vocab,
vocabtype: str,
model_parent_path: Path,
) -> gguf.SpecialVocab:
def _create_special_vocab(self, vocab: Vocab, vocabtype: str, model_parent_path: Path) -> gguf.SpecialVocab:
load_merges = vocabtype == "bpe"
n_vocab = vocab.vocab_size if hasattr(vocab, "vocab_size") else None
return gguf.SpecialVocab(
@ -1407,13 +1311,12 @@ class VocabFactory:
n_vocab=n_vocab,
)
def load_vocab(
self, vocabtype: str, model_parent_path: Path
) -> Tuple[Vocab, gguf.SpecialVocab]:
def load_vocab(self, vocabtype: str, model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]:
path = self._select_file(vocabtype)
print(f"Loading vocab file '{path}', type '{vocabtype}'")
added_tokens_path = path.parent / "added_tokens.json"
vocab: Vocab
if vocabtype == "bpe":
vocab = BpeVocab(
path, added_tokens_path if added_tokens_path.exists() else None
@ -1428,6 +1331,7 @@ class VocabFactory:
)
else:
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
# FIXME: Respect --vocab-dir?
special_vocab = self._create_special_vocab(
vocab,
vocabtype,
@ -1436,18 +1340,17 @@ class VocabFactory:
return vocab, special_vocab
def default_output_file(model_paths: list[Path], file_type: GGMLFileType) -> Path:
def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path:
namestr = {
GGMLFileType.AllF32: "f32",
GGMLFileType.AllF32: "f32",
GGMLFileType.MostlyF16: "f16",
GGMLFileType.MostlyQ8_0: "q8_0",
GGMLFileType.MostlyQ8_0:"q8_0",
}[file_type]
ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf"
if ret in model_paths:
sys.stderr.write(
f"Error: Default output path ({ret}) would overwrite the input. "
"Please explicitly specify a path using --outfile.\n"
)
"Please explicitly specify a path using --outfile.\n")
sys.exit(1)
return ret
@ -1457,111 +1360,34 @@ def do_dump_model(model_plus: ModelPlus) -> None:
print(f"model_plus.format = {model_plus.format!r}")
print(f"model_plus.vocab = {model_plus.vocab!r}")
for name, lazy_tensor in model_plus.model.items():
print(
f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}"
)
print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}")
def get_argument_parser() -> ArgumentParser:
def main(args_in: list[str] | None = None) -> None:
output_choices = ["f32", "f16"]
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
# We currently only support Q8_0 output on little endian systems.
output_choices.append("q8_0")
vocab_types = ["spm", "bpe", "hfft"]
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None)
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
parser.add_argument("--vocab-type", choices=vocab_types, help="The vocabulary format used to define the tokenizer model (default: spm)", default="spm")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default=DEFAULT_CONCURRENCY)
parser.add_argument("--big-endian", action="store_true", help="model is executed on big endian machine")
parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
parser = argparse.ArgumentParser(
description="Convert a LLaMa model to a GGML compatible file"
)
parser.add_argument(
"model",
type=Path,
help="Directory containing the model file or the model file itself (*.pth, *.pt, *.bin)",
)
parser.add_argument(
"--awq-path",
type=Path,
help="Path to the Activation-aware Weight Quantization cache file",
default=None,
)
parser.add_argument(
"--dump",
action="store_true",
help="Display the model content without converting it",
)
parser.add_argument(
"--dump-single",
action="store_true",
help="Display the content of a single model file without conversion",
)
parser.add_argument(
"--vocab-only",
action="store_true",
help="Extract and output only the vocabulary",
)
parser.add_argument(
"--outtype",
choices=output_choices,
help="Output format - note: q8_0 may be very slow (default: f16 or f32 based on input)",
)
parser.add_argument(
"--vocab-dir",
type=Path,
help="Directory containing the tokenizer.model, if separate from the model file",
)
parser.add_argument(
"--vocab-type",
choices=["spm", "bpe", "hfft"], # hfft: Hugging Face Fast Tokenizer
default="spm",
help="The vocabulary format used to define the tokenizer model (default: spm)",
)
parser.add_argument(
"--pad-vocab",
action="store_true",
help="Add padding tokens when the model's vocabulary size exceeds the tokenizer metadata",
)
parser.add_argument(
"--outfile",
type=Path,
help="Specify the path for the output file (default is based on input)",
)
parser.add_argument(
"--ctx", type=int, help="Model training context (default is based on input)"
)
parser.add_argument(
"--concurrency",
type=int,
help=f"Concurrency used for conversion (default: {DEFAULT_CONCURRENCY})",
default=DEFAULT_CONCURRENCY,
)
parser.add_argument(
"--big-endian",
action="store_true",
help="Indicate that the model is executed on a big-endian machine",
)
return parser
def main(argv: Optional[list[str]] = None) -> None:
parser = get_argument_parser()
args = parser.parse_args(argv)
args = parser.parse_args(args_in)
if args.awq_path:
sys.path.insert(1, str(Path(__file__).resolve().parent / "awq-py"))
from awq.apply_awq import add_scale_weights
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
tmp_model_path = args.model / "weighted_model"
if tmp_model_path.is_dir():
print(f"{tmp_model_path} exists as a weighted model.")
@ -1580,14 +1406,11 @@ def main(argv: Optional[list[str]] = None) -> None:
if not args.vocab_only:
model_plus = load_some_model(args.model)
else:
model_plus = ModelPlus(
model={}, paths=[args.model / "dummy"], format="none", vocab=None
)
model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None)
if args.dump:
do_dump_model(model_plus)
return
endianess = gguf.GGUFEndian.LITTLE
if args.big_endian:
endianess = gguf.GGUFEndian.BIG
@ -1595,12 +1418,10 @@ def main(argv: Optional[list[str]] = None) -> None:
params = Params.load(model_plus)
if params.n_ctx == -1:
if args.ctx is None:
raise Exception(
"The model doesn't have a context size, and you didn't specify one with --ctx\n"
"Please specify one with --ctx:\n"
" - LLaMA v1: --ctx 2048\n"
" - LLaMA v2: --ctx 4096\n"
)
raise Exception("The model doesn't have a context size, and you didn't specify one with --ctx\n"
"Please specify one with --ctx:\n"
" - LLaMA v1: --ctx 2048\n"
" - LLaMA v2: --ctx 4096\n")
params.n_ctx = args.ctx
if args.outtype:
@ -1621,42 +1442,30 @@ def main(argv: Optional[list[str]] = None) -> None:
if not args.outfile:
raise ValueError("need --outfile if using --vocab-only")
outfile = args.outfile
OutputFile.write_vocab_only(
outfile,
params,
vocab,
special_vocab,
endianess=endianess,
pad_vocab=args.pad_vocab,
)
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab,
endianess=endianess, pad_vocab=args.pad_vocab)
print(f"Wrote {outfile}")
return
if model_plus.vocab is not None and args.vocab_dir is None:
vocab = model_plus.vocab
model = model_plus.model
model = convert_model_names(model, params)
ftype = pick_output_type(model, args.outtype)
model = convert_to_output_type(model, ftype)
outfile = args.outfile or default_output_file(model_plus.paths, ftype)
print(f"Vocab info: {vocab}")
print(f"Special vocab info: {special_vocab}")
model = model_plus.model
model = convert_model_names(model, params)
ftype = pick_output_type(model, args.outtype)
model = convert_to_output_type(model, ftype)
outfile = args.outfile or default_outfile(model_plus.paths, ftype)
params.ftype = ftype
print(f"Writing {outfile}, format {ftype}")
OutputFile.write_all(
outfile,
ftype,
params,
model,
vocab,
special_vocab,
concurrency=args.concurrency,
endianess=endianess,
pad_vocab=args.pad_vocab,
)
OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab,
concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab)
print(f"Wrote {outfile}")
if __name__ == "__main__":
main(sys.argv[1:]) # Exclude the first element (script name) from sys.argv
if __name__ == '__main__':
main()