diff --git a/.devops/cloud-v-pipeline b/.devops/cloud-v-pipeline index f3a4944f8..af8c0cea6 100644 --- a/.devops/cloud-v-pipeline +++ b/.devops/cloud-v-pipeline @@ -15,7 +15,7 @@ node('x86_runner1'){ // Running on x86 runner containing latest vecto stage('Running llama.cpp'){ sh'''#!/bin/bash module load gnu-bin2/0.1 # loading latest versions of vector qemu and vector gcc - qemu-riscv64 -L /softwares/gnu-bin2/sysroot -cpu rv64,v=true,vlen=256,elen=64,vext_spec=v1.0 ./main -m /home/alitariq/codellama-7b.Q4_K_M.gguf -p "Anything" -n 9 > llama_log.txt # Running llama.cpp on vector qemu-riscv64 + qemu-riscv64 -L /softwares/gnu-bin2/sysroot -cpu rv64,v=true,vlen=256,elen=64,vext_spec=v1.0 ./llama-cli -m /home/alitariq/codellama-7b.Q4_K_M.gguf -p "Anything" -n 9 > llama_log.txt # Running llama.cpp on vector qemu-riscv64 cat llama_log.txt # Printing results ''' } diff --git a/.devops/full-cuda.Dockerfile b/.devops/full-cuda.Dockerfile index c01006efe..f6073f662 100644 --- a/.devops/full-cuda.Dockerfile +++ b/.devops/full-cuda.Dockerfile @@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build ARG CUDA_DOCKER_ARCH=all RUN apt-get update && \ - apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev + apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev libgomp1 COPY requirements.txt requirements.txt COPY requirements requirements diff --git a/.devops/full.Dockerfile b/.devops/full.Dockerfile index 6d5943a2f..6f19afa9c 100644 --- a/.devops/full.Dockerfile +++ b/.devops/full.Dockerfile @@ -3,7 +3,7 @@ ARG UBUNTU_VERSION=22.04 FROM ubuntu:$UBUNTU_VERSION as build RUN apt-get update && \ - apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev + apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev libgomp1 COPY requirements.txt requirements.txt COPY requirements requirements diff --git a/.devops/main-cuda.Dockerfile b/.devops/llama-cli-cuda.Dockerfile similarity index 81% rename from .devops/main-cuda.Dockerfile rename to .devops/llama-cli-cuda.Dockerfile index 23f428944..d5ce538f6 100644 --- a/.devops/main-cuda.Dockerfile +++ b/.devops/llama-cli-cuda.Dockerfile @@ -23,10 +23,13 @@ ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH} # Enable CUDA ENV LLAMA_CUDA=1 -RUN make -j$(nproc) +RUN make -j$(nproc) llama-cli FROM ${BASE_CUDA_RUN_CONTAINER} as runtime -COPY --from=build /app/main /main +RUN apt-get update && \ + apt-get install -y libgomp1 -ENTRYPOINT [ "/main" ] +COPY --from=build /app/llama-cli /llama-cli + +ENTRYPOINT [ "/llama-cli" ] diff --git a/.devops/llama-cli-intel.Dockerfile b/.devops/llama-cli-intel.Dockerfile new file mode 100644 index 000000000..6789e17af --- /dev/null +++ b/.devops/llama-cli-intel.Dockerfile @@ -0,0 +1,26 @@ +ARG ONEAPI_VERSION=2024.1.1-devel-ubuntu22.04 + +FROM intel/oneapi-basekit:$ONEAPI_VERSION as build + +ARG LLAMA_SYCL_F16=OFF +RUN apt-get update && \ + apt-get install -y git + +WORKDIR /app + +COPY . . + +RUN if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \ + echo "LLAMA_SYCL_F16 is set" && \ + export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \ + fi && \ + cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \ + cmake --build build --config Release --target llama-cli + +FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime + +COPY --from=build /app/build/bin/llama-cli /llama-cli + +ENV LC_ALL=C.utf8 + +ENTRYPOINT [ "/llama-cli" ] diff --git a/.devops/main-rocm.Dockerfile b/.devops/llama-cli-rocm.Dockerfile similarity index 94% rename from .devops/main-rocm.Dockerfile rename to .devops/llama-cli-rocm.Dockerfile index 37576d68e..7e8a6f0fa 100644 --- a/.devops/main-rocm.Dockerfile +++ b/.devops/llama-cli-rocm.Dockerfile @@ -40,6 +40,6 @@ ENV LLAMA_HIPBLAS=1 ENV CC=/opt/rocm/llvm/bin/clang ENV CXX=/opt/rocm/llvm/bin/clang++ -RUN make -j$(nproc) +RUN make -j$(nproc) llama-cli -ENTRYPOINT [ "/app/main" ] +ENTRYPOINT [ "/app/llama-cli" ] diff --git a/.devops/main-vulkan.Dockerfile b/.devops/llama-cli-vulkan.Dockerfile similarity index 71% rename from .devops/main-vulkan.Dockerfile rename to .devops/llama-cli-vulkan.Dockerfile index 6c2b2ed5b..7a0abe71f 100644 --- a/.devops/main-vulkan.Dockerfile +++ b/.devops/llama-cli-vulkan.Dockerfile @@ -3,7 +3,7 @@ ARG UBUNTU_VERSION=jammy FROM ubuntu:$UBUNTU_VERSION as build # Install build tools -RUN apt update && apt install -y git build-essential cmake wget +RUN apt update && apt install -y git build-essential cmake wget libgomp1 # Install Vulkan SDK RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \ @@ -15,13 +15,13 @@ RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key WORKDIR /app COPY . . RUN cmake -B build -DLLAMA_VULKAN=1 && \ - cmake --build build --config Release --target main + cmake --build build --config Release --target llama-cli # Clean up WORKDIR / -RUN cp /app/build/bin/main /main && \ +RUN cp /app/build/bin/llama-cli /llama-cli && \ rm -rf /app ENV LC_ALL=C.utf8 -ENTRYPOINT [ "/main" ] +ENTRYPOINT [ "/llama-cli" ] diff --git a/.devops/main.Dockerfile b/.devops/llama-cli.Dockerfile similarity index 57% rename from .devops/main.Dockerfile rename to .devops/llama-cli.Dockerfile index 763d75fce..38382bfc9 100644 --- a/.devops/main.Dockerfile +++ b/.devops/llama-cli.Dockerfile @@ -9,12 +9,15 @@ WORKDIR /app COPY . . -RUN make -j$(nproc) +RUN make -j$(nproc) llama-cli FROM ubuntu:$UBUNTU_VERSION as runtime -COPY --from=build /app/main /main +RUN apt-get update && \ + apt-get install -y libgomp1 + +COPY --from=build /app/llama-cli /llama-cli ENV LC_ALL=C.utf8 -ENTRYPOINT [ "/main" ] +ENTRYPOINT [ "/llama-cli" ] diff --git a/.devops/llama-cpp-clblast.srpm.spec b/.devops/llama-cpp-clblast.srpm.spec index 774f63ddd..013952191 100644 --- a/.devops/llama-cpp-clblast.srpm.spec +++ b/.devops/llama-cpp-clblast.srpm.spec @@ -36,9 +36,9 @@ make -j LLAMA_CLBLAST=1 %install mkdir -p %{buildroot}%{_bindir}/ -cp -p main %{buildroot}%{_bindir}/llamaclblast -cp -p server %{buildroot}%{_bindir}/llamaclblastserver -cp -p simple %{buildroot}%{_bindir}/llamaclblastsimple +cp -p llama-cli %{buildroot}%{_bindir}/llama-clblast-cli +cp -p llama-server %{buildroot}%{_bindir}/llama-clblast-server +cp -p llama-simple %{buildroot}%{_bindir}/llama-clblast-simple mkdir -p %{buildroot}/usr/lib/systemd/system %{__cat} < %{buildroot}/usr/lib/systemd/system/llamaclblast.service @@ -49,7 +49,7 @@ After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.t [Service] Type=simple EnvironmentFile=/etc/sysconfig/llama -ExecStart=/usr/bin/llamaclblastserver $LLAMA_ARGS +ExecStart=/usr/bin/llama-clblast-server $LLAMA_ARGS ExecReload=/bin/kill -s HUP $MAINPID Restart=never @@ -67,9 +67,9 @@ rm -rf %{buildroot} rm -rf %{_builddir}/* %files -%{_bindir}/llamaclblast -%{_bindir}/llamaclblastserver -%{_bindir}/llamaclblastsimple +%{_bindir}/llama-clblast-cli +%{_bindir}/llama-clblast-server +%{_bindir}/llama-clblast-simple /usr/lib/systemd/system/llamaclblast.service %config /etc/sysconfig/llama diff --git a/.devops/llama-cpp-cuda.srpm.spec b/.devops/llama-cpp-cuda.srpm.spec index ba9cb7cbb..cbdf43626 100644 --- a/.devops/llama-cpp-cuda.srpm.spec +++ b/.devops/llama-cpp-cuda.srpm.spec @@ -36,9 +36,9 @@ make -j LLAMA_CUDA=1 %install mkdir -p %{buildroot}%{_bindir}/ -cp -p main %{buildroot}%{_bindir}/llamacppcuda -cp -p server %{buildroot}%{_bindir}/llamacppcudaserver -cp -p simple %{buildroot}%{_bindir}/llamacppcudasimple +cp -p llama-cli %{buildroot}%{_bindir}/llama-cuda-cli +cp -p llama-server %{buildroot}%{_bindir}/llama-cuda-server +cp -p llama-simple %{buildroot}%{_bindir}/llama-cuda-simple mkdir -p %{buildroot}/usr/lib/systemd/system %{__cat} < %{buildroot}/usr/lib/systemd/system/llamacuda.service @@ -49,7 +49,7 @@ After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.t [Service] Type=simple EnvironmentFile=/etc/sysconfig/llama -ExecStart=/usr/bin/llamacppcudaserver $LLAMA_ARGS +ExecStart=/usr/bin/llama-cuda-server $LLAMA_ARGS ExecReload=/bin/kill -s HUP $MAINPID Restart=never @@ -67,9 +67,9 @@ rm -rf %{buildroot} rm -rf %{_builddir}/* %files -%{_bindir}/llamacppcuda -%{_bindir}/llamacppcudaserver -%{_bindir}/llamacppcudasimple +%{_bindir}/llama-cuda-cli +%{_bindir}/llama-cuda-server +%{_bindir}/llama-cuda-simple /usr/lib/systemd/system/llamacuda.service %config /etc/sysconfig/llama diff --git a/.devops/llama-cpp.srpm.spec b/.devops/llama-cpp.srpm.spec index 1d9e4f425..4d5560089 100644 --- a/.devops/llama-cpp.srpm.spec +++ b/.devops/llama-cpp.srpm.spec @@ -38,9 +38,9 @@ make -j %install mkdir -p %{buildroot}%{_bindir}/ -cp -p main %{buildroot}%{_bindir}/llama -cp -p server %{buildroot}%{_bindir}/llamaserver -cp -p simple %{buildroot}%{_bindir}/llamasimple +cp -p llama-cli %{buildroot}%{_bindir}/llama-cli +cp -p llama-server %{buildroot}%{_bindir}/llama-server +cp -p llama-simple %{buildroot}%{_bindir}/llama-simple mkdir -p %{buildroot}/usr/lib/systemd/system %{__cat} < %{buildroot}/usr/lib/systemd/system/llama.service @@ -51,7 +51,7 @@ After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.t [Service] Type=simple EnvironmentFile=/etc/sysconfig/llama -ExecStart=/usr/bin/llamaserver $LLAMA_ARGS +ExecStart=/usr/bin/llama-server $LLAMA_ARGS ExecReload=/bin/kill -s HUP $MAINPID Restart=never @@ -69,9 +69,9 @@ rm -rf %{buildroot} rm -rf %{_builddir}/* %files -%{_bindir}/llama -%{_bindir}/llamaserver -%{_bindir}/llamasimple +%{_bindir}/llama-cli +%{_bindir}/llama-server +%{_bindir}/llama-simple /usr/lib/systemd/system/llama.service %config /etc/sysconfig/llama diff --git a/.devops/server-cuda.Dockerfile b/.devops/llama-server-cuda.Dockerfile similarity index 82% rename from .devops/server-cuda.Dockerfile rename to .devops/llama-server-cuda.Dockerfile index 7f5228185..0010ffd4c 100644 --- a/.devops/server-cuda.Dockerfile +++ b/.devops/llama-server-cuda.Dockerfile @@ -25,13 +25,13 @@ ENV LLAMA_CUDA=1 # Enable cURL ENV LLAMA_CURL=1 -RUN make -j$(nproc) +RUN make -j$(nproc) llama-server FROM ${BASE_CUDA_RUN_CONTAINER} as runtime RUN apt-get update && \ - apt-get install -y libcurl4-openssl-dev + apt-get install -y libcurl4-openssl-dev libgomp1 -COPY --from=build /app/server /server +COPY --from=build /app/llama-server /llama-server -ENTRYPOINT [ "/server" ] +ENTRYPOINT [ "/llama-server" ] diff --git a/.devops/llama-server-intel.Dockerfile b/.devops/llama-server-intel.Dockerfile new file mode 100644 index 000000000..cec436452 --- /dev/null +++ b/.devops/llama-server-intel.Dockerfile @@ -0,0 +1,29 @@ +ARG ONEAPI_VERSION=2024.1.1-devel-ubuntu22.04 + +FROM intel/oneapi-basekit:$ONEAPI_VERSION as build + +ARG LLAMA_SYCL_F16=OFF +RUN apt-get update && \ + apt-get install -y git libcurl4-openssl-dev + +WORKDIR /app + +COPY . . + +RUN if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \ + echo "LLAMA_SYCL_F16 is set" && \ + export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \ + fi && \ + cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \ + cmake --build build --config Release --target llama-server + +FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime + +RUN apt-get update && \ + apt-get install -y libcurl4-openssl-dev + +COPY --from=build /app/build/bin/llama-server /llama-server + +ENV LC_ALL=C.utf8 + +ENTRYPOINT [ "/llama-server" ] diff --git a/.devops/server-rocm.Dockerfile b/.devops/llama-server-rocm.Dockerfile similarity index 94% rename from .devops/server-rocm.Dockerfile rename to .devops/llama-server-rocm.Dockerfile index a6b76dee8..f88cf20e5 100644 --- a/.devops/server-rocm.Dockerfile +++ b/.devops/llama-server-rocm.Dockerfile @@ -45,6 +45,6 @@ ENV LLAMA_CURL=1 RUN apt-get update && \ apt-get install -y libcurl4-openssl-dev -RUN make -j$(nproc) +RUN make -j$(nproc) llama-server -ENTRYPOINT [ "/app/server" ] +ENTRYPOINT [ "/app/llama-server" ] diff --git a/.devops/server-vulkan.Dockerfile b/.devops/llama-server-vulkan.Dockerfile similarity index 82% rename from .devops/server-vulkan.Dockerfile rename to .devops/llama-server-vulkan.Dockerfile index 6e757e171..b0fa0b8e6 100644 --- a/.devops/server-vulkan.Dockerfile +++ b/.devops/llama-server-vulkan.Dockerfile @@ -19,13 +19,13 @@ RUN apt-get update && \ WORKDIR /app COPY . . RUN cmake -B build -DLLAMA_VULKAN=1 -DLLAMA_CURL=1 && \ - cmake --build build --config Release --target server + cmake --build build --config Release --target llama-server # Clean up WORKDIR / -RUN cp /app/build/bin/server /server && \ +RUN cp /app/build/bin/llama-server /llama-server && \ rm -rf /app ENV LC_ALL=C.utf8 -ENTRYPOINT [ "/server" ] +ENTRYPOINT [ "/llama-server" ] diff --git a/.devops/server.Dockerfile b/.devops/llama-server.Dockerfile similarity index 62% rename from .devops/server.Dockerfile rename to .devops/llama-server.Dockerfile index 0d09d3627..aa93369be 100644 --- a/.devops/server.Dockerfile +++ b/.devops/llama-server.Dockerfile @@ -11,15 +11,15 @@ COPY . . ENV LLAMA_CURL=1 -RUN make -j$(nproc) +RUN make -j$(nproc) llama-server FROM ubuntu:$UBUNTU_VERSION as runtime RUN apt-get update && \ - apt-get install -y libcurl4-openssl-dev + apt-get install -y libcurl4-openssl-dev libgomp1 -COPY --from=build /app/server /server +COPY --from=build /app/llama-server /llama-server ENV LC_ALL=C.utf8 -ENTRYPOINT [ "/server" ] +ENTRYPOINT [ "/llama-server" ] diff --git a/.devops/main-intel.Dockerfile b/.devops/main-intel.Dockerfile deleted file mode 100644 index 7516c8313..000000000 --- a/.devops/main-intel.Dockerfile +++ /dev/null @@ -1,34 +0,0 @@ -ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04 - -FROM intel/oneapi-basekit:$ONEAPI_VERSION as build - -RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \ - echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \ - chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \ - rm /etc/apt/sources.list.d/intel-graphics.list && \ - wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \ - echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \ - chmod 644 /usr/share/keyrings/intel-graphics.gpg - -ARG LLAMA_SYCL_F16=OFF -RUN apt-get update && \ - apt-get install -y git - -WORKDIR /app - -COPY . . - -RUN if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \ - echo "LLAMA_SYCL_F16 is set" && \ - export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \ - fi && \ - cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \ - cmake --build build --config Release --target main - -FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime - -COPY --from=build /app/build/bin/main /main - -ENV LC_ALL=C.utf8 - -ENTRYPOINT [ "/main" ] diff --git a/.devops/nix/apps.nix b/.devops/nix/apps.nix index b8a12cc0a..897fce4d3 100644 --- a/.devops/nix/apps.nix +++ b/.devops/nix/apps.nix @@ -6,11 +6,11 @@ let inherit (config.packages) default; binaries = [ - "llama" + "llama-cli" "llama-embedding" "llama-server" - "quantize" - "train-text-from-scratch" + "llama-quantize" + "llama-train-text-from-scratch" ]; mkApp = name: { type = "app"; diff --git a/.devops/nix/package.nix b/.devops/nix/package.nix index e8d5b0bd9..87bb3a20f 100644 --- a/.devops/nix/package.nix +++ b/.devops/nix/package.nix @@ -243,8 +243,6 @@ effectiveStdenv.mkDerivation ( # TODO(SomeoneSerge): It's better to add proper install targets at the CMake level, # if they haven't been added yet. postInstall = '' - mv $out/bin/main${executableSuffix} $out/bin/llama${executableSuffix} - mv $out/bin/server${executableSuffix} $out/bin/llama-server${executableSuffix} mkdir -p $out/include cp $src/llama.h $out/include/ ''; @@ -294,7 +292,7 @@ effectiveStdenv.mkDerivation ( license = lib.licenses.mit; # Accommodates `nix run` and `lib.getExe` - mainProgram = "llama"; + mainProgram = "llama-cli"; # These people might respond, on the best effort basis, if you ping them # in case of Nix-specific regressions or for reviewing Nix-specific PRs. diff --git a/.devops/server-intel.Dockerfile b/.devops/server-intel.Dockerfile deleted file mode 100644 index 13d00b737..000000000 --- a/.devops/server-intel.Dockerfile +++ /dev/null @@ -1,45 +0,0 @@ -ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04 - -FROM intel/oneapi-basekit:$ONEAPI_VERSION as build - -RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \ - echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \ - chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \ - rm /etc/apt/sources.list.d/intel-graphics.list && \ - wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \ - echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \ - chmod 644 /usr/share/keyrings/intel-graphics.gpg - -ARG LLAMA_SYCL_F16=OFF -RUN apt-get update && \ - apt-get install -y git libcurl4-openssl-dev - -WORKDIR /app - -COPY . . - -RUN if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \ - echo "LLAMA_SYCL_F16 is set" && \ - export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \ - fi && \ - cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \ - cmake --build build --config Release --target server - -FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime - -RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | tee /usr/share/keyrings/intel-oneapi-archive-keyring.gpg > /dev/null && \ - echo "deb [signed-by=/usr/share/keyrings/intel-oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main " | tee /etc/apt/sources.list.d/oneAPI.list && \ - chmod 644 /usr/share/keyrings/intel-oneapi-archive-keyring.gpg && \ - rm /etc/apt/sources.list.d/intel-graphics.list && \ - wget -O- https://repositories.intel.com/graphics/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null && \ - echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/graphics/ubuntu jammy arc" | tee /etc/apt/sources.list.d/intel.gpu.jammy.list && \ - chmod 644 /usr/share/keyrings/intel-graphics.gpg - -RUN apt-get update && \ - apt-get install -y libcurl4-openssl-dev - -COPY --from=build /app/build/bin/server /server - -ENV LC_ALL=C.utf8 - -ENTRYPOINT [ "/server" ] diff --git a/.devops/tools.sh b/.devops/tools.sh index 97424c3aa..335382f69 100755 --- a/.devops/tools.sh +++ b/.devops/tools.sh @@ -10,11 +10,11 @@ shift if [[ "$arg1" == '--convert' || "$arg1" == '-c' ]]; then python3 ./convert-hf-to-gguf.py "$@" elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then - ./quantize "$@" + ./llama-quantize "$@" elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then - ./main "$@" + ./llama-cli "$@" elif [[ "$arg1" == '--finetune' || "$arg1" == '-f' ]]; then - ./finetune "$@" + ./llama-finetune "$@" elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then echo "Converting PTH to GGML..." for i in `ls $1/$2/ggml-model-f16.bin*`; do @@ -22,11 +22,11 @@ elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then echo "Skip model quantization, it already exists: ${i/f16/q4_0}" else echo "Converting PTH to GGML: $i into ${i/f16/q4_0}..." - ./quantize "$i" "${i/f16/q4_0}" q4_0 + ./llama-quantize "$i" "${i/f16/q4_0}" q4_0 fi done elif [[ "$arg1" == '--server' || "$arg1" == '-s' ]]; then - ./server "$@" + ./llama-server "$@" else echo "Unknown command: $arg1" echo "Available commands: " diff --git a/.dockerignore b/.dockerignore index 633bbc3a9..8916e2a66 100644 --- a/.dockerignore +++ b/.dockerignore @@ -12,8 +12,8 @@ build*/ models/* -/main -/quantize +/llama-cli +/llama-quantize arm_neon.h compile_commands.json diff --git a/.editorconfig b/.editorconfig index 16d16b3b5..f88f8da67 100644 --- a/.editorconfig +++ b/.editorconfig @@ -26,3 +26,7 @@ indent_size = 2 [examples/llama.swiftui/llama.swiftui.xcodeproj/*] indent_style = tab + +[examples/cvector-generator/*.txt] +trim_trailing_whitespace = unset +insert_final_newline = unset diff --git a/.github/ISSUE_TEMPLATE/01-bug-low.yml b/.github/ISSUE_TEMPLATE/01-bug-low.yml index bfb9d9a06..54785854f 100644 --- a/.github/ISSUE_TEMPLATE/01-bug-low.yml +++ b/.github/ISSUE_TEMPLATE/01-bug-low.yml @@ -24,7 +24,7 @@ body: label: Name and Version description: Which executable and which version of our software are you running? (use `--version` to get a version string) placeholder: | - $./main --version + $./llama-cli --version version: 2999 (42b4109e) built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu validations: diff --git a/.github/ISSUE_TEMPLATE/02-bug-medium.yml b/.github/ISSUE_TEMPLATE/02-bug-medium.yml index e8297eea0..a6285c6f0 100644 --- a/.github/ISSUE_TEMPLATE/02-bug-medium.yml +++ b/.github/ISSUE_TEMPLATE/02-bug-medium.yml @@ -24,7 +24,7 @@ body: label: Name and Version description: Which executable and which version of our software are you running? (use `--version` to get a version string) placeholder: | - $./main --version + $./llama-cli --version version: 2999 (42b4109e) built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu validations: diff --git a/.github/ISSUE_TEMPLATE/03-bug-high.yml b/.github/ISSUE_TEMPLATE/03-bug-high.yml index 3c9d50d16..ff816b937 100644 --- a/.github/ISSUE_TEMPLATE/03-bug-high.yml +++ b/.github/ISSUE_TEMPLATE/03-bug-high.yml @@ -24,7 +24,7 @@ body: label: Name and Version description: Which executable and which version of our software are you running? (use `--version` to get a version string) placeholder: | - $./main --version + $./llama-cli --version version: 2999 (42b4109e) built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu validations: diff --git a/.github/ISSUE_TEMPLATE/04-bug-critical.yml b/.github/ISSUE_TEMPLATE/04-bug-critical.yml index d089d5fa1..7af42a80b 100644 --- a/.github/ISSUE_TEMPLATE/04-bug-critical.yml +++ b/.github/ISSUE_TEMPLATE/04-bug-critical.yml @@ -24,7 +24,7 @@ body: label: Name and Version description: Which executable and which version of our software are you running? (use `--version` to get a version string) placeholder: | - $./main --version + $./llama-cli --version version: 2999 (42b4109e) built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu validations: diff --git a/.github/labeler.yml b/.github/labeler.yml index 97d739b58..5c12bab73 100644 --- a/.github/labeler.yml +++ b/.github/labeler.yml @@ -42,7 +42,6 @@ build: - cmake/** - CMakeLists.txt - CMakePresets.json - - codecov.yml examples: - changed-files: - any-glob-to-any-file: examples/** diff --git a/.github/pull_request_template.md b/.github/pull_request_template.md new file mode 100644 index 000000000..997c6d9d0 --- /dev/null +++ b/.github/pull_request_template.md @@ -0,0 +1,7 @@ + + +- [x] I have read the [contributing guidelines](https://github.com/ggerganov/llama.cpp/blob/master/CONTRIBUTING.md) +- Self-reported review complexity: + - [ ] Low + - [ ] Medium + - [ ] High diff --git a/.github/workflows/bench.yml b/.github/workflows/bench.yml index de0d994c8..88ab4844e 100644 --- a/.github/workflows/bench.yml +++ b/.github/workflows/bench.yml @@ -119,7 +119,7 @@ jobs: -DLLAMA_FATAL_WARNINGS=OFF \ -DLLAMA_ALL_WARNINGS=OFF \ -DCMAKE_BUILD_TYPE=Release; - cmake --build build --config Release -j $(nproc) --target server + cmake --build build --config Release -j $(nproc) --target llama-server - name: Download the dataset id: download_dataset diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index e824136a5..a8fcae043 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -13,7 +13,7 @@ on: paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m'] pull_request: types: [opened, synchronize, reopened] - paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m'] + paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m'] concurrency: group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }} @@ -84,7 +84,7 @@ jobs: name: llama-bin-macos-arm64.zip macOS-latest-cmake-x64: - runs-on: macos-latest + runs-on: macos-12 steps: - name: Clone @@ -103,12 +103,10 @@ jobs: id: cmake_build run: | sysctl -a - mkdir build - cd build # Metal is disabled due to intermittent failures with Github runners not having a GPU: # https://github.com/ggerganov/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313 - cmake -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_METAL=OFF -DLLAMA_CURL=ON .. - cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) + cmake -B build -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_METAL=OFF -DLLAMA_CURL=ON + cmake --build build --config Release -j $(sysctl -n hw.logicalcpu) - name: Test id: cmake_test @@ -241,8 +239,8 @@ jobs: wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/tok512.bin echo "Fetch llama2c model" wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/stories260K.bin - ./bin/convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf - ./bin/main -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256 + ./bin/llama-convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf + ./bin/llama-cli -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256 - name: Determine tag name id: tag @@ -684,12 +682,10 @@ jobs: cmake --build build --config ${{ matrix.build }} -j $(nproc) windows-latest-cmake: - runs-on: windows-latest + runs-on: windows-2019 env: OPENBLAS_VERSION: 0.3.23 - OPENCL_VERSION: 2023.04.17 - CLBLAST_VERSION: 1.6.0 SDE_VERSION: 9.33.0-2024-01-07 VULKAN_VERSION: 1.3.261.1 @@ -706,8 +702,6 @@ jobs: defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF -DBUILD_SHARED_LIBS=ON' - build: 'avx512-x64' defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON' - - build: 'clblast-x64' - defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"' - build: 'openblas-x64' defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"' - build: 'kompute-x64' @@ -732,27 +726,6 @@ jobs: run: | git submodule update --init kompute - - name: Download OpenCL SDK - id: get_opencl - if: ${{ matrix.build == 'clblast-x64' }} - run: | - curl.exe -o $env:RUNNER_TEMP/opencl.zip -L "https://github.com/KhronosGroup/OpenCL-SDK/releases/download/v${env:OPENCL_VERSION}/OpenCL-SDK-v${env:OPENCL_VERSION}-Win-x64.zip" - mkdir $env:RUNNER_TEMP/opencl - tar.exe -xvf $env:RUNNER_TEMP/opencl.zip --strip-components=1 -C $env:RUNNER_TEMP/opencl - - - name: Download CLBlast - id: get_clblast - if: ${{ matrix.build == 'clblast-x64' }} - run: | - curl.exe -o $env:RUNNER_TEMP/clblast.7z -L "https://github.com/CNugteren/CLBlast/releases/download/${env:CLBLAST_VERSION}/CLBlast-${env:CLBLAST_VERSION}-windows-x64.7z" - curl.exe -o $env:RUNNER_TEMP/CLBlast.LICENSE.txt -L "https://github.com/CNugteren/CLBlast/raw/${env:CLBLAST_VERSION}/LICENSE" - 7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/clblast.7z - rename-item $env:RUNNER_TEMP/CLBlast-${env:CLBLAST_VERSION}-windows-x64 clblast - foreach ($f in (gci -Recurse -Path "$env:RUNNER_TEMP/clblast" -Filter '*.cmake')) { - $txt = Get-Content -Path $f -Raw - $txt.Replace('C:/vcpkg/packages/opencl_x64-windows/', "$($env:RUNNER_TEMP.Replace('\','/'))/opencl/") | Set-Content -Path $f -Encoding UTF8 - } - - name: Download OpenBLAS id: get_openblas if: ${{ matrix.build == 'openblas-x64' }} @@ -786,13 +759,6 @@ jobs: cmake -S . -B build ${{ matrix.defines }} cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} - - name: Add clblast.dll - id: add_clblast_dll - if: ${{ matrix.build == 'clblast-x64' }} - run: | - cp $env:RUNNER_TEMP/clblast/lib/clblast.dll ./build/bin/Release - cp $env:RUNNER_TEMP/CLBlast.LICENSE.txt ./build/bin/Release/CLBlast-${env:CLBLAST_VERSION}.txt - - name: Add libopenblas.dll id: add_libopenblas_dll if: ${{ matrix.build == 'openblas-x64' }} @@ -816,7 +782,7 @@ jobs: - name: Test id: cmake_test # not all machines have native AVX-512 - if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'clblast-x64' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }} + if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }} run: | cd build ctest -L main -C Release --verbose --timeout 900 @@ -861,7 +827,7 @@ jobs: name: llama-bin-win-${{ matrix.build }}.zip windows-latest-cmake-cuda: - runs-on: windows-latest + runs-on: windows-2019 strategy: matrix: @@ -875,8 +841,9 @@ jobs: with: fetch-depth: 0 - - uses: Jimver/cuda-toolkit@v0.2.11 + - name: Install CUDA toolkit id: cuda-toolkit + uses: Jimver/cuda-toolkit@v0.2.15 with: cuda: ${{ matrix.cuda }} method: 'network' @@ -1071,7 +1038,7 @@ jobs: # hypervisor: 'qemu' # run: | # sudo pkg update -# sudo pkg install -y gmake automake autoconf pkgconf llvm15 clinfo clover opencl clblast openblas +# sudo pkg install -y gmake automake autoconf pkgconf llvm15 openblas # gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j `sysctl -n hw.ncpu` release: diff --git a/.github/workflows/code-coverage.yml b/.github/workflows/code-coverage.yml deleted file mode 100644 index f12c558f8..000000000 --- a/.github/workflows/code-coverage.yml +++ /dev/null @@ -1,40 +0,0 @@ -name: Code Coverage -on: [push, pull_request] - -env: - GGML_NLOOP: 3 - GGML_N_THREADS: 1 - -concurrency: - group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }} - cancel-in-progress: true - -jobs: - run: - runs-on: ubuntu-20.04 - steps: - - name: Checkout - uses: actions/checkout@v4 - - - name: Dependencies - run: | - sudo apt-get update - sudo apt-get install build-essential gcc-8 lcov - - - name: Build - run: CC=gcc-8 make -j LLAMA_CODE_COVERAGE=1 tests - - - name: Run tests - run: CC=gcc-8 make test - - - name: Generate coverage report - run: | - make coverage - make lcov-report - - - name: Upload coverage to Codecov - uses: codecov/codecov-action@v3 - env: - CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }} - with: - files: lcov-report/coverage.info diff --git a/.github/workflows/docker.yml b/.github/workflows/docker.yml index 9b03d19bc..6244b4812 100644 --- a/.github/workflows/docker.yml +++ b/.github/workflows/docker.yml @@ -30,20 +30,20 @@ jobs: strategy: matrix: config: - - { tag: "light", dockerfile: ".devops/main.Dockerfile", platforms: "linux/amd64,linux/arm64" } + - { tag: "light", dockerfile: ".devops/llama-cli.Dockerfile", platforms: "linux/amd64,linux/arm64" } + - { tag: "server", dockerfile: ".devops/llama-server.Dockerfile", platforms: "linux/amd64,linux/arm64" } - { tag: "full", dockerfile: ".devops/full.Dockerfile", platforms: "linux/amd64,linux/arm64" } - - { tag: "server", dockerfile: ".devops/server.Dockerfile", platforms: "linux/amd64,linux/arm64" } # NOTE(canardletter): The CUDA builds on arm64 are very slow, so I # have disabled them for now until the reason why # is understood. - - { tag: "light-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platforms: "linux/amd64" } + - { tag: "light-cuda", dockerfile: ".devops/llama-cli-cuda.Dockerfile", platforms: "linux/amd64" } + - { tag: "server-cuda", dockerfile: ".devops/llama-server-cuda.Dockerfile", platforms: "linux/amd64" } - { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" } - - { tag: "server-cuda", dockerfile: ".devops/server-cuda.Dockerfile", platforms: "linux/amd64" } - - { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" } + - { tag: "light-rocm", dockerfile: ".devops/llama-cli-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" } + - { tag: "server-rocm", dockerfile: ".devops/llama-server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" } - { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" } - - { tag: "server-rocm", dockerfile: ".devops/server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" } - - { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" } - - { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" } + - { tag: "light-intel", dockerfile: ".devops/llama-cli-intel.Dockerfile", platforms: "linux/amd64" } + - { tag: "server-intel", dockerfile: ".devops/llama-server-intel.Dockerfile", platforms: "linux/amd64" } steps: - name: Check out the repo uses: actions/checkout@v4 diff --git a/.github/workflows/server.yml b/.github/workflows/server.yml index 0789efd18..311abf02a 100644 --- a/.github/workflows/server.yml +++ b/.github/workflows/server.yml @@ -16,11 +16,9 @@ on: branches: - master paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*'] - pull_request_target: + pull_request: types: [opened, synchronize, reopened] paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*'] - schedule: - - cron: '2 4 * * *' concurrency: group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }} @@ -32,7 +30,7 @@ jobs: strategy: matrix: - sanitizer: [ADDRESS, THREAD, UNDEFINED] + sanitizer: [ADDRESS, UNDEFINED] # THREAD is broken build_type: [RelWithDebInfo] include: - build_type: Release @@ -89,8 +87,22 @@ jobs: exit 1 fi + - name: Build (no OpenMP) + id: cmake_build_no_openmp + if: ${{ matrix.sanitizer == 'THREAD' }} + run: | + cmake -B build \ + -DLLAMA_NATIVE=OFF \ + -DLLAMA_BUILD_SERVER=ON \ + -DLLAMA_CURL=ON \ + -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \ + -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \ + -DLLAMA_OPENMP=OFF ; + cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server + - name: Build id: cmake_build + if: ${{ matrix.sanitizer != 'THREAD' }} run: | cmake -B build \ -DLLAMA_NATIVE=OFF \ @@ -98,7 +110,7 @@ jobs: -DLLAMA_CURL=ON \ -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \ -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ; - cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target server + cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server - name: Tests id: server_integration_tests @@ -115,7 +127,7 @@ jobs: server-windows: - runs-on: windows-latest + runs-on: windows-2019 steps: - name: Clone @@ -138,7 +150,7 @@ jobs: id: cmake_build run: | cmake -B build -DLLAMA_CURL=ON -DCURL_LIBRARY="$env:RUNNER_TEMP/libcurl/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:RUNNER_TEMP/libcurl/include" - cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target server + cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target llama-server - name: Python setup id: setup_python diff --git a/.gitignore b/.gitignore index 48ae02205..6c3a0abf0 100644 --- a/.gitignore +++ b/.gitignore @@ -1,129 +1,122 @@ -*.o +# Extensions + *.a -*.so +*.bat +*.bin +*.dll +*.dot +*.etag +*.exe +*.gcda +*.gcno +*.gcov *.gguf *.gguf.json -*.bin -*.exe -*.dll -*.log -*.gcov -*.gcno -*.gcda -*.dot -*.bat -*.tmp -*.metallib -*.etag *.lastModified -.DS_Store -.build/ +*.log +*.metallib +*.o +*.so +*.tmp + +# IDE / OS + .cache/ .ccls-cache/ .direnv/ +.DS_Store .envrc +.idea/ .swiftpm -.venv -.clang-tidy .vs/ .vscode/ -.idea/ +nppBackup -ggml-metal-embed.metal -lcov-report/ +# Coverage + gcovr-report/ +lcov-report/ +# Build Artifacts + +tags +.build/ build* +!build-info.cmake +!build-info.cpp.in +!build-info.sh !build.zig +/libllama.so +/llama-* +android-ndk-* +arm_neon.h cmake-build-* +CMakeSettings.json +compile_commands.json +ggml-metal-embed.metal +llama-batched-swift out/ tmp/ +# CI + +!.github/workflows/*.yml + +# Models + models/* models-mnt +!models/.editorconfig +!models/ggml-vocab-*.gguf* -/Pipfile -/baby-llama -/beam-search -/benchmark-matmult -/convert-llama2c-to-ggml -/embd-input-test -/embedding -/eval-callback -/gguf -/gguf-llama-simple -/gguf-split -/gritlm -/imatrix -/infill -/libllama.so -/llama-bench -/llava-cli -/minicpmv-cli -/openbmb -/lookahead -/lookup -/lookup-create -/lookup-merge -/lookup-stats -/main -/metal -/passkey -/perplexity -/q8dot -/quantize -/quantize-stats -/result -/save-load-state -/server -/simple -/batched -/batched-bench -/export-lora -/finetune -/retrieval -/speculative -/parallel -/train-text-from-scratch -/tokenize -/vdot -/common/build-info.cpp -arm_neon.h -compile_commands.json -CMakeSettings.json - -__pycache__ -dist - +# Zig zig-out/ zig-cache/ +# Logs + ppl-*.txt qnt-*.txt perf-*.txt +# Examples + examples/jeopardy/results.txt +examples/server/*.css.hpp examples/server/*.html.hpp examples/server/*.js.hpp examples/server/*.mjs.hpp -examples/server/*.css.hpp +!build_64.sh +!examples/*.bat +!examples/*/*.kts +!examples/*/*/*.kts +!examples/sycl/*.bat +!examples/sycl/*.sh +# Python + +__pycache__ +.venv +/Pipfile +dist poetry.lock poetry.toml -nppBackup # Test binaries -/tests/test-grammar-parser -/tests/test-llama-grammar +/tests/test-backend-ops /tests/test-double-float /tests/test-grad0 +/tests/test-grammar-parser +/tests/test-llama-grammar /tests/test-opt /tests/test-quantize-fns /tests/test-quantize-perf +/tests/test-rope /tests/test-sampling /tests/test-tokenizer-0 -/tests/test-tokenizer-1-spm /tests/test-tokenizer-1-bpe -/tests/test-rope -/tests/test-backend-ops +/tests/test-tokenizer-1-spm + +# Scripts +!/scripts/install-oneapi.bat diff --git a/CMakeLists.txt b/CMakeLists.txt index 620305ca7..49ba45356 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -39,8 +39,12 @@ endif() if (APPLE) set(LLAMA_METAL_DEFAULT ON) + set(LLAMA_BLAS_DEFAULT ON) + set(LLAMA_BLAS_VENDOR_DEFAULT "Apple") else() set(LLAMA_METAL_DEFAULT OFF) + set(LLAMA_BLAS_DEFAULT OFF) + set(LLAMA_BLAS_VENDOR_DEFAULT "Generic") endif() set(LLAMA_LLAMAFILE_DEFAULT ON) @@ -91,9 +95,10 @@ endif() # 3rd party libs option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON) -option(LLAMA_BLAS "llama: use BLAS" OFF) +option(LLAMA_BLAS "llama: use BLAS" ${LLAMA_BLAS_DEFAULT}) +set(LLAMA_BLAS_VENDOR ${LLAMA_BLAS_VENDOR_DEFAULT} CACHE STRING + "llama: BLAS library vendor") option(LLAMA_LLAMAFILE "llama: use llamafile SGEMM" ${LLAMA_LLAMAFILE_DEFAULT}) -set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor") option(LLAMA_CUDA "llama: use CUDA" OFF) option(LLAMA_CUBLAS "llama: use CUDA (deprecated, use LLAMA_CUDA)" OFF) option(LLAMA_CUDA_FORCE_DMMV "llama: use dmmv instead of mmvq CUDA kernels" OFF) @@ -111,10 +116,10 @@ option(LLAMA_CUDA_FA_ALL_QUANTS "llama: compile all quants for Flas option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF) option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF) option(LLAMA_HIP_UMA "llama: use HIP unified memory architecture" OFF) -option(LLAMA_CLBLAST "llama: use CLBlast" OFF) option(LLAMA_VULKAN "llama: use Vulkan" OFF) option(LLAMA_VULKAN_CHECK_RESULTS "llama: run Vulkan op checks" OFF) option(LLAMA_VULKAN_DEBUG "llama: enable Vulkan debug output" OFF) +option(LLAMA_VULKAN_MEMORY_DEBUG "llama: enable Vulkan memory debug output" OFF) option(LLAMA_VULKAN_VALIDATE "llama: enable Vulkan validation" OFF) option(LLAMA_VULKAN_RUN_TESTS "llama: run Vulkan tests" OFF) option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT}) @@ -139,9 +144,6 @@ option(LLAMA_BUILD_SERVER "llama: build server example" option(LLAMA_LASX "llama: enable lasx" ON) option(LLAMA_LSX "llama: enable lsx" ON) -# add perf arguments -option(LLAMA_PERF "llama: enable perf" OFF) - # Required for relocatable CMake package include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake) @@ -312,9 +314,9 @@ if (LLAMA_BLAS) if (LLAMA_STATIC) set(BLA_STATIC ON) endif() - if (CMAKE_VERSION VERSION_GREATER_EQUAL 3.22) - set(BLA_SIZEOF_INTEGER 8) - endif() + #if (CMAKE_VERSION VERSION_GREATER_EQUAL 3.22) + # set(BLA_SIZEOF_INTEGER 8) + #endif() set(BLA_VENDOR ${LLAMA_BLAS_VENDOR}) find_package(BLAS) @@ -322,7 +324,7 @@ if (LLAMA_BLAS) if (BLAS_FOUND) message(STATUS "BLAS found, Libraries: ${BLAS_LIBRARIES}") - if ("${BLAS_INCLUDE_DIRS}" STREQUAL "") + if (("${BLAS_INCLUDE_DIRS}" STREQUAL "") AND NOT (${LLAMA_BLAS_VENDOR} MATCHES "Apple")) # BLAS_INCLUDE_DIRS is missing in FindBLAS.cmake. # see https://gitlab.kitware.com/cmake/cmake/-/issues/20268 find_package(PkgConfig REQUIRED) @@ -375,12 +377,15 @@ if (LLAMA_BLAS) add_compile_options(${BLAS_LINKER_FLAGS}) - add_compile_definitions(GGML_USE_OPENBLAS) + add_compile_definitions(GGML_USE_BLAS) if (${BLAS_INCLUDE_DIRS} MATCHES "mkl" AND (${LLAMA_BLAS_VENDOR} MATCHES "Generic" OR ${LLAMA_BLAS_VENDOR} MATCHES "Intel")) add_compile_definitions(GGML_BLAS_USE_MKL) endif() + set(GGML_HEADERS_BLAS ggml-blas.h) + set(GGML_SOURCES_BLAS ggml-blas.cpp) + set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${BLAS_LIBRARIES}) set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${BLAS_INCLUDE_DIRS}) else() @@ -403,12 +408,26 @@ if (LLAMA_CUBLAS) endif() if (LLAMA_CUDA) - cmake_minimum_required(VERSION 3.17) + cmake_minimum_required(VERSION 3.18) # for CMAKE_CUDA_ARCHITECTURES find_package(CUDAToolkit) if (CUDAToolkit_FOUND) message(STATUS "CUDA found") + if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES) + # 52 == lowest CUDA 12 standard + # 60 == f16 CUDA intrinsics + # 61 == integer CUDA intrinsics + # 70 == compute capability at which unrolling a loop in mul_mat_q kernels is faster + if (LLAMA_CUDA_F16 OR LLAMA_CUDA_DMMV_F16) + set(CMAKE_CUDA_ARCHITECTURES "60;61;70") # needed for f16 CUDA intrinsics + else() + set(CMAKE_CUDA_ARCHITECTURES "52;61;70") # lowest CUDA 12 standard + lowest for integer intrinsics + #set(CMAKE_CUDA_ARCHITECTURES "OFF") # use this to compile much faster, but only F16 models work + endif() + endif() + message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}") + enable_language(CUDA) set(GGML_HEADERS_CUDA ggml-cuda.h) @@ -417,6 +436,8 @@ if (LLAMA_CUDA) list(APPEND GGML_SOURCES_CUDA "ggml-cuda.cu") file(GLOB SRCS "ggml-cuda/template-instances/fattn-wmma*.cu") list(APPEND GGML_SOURCES_CUDA ${SRCS}) + file(GLOB SRCS "ggml-cuda/template-instances/mmq*.cu") + list(APPEND GGML_SOURCES_CUDA ${SRCS}) add_compile_definitions(GGML_USE_CUDA) add_compile_definitions(GGML_CUDA_USE_GRAPHS) @@ -471,21 +492,6 @@ if (LLAMA_CUDA) else() set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cuda_driver) # required by cuDeviceGetAttribute(), cuMemGetAllocationGranularity(...), ... endif() - - if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES) - # 52 == lowest CUDA 12 standard - # 60 == f16 CUDA intrinsics - # 61 == integer CUDA intrinsics - # 70 == compute capability at which unrolling a loop in mul_mat_q kernels is faster - if (LLAMA_CUDA_F16 OR LLAMA_CUDA_DMMV_F16) - set(CMAKE_CUDA_ARCHITECTURES "60;61;70") # needed for f16 CUDA intrinsics - else() - set(CMAKE_CUDA_ARCHITECTURES "52;61;70") # lowest CUDA 12 standard + lowest for integer intrinsics - #set(CMAKE_CUDA_ARCHITECTURES "") # use this to compile much faster, but only F16 models work - endif() - endif() - message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}") - else() message(WARNING "CUDA not found") endif() @@ -502,22 +508,6 @@ if (LLAMA_RPC) set(GGML_SOURCES_RPC ggml-rpc.cpp) endif() -if (LLAMA_CLBLAST) - find_package(CLBlast) - if (CLBlast_FOUND) - message(STATUS "CLBlast found") - - set(GGML_HEADERS_OPENCL ggml-opencl.h) - set(GGML_SOURCES_OPENCL ggml-opencl.cpp) - - add_compile_definitions(GGML_USE_CLBLAST) - - set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} clblast) - else() - message(WARNING "CLBlast not found") - endif() -endif() - if (LLAMA_VULKAN) find_package(Vulkan) if (Vulkan_FOUND) @@ -542,6 +532,10 @@ if (LLAMA_VULKAN) add_compile_definitions(GGML_VULKAN_DEBUG) endif() + if (LLAMA_VULKAN_MEMORY_DEBUG) + add_compile_definitions(GGML_VULKAN_MEMORY_DEBUG) + endif() + if (LLAMA_VULKAN_VALIDATE) add_compile_definitions(GGML_VULKAN_VALIDATE) endif() @@ -557,12 +551,17 @@ if (LLAMA_VULKAN) endif() if (LLAMA_HIPBLAS) - if ($ENV{ROCM_PATH}) - set(ROCM_PATH $ENV{ROCM_PATH}) + if (NOT EXISTS $ENV{ROCM_PATH}) + if (NOT EXISTS /opt/rocm) + set(ROCM_PATH /usr) + else() + set(ROCM_PATH /opt/rocm) + endif() else() - set(ROCM_PATH /opt/rocm) + set(ROCM_PATH $ENV{ROCM_PATH}) endif() list(APPEND CMAKE_PREFIX_PATH ${ROCM_PATH}) + list(APPEND CMAKE_PREFIX_PATH "${ROCM_PATH}/lib64/cmake") # CMake on Windows doesn't support the HIP language yet if(WIN32) @@ -600,6 +599,8 @@ if (LLAMA_HIPBLAS) list(APPEND GGML_SOURCES_ROCM "ggml-cuda.cu") file(GLOB SRCS "ggml-cuda/template-instances/fattn-wmma*.cu") list(APPEND GGML_SOURCES_ROCM ${SRCS}) + file(GLOB SRCS "ggml-cuda/template-instances/mmq*.cu") + list(APPEND GGML_SOURCES_ROCM ${SRCS}) add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUDA) @@ -661,6 +662,7 @@ if (LLAMA_SYCL) #todo: AOT find_package(IntelSYCL REQUIRED) + find_package(MKL REQUIRED) message(STATUS "SYCL found") @@ -675,21 +677,22 @@ if (LLAMA_SYCL) endif() add_compile_options(-I./) #include DPCT - add_compile_options(-I/${SYCL_INCLUDE_DIR}) set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-narrowing") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3") - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl -L${MKLROOT}/lib") if (LLAMA_SYCL_TARGET STREQUAL "NVIDIA") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda") endif() set(GGML_HEADERS_SYCL ggml-sycl.h) - set(GGML_SOURCES_SYCL ggml-sycl.cpp) + file(GLOB GGML_SOURCES_SYCL "ggml-sycl/*.cpp") + list(APPEND GGML_SOURCES_SYCL "ggml-sycl.cpp") if (WIN32) - set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} -fsycl sycl7 OpenCL mkl_sycl_blas_dll.lib mkl_intel_ilp64_dll.lib mkl_sequential_dll.lib mkl_core_dll.lib) + set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL) else() + add_compile_options(-I/${SYCL_INCLUDE_DIR}) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl -L${MKLROOT}/lib") if (LLAMA_SYCL_TARGET STREQUAL "INTEL") set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} -fsycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread) elseif (LLAMA_SYCL_TARGET STREQUAL "NVIDIA") @@ -864,10 +867,6 @@ if (LLAMA_CPU_HBM) target_link_libraries(ggml PUBLIC memkind) endif() -if (LLAMA_PERF) - add_compile_definitions(GGML_PERF) -endif() - function(get_flags CCID CCVER) set(C_FLAGS "") set(CXX_FLAGS "") @@ -1260,7 +1259,6 @@ add_library(ggml OBJECT ggml-quants.c ggml-quants.h ${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA} - ${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL} ${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL} ${GGML_SOURCES_RPC} ${GGML_HEADERS_RPC} ${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA} @@ -1268,6 +1266,7 @@ add_library(ggml OBJECT ${GGML_SOURCES_KOMPUTE} ${GGML_HEADERS_KOMPUTE} ${GGML_SOURCES_VULKAN} ${GGML_HEADERS_VULKAN} ${GGML_SOURCES_ROCM} ${GGML_HEADERS_ROCM} + ${GGML_SOURCES_BLAS} ${GGML_HEADERS_BLAS} ${GGML_SOURCES_LLAMAFILE} ${GGML_HEADERS_LLAMAFILE} ) @@ -1348,8 +1347,9 @@ install(FILES ${CMAKE_CURRENT_BINARY_DIR}/LlamaConfig.cmake DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Llama) set(GGML_PUBLIC_HEADERS "ggml.h" "ggml-alloc.h" "ggml-backend.h" - "${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}" - "${GGML_HEADERS_METAL}" "${GGML_HEADERS_EXTRA}") + "${GGML_HEADERS_CUDA}" + "${GGML_HEADERS_METAL}" + "${GGML_HEADERS_EXTRA}") set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}") install(TARGETS ggml PUBLIC_HEADER) diff --git a/CMakePresets.json b/CMakePresets.json index e2b7a79e3..fba22af9a 100644 --- a/CMakePresets.json +++ b/CMakePresets.json @@ -11,9 +11,21 @@ "CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.." } }, - + { + "name": "sycl-base", + "hidden": true, + "generator": "Ninja", + "binaryDir": "${sourceDir}/build-${presetName}", + "cacheVariables": { + "CMAKE_EXPORT_COMPILE_COMMANDS": "ON", + "CMAKE_CXX_COMPILER": "icx", + "LLAMA_SYCL": "ON", + "CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.." + } + }, { "name": "debug", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Debug" } }, - { "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } }, + { "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Release" } }, + { "name": "reldbg", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } }, { "name": "static", "hidden": true, "cacheVariables": { "LLAMA_STATIC": "ON" } }, { @@ -35,15 +47,18 @@ }, { "name": "arm64-windows-llvm-debug" , "inherits": [ "base", "arm64-windows-llvm", "debug" ] }, - { "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "release" ] }, - { "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "release", "static" ] }, + { "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg" ] }, + { "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg", "static" ] }, { "name": "arm64-windows-msvc-debug" , "inherits": [ "base", "arm64-windows-msvc", "debug" ] }, - { "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "release" ] }, - { "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "release", "static" ] }, + { "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg" ] }, + { "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg", "static" ] }, { "name": "x64-windows-msvc-debug" , "inherits": [ "base", "debug" ] }, - { "name": "x64-windows-msvc-release", "inherits": [ "base", "release" ] }, - { "name": "x64-windows-msvc+static-release", "inherits": [ "base", "release", "static" ] } + { "name": "x64-windows-msvc-release", "inherits": [ "base", "reldbg" ] }, + { "name": "x64-windows-msvc+static-release", "inherits": [ "base", "reldbg", "static" ] }, + + { "name": "x64-windows-sycl-debug" , "inherits": [ "sycl-base", "debug" ] }, + { "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] } ] } diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md new file mode 100644 index 000000000..991d85e49 --- /dev/null +++ b/CONTRIBUTING.md @@ -0,0 +1,14 @@ +# Contributing Guidelines + +## Checklist + +* Make sure your PR follows the [coding guidelines](https://github.com/ggerganov/llama.cpp/blob/master/README.md#coding-guidelines) +* Test your changes using the commands in the [`tests`](tests) folder. For instance, running the `./tests/test-backend-ops` command tests different backend implementations of the GGML library +* Execute [the full CI locally on your machine](ci/README.md) before publishing + +## PR formatting + +* Please rate the complexity of your PR (i.e. `Review Complexity : Low`, `Review Complexity : Medium`, `Review Complexity : High`). This makes it easier for maintainers to triage the PRs. + - The PR template has a series of review complexity checkboxes `[ ]` that you can mark as `[X]` for your conveience. Refer to [About task lists](https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/about-task-lists) for more information. +* If the pull request only contains documentation changes (e.g., updating READMEs, adding new wiki pages), please add `[no ci]` to the commit title. This will skip unnecessary CI checks and help reduce build times. +* When squashing multiple commits on merge, use the following format for your commit title: ` : (#)`. For example: `utils : Fix typo in utils.py (#1234)` diff --git a/Makefile b/Makefile index 8559da108..2ffee6338 100644 --- a/Makefile +++ b/Makefile @@ -1,8 +1,46 @@ # Define the default target now so that it is always the first target BUILD_TARGETS = \ - main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \ - simple batched batched-bench save-load-state server gguf gguf-split eval-callback llama-bench libllava.a llava-cli minicpmv-cli baby-llama beam-search \ - retrieval speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm tests/test-c.o + libllava.a \ + llama-baby-llama \ + llama-batched \ + llama-batched-bench \ + llama-bench \ + llama-benchmark-matmult \ + llama-cli \ + llama-convert-llama2c-to-ggml \ + llama-embedding \ + llama-eval-callback \ + llama-export-lora \ + llama-finetune \ + llama-gbnf-validator \ + llama-gguf \ + llama-gguf-split \ + llama-gritlm \ + llama-imatrix \ + llama-infill \ + llama-llava-cli \ + llama-minicpmv-cli\ + llama-lookahead \ + llama-lookup \ + llama-lookup-create \ + llama-lookup-merge \ + llama-lookup-stats \ + llama-parallel \ + llama-passkey \ + llama-perplexity \ + llama-q8dot \ + llama-quantize \ + llama-quantize-stats \ + llama-retrieval \ + llama-save-load-state \ + llama-server \ + llama-simple \ + llama-speculative \ + llama-tokenize \ + llama-train-text-from-scratch \ + llama-vdot \ + llama-cvector-generator \ + tests/test-c.o # Binaries only useful for tests TEST_TARGETS = \ @@ -307,9 +345,6 @@ ifdef LLAMA_GPROF MK_CFLAGS += -pg MK_CXXFLAGS += -pg endif -ifdef LLAMA_PERF - MK_CPPFLAGS += -DGGML_PERF -endif # Architecture specific # TODO: probably these flags need to be tweaked on some architectures @@ -404,10 +439,11 @@ ifndef LLAMA_NO_ACCELERATE # Mac OS - include Accelerate framework. # `-framework Accelerate` works both with Apple Silicon and Mac Intel ifeq ($(UNAME_S),Darwin) - MK_CPPFLAGS += -DGGML_USE_ACCELERATE + MK_CPPFLAGS += -DGGML_USE_ACCELERATE -DGGML_USE_BLAS MK_CPPFLAGS += -DACCELERATE_NEW_LAPACK MK_CPPFLAGS += -DACCELERATE_LAPACK_ILP64 MK_LDFLAGS += -framework Accelerate + OBJS += ggml-blas.o endif endif # LLAMA_NO_ACCELERATE @@ -418,21 +454,30 @@ ifndef LLAMA_NO_OPENMP endif # LLAMA_NO_OPENMP ifdef LLAMA_OPENBLAS - MK_CPPFLAGS += -DGGML_USE_OPENBLAS $(shell pkg-config --cflags-only-I openblas) + MK_CPPFLAGS += -DGGML_USE_BLAS $(shell pkg-config --cflags-only-I openblas) MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas) MK_LDFLAGS += $(shell pkg-config --libs openblas) + OBJS += ggml-blas.o endif # LLAMA_OPENBLAS +ifdef LLAMA_OPENBLAS64 + MK_CPPFLAGS += -DGGML_USE_BLAS $(shell pkg-config --cflags-only-I openblas64) + MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas64) + MK_LDFLAGS += $(shell pkg-config --libs openblas64) + OBJS += ggml-blas.o +endif # LLAMA_OPENBLAS64 + +ifdef LLAMA_BLIS + MK_CPPFLAGS += -DGGML_USE_BLAS -I/usr/local/include/blis -I/usr/include/blis + MK_LDFLAGS += -lblis -L/usr/local/lib + OBJS += ggml-blas.o +endif # LLAMA_BLIS + ifndef LLAMA_NO_LLAMAFILE MK_CPPFLAGS += -DGGML_USE_LLAMAFILE OBJS += sgemm.o endif -ifdef LLAMA_BLIS - MK_CPPFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis - MK_LDFLAGS += -lblis -L/usr/local/lib -endif # LLAMA_BLIS - ifdef LLAMA_RPC MK_CPPFLAGS += -DGGML_USE_RPC OBJS += ggml-rpc.o @@ -444,6 +489,7 @@ ifdef LLAMA_CUBLAS endif OBJS_CUDA_TEMP_INST = $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-wmma*.cu)) +OBJS_CUDA_TEMP_INST += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/mmq*.cu)) ifdef LLAMA_CUDA_FA_ALL_QUANTS OBJS_CUDA_TEMP_INST += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-vec*.cu)) else @@ -459,7 +505,7 @@ ifdef LLAMA_CUDA CUDA_PATH ?= /usr/local/cuda endif MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include -DGGML_CUDA_USE_GRAPHS - MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib + MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L$(CUDA_PATH)/lib64/stubs -L/usr/lib/wsl/lib OBJS += ggml-cuda.o OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu)) OBJS += $(OBJS_CUDA_TEMP_INST) @@ -547,23 +593,6 @@ ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h $(NVCC_COMPILE) endif # LLAMA_CUDA -ifdef LLAMA_CLBLAST - MK_CPPFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags-only-I clblast OpenCL) - MK_CFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL) - MK_CXXFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL) - - # Mac provides OpenCL as a framework - ifeq ($(UNAME_S),Darwin) - MK_LDFLAGS += -lclblast -framework OpenCL - else - MK_LDFLAGS += $(shell pkg-config --libs clblast OpenCL) - endif - OBJS += ggml-opencl.o - -ggml-opencl.o: ggml-opencl.cpp ggml-opencl.h - $(CXX) $(CXXFLAGS) -c $< -o $@ -endif # LLAMA_CLBLAST - ifdef LLAMA_VULKAN MK_CPPFLAGS += -DGGML_USE_VULKAN MK_LDFLAGS += -lvulkan @@ -577,6 +606,10 @@ ifdef LLAMA_VULKAN_DEBUG MK_CPPFLAGS += -DGGML_VULKAN_DEBUG endif +ifdef LLAMA_VULKAN_MEMORY_DEBUG + MK_CPPFLAGS += -DGGML_VULKAN_MEMORY_DEBUG +endif + ifdef LLAMA_VULKAN_VALIDATE MK_CPPFLAGS += -DGGML_VULKAN_VALIDATE endif @@ -756,6 +789,9 @@ ggml-backend.o: ggml-backend.c ggml.h ggml-backend.h ggml-quants.o: ggml-quants.c ggml.h ggml-quants.h ggml-common.h $(CC) $(CFLAGS) -c $< -o $@ +ggml-blas.o: ggml-blas.cpp ggml-blas.h + $(CXX) $(CXXFLAGS) -c $< -o $@ + unicode.o: unicode.cpp unicode.h $(CXX) $(CXXFLAGS) -c $< -o $@ @@ -793,7 +829,7 @@ libllama.a: llama.o ggml.o $(OBJS) $(COMMON_DEPS) ar rcs libllama.a llama.o ggml.o $(OBJS) $(COMMON_DEPS) clean: - rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult lookup-create lookup-merge lookup-stats common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS) + rm -vrf *.o tests/*.o *.so *.a *.dll common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS) rm -vrf ggml-cuda/*.o rm -vrf ggml-cuda/template-instances/*.o find examples pocs -type f -name "*.o" -delete @@ -809,62 +845,62 @@ clean: # Helper function that replaces .c, .cpp, and .cu file endings with .o: GET_OBJ_FILE = $(patsubst %.c,%.o,$(patsubst %.cpp,%.o,$(patsubst %.cu,%.o,$(1)))) -main: examples/main/main.cpp ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS) +llama-cli: examples/main/main.cpp ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) @echo - @echo '==== Run ./main -h for help. ====' + @echo '==== Run ./llama-cli -h for help. ====' @echo -infill: examples/infill/infill.cpp ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS) +llama-infill: examples/infill/infill.cpp ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -simple: examples/simple/simple.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-simple: examples/simple/simple.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -tokenize: examples/tokenize/tokenize.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-tokenize: examples/tokenize/tokenize.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -batched: examples/batched/batched.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-batched: examples/batched/batched.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -batched-bench: examples/batched-bench/batched-bench.cpp build-info.o ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-batched-bench: examples/batched-bench/batched-bench.cpp build-info.o ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -quantize: examples/quantize/quantize.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-quantize: examples/quantize/quantize.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.o ggml.o llama.o $(OBJS) +llama-quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.o ggml.o llama.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -imatrix: examples/imatrix/imatrix.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-imatrix: examples/imatrix/imatrix.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -embedding: examples/embedding/embedding.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-embedding: examples/embedding/embedding.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -gritlm: examples/gritlm/gritlm.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-gritlm: examples/gritlm/gritlm.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h common/json.hpp examples/server/colorthemes.css.hpp examples/server/style.css.hpp examples/server/theme-beeninorder.css.hpp examples/server/theme-ketivah.css.hpp examples/server/theme-mangotango.css.hpp examples/server/theme-playground.css.hpp examples/server/theme-polarnight.css.hpp examples/server/theme-snowstorm.css.hpp examples/server/index.html.hpp examples/server/index-new.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/server/system-prompts.js.hpp examples/server/prompt-formats.js.hpp examples/server/json-schema-to-grammar.mjs.hpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) +llama-server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h common/json.hpp examples/server/colorthemes.css.hpp examples/server/style.css.hpp examples/server/theme-beeninorder.css.hpp examples/server/theme-ketivah.css.hpp examples/server/theme-mangotango.css.hpp examples/server/theme-playground.css.hpp examples/server/theme-polarnight.css.hpp examples/server/theme-snowstorm.css.hpp examples/server/index.html.hpp examples/server/index-new.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/server/system-prompts.js.hpp examples/server/prompt-formats.js.hpp examples/server/json-schema-to-grammar.mjs.hpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2) @@ -877,23 +913,27 @@ examples/server/%.hpp: examples/server/public/% Makefile echo "unsigned int $${NAME}_len = $(shell cat $< | wc -c );" \ ) > $@ -gguf: examples/gguf/gguf.cpp ggml.o $(OBJS) +llama-gguf: examples/gguf/gguf.cpp ggml.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -gguf-split: examples/gguf-split/gguf-split.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-gguf-split: examples/gguf-split/gguf-split.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -eval-callback: examples/eval-callback/eval-callback.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-eval-callback: examples/eval-callback/eval-callback.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS) +llama-cvector-generator: examples/cvector-generator/cvector-generator.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS) +llama-train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS) + $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) + $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) + +llama-convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) @@ -904,66 +944,68 @@ llama-bench: examples/llama-bench/llama-bench.cpp ggml.o llama.o $(COMMON_DEPS) libllava.a: examples/llava/llava.cpp examples/llava/llava.h examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h common/base64.hpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -static -fPIC -c $< -o $@ -Wno-cast-qual -llava-cli: examples/llava/llava-cli.cpp examples/llava/clip.h examples/llava/clip.cpp examples/llava/llava.h examples/llava/llava.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-llava-cli: examples/llava/llava-cli.cpp examples/llava/clip.h examples/llava/clip.cpp examples/llava/llava.h examples/llava/llava.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual $(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp) $(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) -o $@ $(LDFLAGS) -minicpmv-cli: examples/llava/minicpmv-cli.cpp examples/llava/clip.h examples/llava/clip.cpp examples/llava/llava.h examples/llava/llava.cpp examples/llava/minicpmv_wrapper.h examples/llava/minicpmv_wrapper.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-minicpmv-cli: examples/llava/minicpmv-cli.cpp examples/llava/clip.h examples/llava/clip.cpp examples/llava/llava.h examples/llava/llava.cpp examples/llava/minicpmv_wrapper.h examples/llava/minicpmv_wrapper.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual $(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp) $(CXX) $(CXXFLAGS) -c examples/llava/minicpmv_wrapper.cpp -o $(call GET_OBJ_FILE, examples/llava/minicpmv_wrapper.cpp) $(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp examples/llava/minicpmv_wrapper.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) $(call GET_OBJ_FILE, examples/llava/minicpmv_wrapper.cpp) -o $@ $(LDFLAGS) -baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS) +llama-baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -beam-search: examples/beam-search/beam-search.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-finetune: examples/finetune/finetune.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -finetune: examples/finetune/finetune.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS) +llama-export-lora: examples/export-lora/export-lora.cpp ggml.o common/common.h $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -export-lora: examples/export-lora/export-lora.cpp ggml.o common/common.h $(OBJS) +llama-retrieval: examples/retrieval/retrieval.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -retrieval: examples/retrieval/retrieval.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-speculative: examples/speculative/speculative.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -speculative: examples/speculative/speculative.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) +llama-parallel: examples/parallel/parallel.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -parallel: examples/parallel/parallel.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-lookahead: examples/lookahead/lookahead.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -lookahead: examples/lookahead/lookahead.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-lookup: examples/lookup/lookup.cpp ggml.o llama.o ngram-cache.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -lookup: examples/lookup/lookup.cpp ggml.o llama.o ngram-cache.o $(COMMON_DEPS) $(OBJS) - $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) - $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) - $(CXX) $(CXXFLAGS) -c examples/lookup/lookup-create.cpp -o $(call GET_OBJ_FILE, examples/lookup/lookup-create.cpp) - $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, examples/lookup/lookup-create.cpp) -o lookup-create $(LDFLAGS) - $(CXX) $(CXXFLAGS) -c examples/lookup/lookup-merge.cpp -o $(call GET_OBJ_FILE, examples/lookup/lookup-merge.cpp) - $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, examples/lookup/lookup-merge.cpp) -o lookup-merge $(LDFLAGS) - $(CXX) $(CXXFLAGS) -c examples/lookup/lookup-stats.cpp -o $(call GET_OBJ_FILE, examples/lookup/lookup-stats.cpp) - $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, examples/lookup/lookup-stats.cpp) -o lookup-stats $(LDFLAGS) - -passkey: examples/passkey/passkey.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +llama-lookup-create: examples/lookup/lookup-create.cpp ggml.o llama.o ngram-cache.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -gbnf-validator: examples/gbnf-validator/gbnf-validator.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) +llama-lookup-merge: examples/lookup/lookup-merge.cpp ggml.o llama.o ngram-cache.o $(COMMON_DEPS) $(OBJS) + $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) + $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) + +llama-lookup-stats: examples/lookup/lookup-stats.cpp ggml.o llama.o ngram-cache.o $(COMMON_DEPS) $(OBJS) + $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) + $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) + +llama-passkey: examples/passkey/passkey.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) + $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) + $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) + +llama-gbnf-validator: examples/gbnf-validator/gbnf-validator.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) @@ -989,20 +1031,20 @@ build-info.o: common/build-info.cpp tests: $(TEST_TARGETS) -benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.o ggml.o $(OBJS) +llama-benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.o ggml.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -run-benchmark-matmult: benchmark-matmult +run-benchmark-matmult: llama-benchmark-matmult ./$@ .PHONY: run-benchmark-matmult swift -vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS) +llama-vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS) +llama-q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) @@ -1014,7 +1056,7 @@ tests/test-grammar-parser: tests/test-grammar-parser.cpp ggml.o llama.o grammar- $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) -tests/test-grammar-integration: tests/test-grammar-integration.cpp ggml.o llama.o grammar-parser.o $(OBJS) +tests/test-grammar-integration: tests/test-grammar-integration.cpp json-schema-to-grammar.o ggml.o llama.o grammar-parser.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) diff --git a/README-sycl.md b/README-sycl.md index 37f0306dc..b7e2bb12a 100644 --- a/README-sycl.md +++ b/README-sycl.md @@ -1,6 +1,7 @@ # llama.cpp for SYCL - [Background](#background) +- [Recommended Release](#recommended-release) - [News](#news) - [OS](#os) - [Hardware](#hardware) @@ -29,10 +30,25 @@ The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based o When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneMKL](README.md#intel-onemkl) backend. -It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, CLBlast etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose. +It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose. + +## Recommended Release + +The SYCL backend would be broken by some PRs due to no online CI. + +The following release is verified with good quality: + +|Commit ID|Tag|Release|Verified Platform| +|-|-|-|-| +|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1
MTL Arc GPU/Windows 11/oneAPI 2024.1| + ## News +- 2024.5 + - Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc770. + - Arch Linux is verified successfully. + - 2024.4 - Support data types: GGML_TYPE_IQ4_NL, GGML_TYPE_IQ4_XS, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ3_S, GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M. @@ -77,7 +93,7 @@ It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, *Notes:* - **Memory** - - The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/main`. + - The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/llama-cli`. - Please make sure the GPU shared memory from the host is large enough to account for the model's size. For e.g. the *llama-2-7b.Q4_0* requires at least 8.0GB for integrated GPU and 4.0GB for discrete GPU. @@ -99,14 +115,14 @@ The docker build option is currently limited to *intel GPU* targets. ### Build image ```sh # Using FP16 -docker build -t llama-cpp-sycl --build-arg="LLAMA_SYCL_F16=ON" -f .devops/main-intel.Dockerfile . +docker build -t llama-cpp-sycl --build-arg="LLAMA_SYCL_F16=ON" -f .devops/llama-cli-intel.Dockerfile . ``` *Notes*: To build in default FP32 *(Slower than FP16 alternative)*, you can remove the `--build-arg="LLAMA_SYCL_F16=ON"` argument from the previous command. -You can also use the `.devops/server-intel.Dockerfile`, which builds the *"server"* alternative. +You can also use the `.devops/llama-server-intel.Dockerfile`, which builds the *"server"* alternative. ### Run container @@ -275,7 +291,7 @@ source /opt/intel/oneapi/setvars.sh Similar to the native `sycl-ls`, available SYCL devices can be queried as follow: ```sh -./build/bin/ls-sycl-device +./build/bin/llama-ls-sycl-device ``` A example of such log in a system with 1 *intel CPU* and 1 *intel GPU* can look like the following: ``` @@ -313,7 +329,7 @@ Examples: - Use device 0: ```sh -ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0 +ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0 ``` or run by script: @@ -324,7 +340,7 @@ or run by script: - Use multiple devices: ```sh -ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer +ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer ``` Otherwise, you can run the script: @@ -394,15 +410,9 @@ Output (example): 4. Install build tools -a. Download & install cmake for Windows: https://cmake.org/download/ +a. Download & install cmake for Windows: https://cmake.org/download/ (CMake can also be installed from Visual Studio Installer) +b. The new Visual Studio will install Ninja as default. (If not, please install it manually: https://ninja-build.org/) -b. Download & install mingw-w64 make for Windows provided by w64devkit - -- Download the 1.19.0 version of [w64devkit](https://github.com/skeeto/w64devkit/releases/download/v1.19.0/w64devkit-1.19.0.zip). - -- Extract `w64devkit` on your pc. - -- Add the **bin** folder path in the Windows system PATH environment (for e.g. `C:\xxx\w64devkit\bin\`). ### II. Build llama.cpp @@ -412,10 +422,10 @@ On the oneAPI command line window, step into the llama.cpp main directory and ru @call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force # Option 1: Use FP32 (recommended for better performance in most cases) -cmake -B build -G "MinGW Makefiles" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release +cmake -B build -G "Ninja" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release # Option 2: Or FP16 -cmake -B build -G "MinGW Makefiles" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON +cmake -B build -G "Ninja" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON cmake --build build --config Release -j ``` @@ -425,9 +435,23 @@ Otherwise, run the `win-build-sycl.bat` wrapper which encapsulates the former in .\examples\sycl\win-build-sycl.bat ``` +Or, use CMake presets to build: +```sh +cmake --preset x64-windows-sycl-release +cmake --build build-x64-windows-sycl-release -j --target llama-cli + +cmake -DLLAMA_SYCL_F16=ON --preset x64-windows-sycl-release +cmake --build build-x64-windows-sycl-release -j --target llama-cli + +cmake --preset x64-windows-sycl-debug +cmake --build build-x64-windows-sycl-debug -j --target llama-cli +``` + +Or, you can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project. + *Notes:* -- By default, calling `make` will build all target binary files. In case of a minimal experimental setup, the user can build the inference executable only through `make main`. +- In case of a minimal experimental setup, the user can build the inference executable only through `cmake --build build --config Release -j --target llama-cli`. ### III. Run the inference @@ -488,13 +512,13 @@ Examples: - Use device 0: ``` -build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0 +build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0 ``` - Use multiple devices: ``` -build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer +build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer ``` Otherwise, run the following wrapper script: diff --git a/README.md b/README.md index 8680460aa..40793c8ea 100644 --- a/README.md +++ b/README.md @@ -10,6 +10,9 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++ +> [!IMPORTANT] +[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggerganov/llama.cpp/pull/7809) + ### Recent API changes - [2024 Apr 21] `llama_token_to_piece` can now optionally render special tokens https://github.com/ggerganov/llama.cpp/pull/6807 @@ -53,7 +56,6 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
  • Quantization
  • Interactive mode
  • Constrained output with grammars
  • -
  • Instruct mode
  • Obtaining and using the Facebook LLaMA 2 model
  • Seminal papers and background on the models
  • Perplexity (measuring model quality)
  • @@ -77,7 +79,7 @@ variety of hardware - locally and in the cloud. - AVX, AVX2 and AVX512 support for x86 architectures - 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use - Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP) -- Vulkan, SYCL, and (partial) OpenCL backend support +- Vulkan and SYCL backend support - CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity Since its [inception](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022), the project has @@ -193,6 +195,7 @@ Unless otherwise noted these projects are open-source with permissive licensing: - [cztomsik/ava](https://github.com/cztomsik/ava) (MIT) - [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal) - [pythops/tenere](https://github.com/pythops/tenere) (AGPL) +- [RAGNA Desktop](https://ragna.app/) (proprietary) - [RecurseChat](https://recurse.chat/) (proprietary) - [semperai/amica](https://github.com/semperai/amica) - [withcatai/catai](https://github.com/withcatai/catai) @@ -206,6 +209,7 @@ Unless otherwise noted these projects are open-source with permissive licensing: - [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT) - [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT) - [AIKit](https://github.com/sozercan/aikit) (MIT) +- [LARS - The LLM & Advanced Referencing Solution](https://github.com/abgulati/LARS) (AGPL) *(to have a project listed here, it should clearly state that it depends on `llama.cpp`)* @@ -218,7 +222,7 @@ Unless otherwise noted these projects are open-source with permissive licensing: Here is a typical run using LLaMA v2 13B on M2 Ultra: ``` -$ make -j && ./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e +$ make -j && ./llama-cli -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e I llama.cpp build info: I UNAME_S: Darwin I UNAME_P: arm @@ -364,17 +368,6 @@ In order to build llama.cpp you have four different options. cmake --build build --config Debug ``` -- Using `Zig` (version 0.11 or later): - - Building for optimization levels and CPU features can be accomplished using standard build arguments, for example AVX2, FMA, F16C, - it's also possible to cross compile for other operating systems and architectures: - - ```bash - zig build -Doptimize=ReleaseFast -Dtarget=x86_64-windows-gnu -Dcpu=x86_64+avx2+fma+f16c - ``` - - The `zig targets` command will give you valid options to use. - - Using `gmake` (FreeBSD): 1. Install and activate [DRM in FreeBSD](https://wiki.freebsd.org/Graphics) @@ -382,16 +375,11 @@ In order to build llama.cpp you have four different options. 3. Install compilation dependencies. ```bash - sudo pkg install gmake automake autoconf pkgconf llvm15 clinfo clover \ - opencl clblast openblas + sudo pkg install gmake automake autoconf pkgconf llvm15 openblas gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4 ``` - **Notes:** With this packages you can build llama.cpp with OPENBLAS and - CLBLAST support for use OpenCL GPU acceleration in FreeBSD. Please read - the instructions for use and activate this options in this document below. - ### Homebrew On Mac and Linux, the homebrew package manager can be used via @@ -400,6 +388,30 @@ brew install llama.cpp ``` The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggerganov/llama.cpp/discussions/7668 +### Nix + +On Mac and Linux, the Nix package manager can be used via +``` +nix profile install nixpkgs#llama-cpp +``` +For flake enabled installs. + +Or +``` +nix-env --file '' --install --attr llama-cpp +``` +For non-flake enabled installs. + +This expression is automatically updated within the [nixpkgs repo](https://github.com/NixOS/nixpkgs/blob/nixos-24.05/pkgs/by-name/ll/llama-cpp/package.nix#L164). + +#### Flox + +On Mac and Linux, Flox can be used to install llama.cpp within a Flox environment via +``` +flox install llama-cpp +``` +Flox follows the nixpkgs build of llama.cpp. + ### Metal Build On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU. @@ -410,7 +422,7 @@ argument. ### BLAS Build -Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS and CLBlast. There are currently several different BLAS implementations available for build and use: +Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS. There are currently several different BLAS implementations available for build and use: - #### Accelerate Framework: @@ -564,111 +576,6 @@ Building the program with BLAS support may lead to some performance improvements | LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. | | LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. | -- #### CLBlast - - OpenCL acceleration is provided by the matrix multiplication kernels from the [CLBlast](https://github.com/CNugteren/CLBlast) project and custom kernels for ggml that can generate tokens on the GPU. - - You will need the [OpenCL SDK](https://github.com/KhronosGroup/OpenCL-SDK). - - For Ubuntu, Debian, and Fedora the packages `opencl-headers`, `ocl-icd` may be needed. - - - For Windows, a pre-built SDK is available on the [OpenCL Releases](https://github.com/KhronosGroup/OpenCL-SDK/releases) page. - - -
    - Installing the OpenCL SDK from source - - ```sh - git clone --recurse-submodules https://github.com/KhronosGroup/OpenCL-SDK.git - cd OpenCL-SDK - cmake -B build -DBUILD_DOCS=OFF \ - -DBUILD_EXAMPLES=OFF \ - -DBUILD_TESTING=OFF \ - -DOPENCL_SDK_BUILD_SAMPLES=OFF \ - -DOPENCL_SDK_TEST_SAMPLES=OFF - cmake --build build - cmake --install build --prefix /some/path - ``` -
    - - ##### Installing CLBlast - - Pre-built CLBlast binaries may be found on the [CLBlast Releases](https://github.com/CNugteren/CLBlast/releases) page. For Unix variants, it may also be found in your operating system's packages. - - Linux packaging: - Fedora Linux: - ```bash - sudo dnf install clblast - ``` - - Alternatively, they may be built from source. - - -
    - Windows: - - ```cmd - set OPENCL_SDK_ROOT="C:/OpenCL-SDK-v2023.04.17-Win-x64" - git clone https://github.com/CNugteren/CLBlast.git - cd CLBlast - cmake -B build -DBUILD_SHARED_LIBS=OFF -DOVERRIDE_MSVC_FLAGS_TO_MT=OFF -DTUNERS=OFF -DOPENCL_ROOT=%OPENCL_SDK_ROOT% -G "Visual Studio 17 2022" -A x64 - cmake --build build --config Release - cmake --install build --prefix C:/CLBlast - ``` - - (note: `--config Release` at build time is the default and only relevant for Visual Studio builds - or multi-config Ninja builds) - - -
    - Unix: - - ```sh - git clone https://github.com/CNugteren/CLBlast.git - cd CLBlast - cmake -B build -DBUILD_SHARED_LIBS=OFF -DTUNERS=OFF - cmake --build build --config Release - cmake --install build --prefix /some/path - ``` - - Where `/some/path` is where the built library will be installed (default is `/usr/local`). -
    - - ##### Building Llama with CLBlast - - - Build with make: - ```sh - make LLAMA_CLBLAST=1 - ``` - - CMake (Unix): - ```sh - cmake -B build -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path - cmake --build build --config Release - ``` - - CMake (Windows): - ```cmd - set CL_BLAST_CMAKE_PKG="C:/CLBlast/lib/cmake/CLBlast" - git clone https://github.com/ggerganov/llama.cpp - cd llama.cpp - cmake -B build -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=%CL_BLAST_CMAKE_PKG% -G "Visual Studio 17 2022" -A x64 - cmake --build build --config Release - cmake --install build --prefix C:/LlamaCPP - ``` - - ##### Running Llama with CLBlast - - The CLBlast build supports `--gpu-layers|-ngl` like the CUDA version does. - - To select the correct platform (driver) and device (GPU), you can use the environment variables `GGML_OPENCL_PLATFORM` and `GGML_OPENCL_DEVICE`. - The selection can be a number (starting from 0) or a text string to search: - - ```sh - GGML_OPENCL_PLATFORM=1 ./main ... - GGML_OPENCL_DEVICE=2 ./main ... - GGML_OPENCL_PLATFORM=Intel ./main ... - GGML_OPENCL_PLATFORM=AMD GGML_OPENCL_DEVICE=1 ./main ... - ``` - - The default behavior is to find the first GPU device, but when it is an integrated GPU on a laptop, for instance, the selectors are useful. - Using the variables it is possible to select a CPU-based driver as well, if so desired. - - You can get a list of platforms and devices from the `clinfo -l` command, etc. - - #### Vulkan **With docker**: @@ -677,7 +584,7 @@ Building the program with BLAS support may lead to some performance improvements ```sh # Build the image - docker build -t llama-cpp-vulkan -f .devops/main-vulkan.Dockerfile . + docker build -t llama-cpp-vulkan -f .devops/llama-cli-vulkan.Dockerfile . # Then, use it: docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 @@ -698,7 +605,9 @@ Building the program with BLAS support may lead to some performance improvements vulkaninfo ``` - Alternatively your package manager might be able to provide the appropiate libraries. For example for Ubuntu 22.04 you can install `libvulkan-dev` instead. + Alternatively your package manager might be able to provide the appropriate libraries. + For example for Ubuntu 22.04 you can install `libvulkan-dev` instead. + For Fedora 40, you can install `vulkan-devel`, `glslc` and `glslang` packages. Then, build llama.cpp using the cmake command below: @@ -706,7 +615,7 @@ Building the program with BLAS support may lead to some performance improvements cmake -B build -DLLAMA_VULKAN=1 cmake --build build --config Release # Test the output binary (with "-ngl 33" to offload all layers to GPU) - ./bin/main -m "PATH_TO_MODEL" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4 + ./bin/llama-cli -m "PATH_TO_MODEL" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4 # You should see in the output, ggml_vulkan detected your GPU. For example: # ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32 @@ -719,7 +628,7 @@ Building the program with BLAS support may lead to some performance improvements To obtain the official LLaMA 2 weights please see the Obtaining and using the Facebook LLaMA 2 model section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face. -Note: `convert.py` has been moved to `examples/convert-legacy-llama.py` and shouldn't be used for anything other than `Llama/Llama2/Mistral` models and their derievatives. +Note: `convert.py` has been moved to `examples/convert-legacy-llama.py` and shouldn't be used for anything other than `Llama/Llama2/Mistral` models and their derivatives. It does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face. ```bash @@ -739,21 +648,18 @@ python3 -m pip install -r requirements.txt # convert the model to ggml FP16 format python3 convert-hf-to-gguf.py models/mymodel/ -# [Optional] for models using BPE tokenizers -python convert-hf-to-gguf.py models/mymodel/ --vocab-type bpe - # quantize the model to 4-bits (using Q4_K_M method) -./quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M +./llama-quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M # update the gguf filetype to current version if older version is now unsupported -./quantize ./models/mymodel/ggml-model-Q4_K_M.gguf ./models/mymodel/ggml-model-Q4_K_M-v2.gguf COPY +./llama-quantize ./models/mymodel/ggml-model-Q4_K_M.gguf ./models/mymodel/ggml-model-Q4_K_M-v2.gguf COPY ``` ### Run the quantized model ```bash # start inference on a gguf model -./main -m ./models/mymodel/ggml-model-Q4_K_M.gguf -n 128 +./llama-cli -m ./models/mymodel/ggml-model-Q4_K_M.gguf -n 128 ``` When running the larger models, make sure you have enough disk space to store all the intermediate files. @@ -828,7 +734,7 @@ The time per token is measured on a MacBook M1 Pro 32GB RAM using 4 and 8 thread #### How to run 1. Download/extract: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip -2. Run `./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw` +2. Run `./llama-perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw` 3. Output: ``` perplexity : calculating perplexity over 655 chunks @@ -852,16 +758,16 @@ Here is an example of a few-shot interaction, invoked with the command ./examples/chat-13B.sh # custom arguments using a 13B model -./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt +./llama-cli -m ./models/13B/ggml-model-q4_0.gguf -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt ``` -Note the use of `--color` to distinguish between user input and generated text. Other parameters are explained in more detail in the [README](examples/main/README.md) for the `main` example program. +Note the use of `--color` to distinguish between user input and generated text. Other parameters are explained in more detail in the [README](examples/main/README.md) for the `llama-cli` example program. ![image](https://user-images.githubusercontent.com/1991296/224575029-2af3c7dc-5a65-4f64-a6bb-517a532aea38.png) ### Persistent Interaction -The prompt, user inputs, and model generations can be saved and resumed across calls to `./main` by leveraging `--prompt-cache` and `--prompt-cache-all`. The `./examples/chat-persistent.sh` script demonstrates this with support for long-running, resumable chat sessions. To use this example, you must provide a file to cache the initial chat prompt and a directory to save the chat session, and may optionally provide the same variables as `chat-13B.sh`. The same prompt cache can be reused for new chat sessions. Note that both prompt cache and chat directory are tied to the initial prompt (`PROMPT_TEMPLATE`) and the model file. +The prompt, user inputs, and model generations can be saved and resumed across calls to `./llama-cli` by leveraging `--prompt-cache` and `--prompt-cache-all`. The `./examples/chat-persistent.sh` script demonstrates this with support for long-running, resumable chat sessions. To use this example, you must provide a file to cache the initial chat prompt and a directory to save the chat session, and may optionally provide the same variables as `chat-13B.sh`. The same prompt cache can be reused for new chat sessions. Note that both prompt cache and chat directory are tied to the initial prompt (`PROMPT_TEMPLATE`) and the model file. ```bash # Start a new chat @@ -883,41 +789,13 @@ PROMPT_TEMPLATE=./prompts/chat-with-bob.txt PROMPT_CACHE_FILE=bob.prompt.bin \ `llama.cpp` supports grammars to constrain model output. For example, you can force the model to output JSON only: ```bash -./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:' +./llama-cli -m ./models/13B/ggml-model-q4_0.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:' ``` The `grammars/` folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](./grammars/README.md). For authoring more complex JSON grammars, you can also check out https://grammar.intrinsiclabs.ai/, a browser app that lets you write TypeScript interfaces which it compiles to GBNF grammars that you can save for local use. Note that the app is built and maintained by members of the community, please file any issues or FRs on [its repo](http://github.com/intrinsiclabsai/gbnfgen) and not this one. -### Instruct mode - -1. First, download and place the `ggml` model into the `./models` folder -2. Run the `main` tool like this: - -``` -./examples/alpaca.sh -``` - -Sample run: - -``` -== Running in interactive mode. == - - Press Ctrl+C to interject at any time. - - Press Return to return control to LLaMA. - - If you want to submit another line, end your input in '\'. - - Below is an instruction that describes a task. Write a response that appropriately completes the request. - -> How many letters are there in the English alphabet? -There 26 letters in the English Alphabet -> What is the most common way of transportation in Amsterdam? -The majority (54%) are using public transit. This includes buses, trams and metros with over 100 lines throughout the city which make it very accessible for tourists to navigate around town as well as locals who commute by tram or metro on a daily basis -> List 5 words that start with "ca". -cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach. -> -``` - ### Obtaining and using the Facebook LLaMA 2 model - Refer to [Facebook's LLaMA download page](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) if you want to access the model data. @@ -990,7 +868,7 @@ $mv /sdcard/llama.cpp/llama-2-7b-chat.Q4_K_M.gguf /data/data/com.termux/files/ho Now, you can start chatting: ``` $cd /data/data/com.termux/files/home/bin -$./main -m ../model/llama-2-7b-chat.Q4_K_M.gguf -n 128 -cml +$./llama-cli -m ../model/llama-2-7b-chat.Q4_K_M.gguf -n 128 -cml ``` Here's a demo of an interactive session running on Pixel 5 phone: @@ -1057,8 +935,8 @@ Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia ```bash docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile . -docker build -t local/llama.cpp:light-cuda -f .devops/main-cuda.Dockerfile . -docker build -t local/llama.cpp:server-cuda -f .devops/server-cuda.Dockerfile . +docker build -t local/llama.cpp:light-cuda -f .devops/llama-cli-cuda.Dockerfile . +docker build -t local/llama.cpp:server-cuda -f .devops/llama-server-cuda.Dockerfile . ``` You may want to pass in some different `ARGS`, depending on the CUDA environment supported by your container host, as well as the GPU architecture. @@ -1108,7 +986,7 @@ docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m ### Docs -- [main](./examples/main/README.md) +- [main (cli)](./examples/main/README.md) - [server](./examples/server/README.md) - [jeopardy](./examples/jeopardy/README.md) - [BLIS](./docs/BLIS.md) diff --git a/ci/run.sh b/ci/run.sh index 3fc5f48b2..291c44f47 100755 --- a/ci/run.sh +++ b/ci/run.sh @@ -303,47 +303,47 @@ function gg_run_open_llama_7b_v2 { wiki_test="${path_wiki}/wiki.test.raw" - ./bin/quantize ${model_f16} ${model_q8_0} q8_0 - ./bin/quantize ${model_f16} ${model_q4_0} q4_0 - ./bin/quantize ${model_f16} ${model_q4_1} q4_1 - ./bin/quantize ${model_f16} ${model_q5_0} q5_0 - ./bin/quantize ${model_f16} ${model_q5_1} q5_1 - ./bin/quantize ${model_f16} ${model_q2_k} q2_k - ./bin/quantize ${model_f16} ${model_q3_k} q3_k - ./bin/quantize ${model_f16} ${model_q4_k} q4_k - ./bin/quantize ${model_f16} ${model_q5_k} q5_k - ./bin/quantize ${model_f16} ${model_q6_k} q6_k + ./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0 + ./bin/llama-quantize ${model_f16} ${model_q4_0} q4_0 + ./bin/llama-quantize ${model_f16} ${model_q4_1} q4_1 + ./bin/llama-quantize ${model_f16} ${model_q5_0} q5_0 + ./bin/llama-quantize ${model_f16} ${model_q5_1} q5_1 + ./bin/llama-quantize ${model_f16} ${model_q2_k} q2_k + ./bin/llama-quantize ${model_f16} ${model_q3_k} q3_k + ./bin/llama-quantize ${model_f16} ${model_q4_k} q4_k + ./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k + ./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k - (time ./bin/main --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log - (time ./bin/main --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log - (time ./bin/main --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log - (time ./bin/main --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log - (time ./bin/main --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log - (time ./bin/main --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log - (time ./bin/main --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log - (time ./bin/main --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log - (time ./bin/main --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log - (time ./bin/main --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log - (time ./bin/main --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log + (time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log + (time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log + (time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log + (time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log + (time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log + (time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log + (time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log + (time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log + (time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log + (time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log + (time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log - (time ./bin/perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log - (time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log - (time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log - (time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log - (time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log - (time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log - (time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log - (time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log - (time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log - (time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log - (time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log + (time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log + (time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log + (time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log + (time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log + (time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log + (time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log + (time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log + (time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log + (time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log + (time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log + (time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log - (time ./bin/imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log + (time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log - (time ./bin/save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log function check_ppl { qnt="$1" @@ -437,45 +437,45 @@ function gg_run_pythia_1_4b { wiki_test_60="${path_wiki}/wiki.test-60.raw" - ./bin/quantize ${model_f16} ${model_q8_0} q8_0 - ./bin/quantize ${model_f16} ${model_q4_0} q4_0 - ./bin/quantize ${model_f16} ${model_q4_1} q4_1 - ./bin/quantize ${model_f16} ${model_q5_0} q5_0 - ./bin/quantize ${model_f16} ${model_q5_1} q5_1 - ./bin/quantize ${model_f16} ${model_q2_k} q2_k - ./bin/quantize ${model_f16} ${model_q3_k} q3_k - ./bin/quantize ${model_f16} ${model_q4_k} q4_k - ./bin/quantize ${model_f16} ${model_q5_k} q5_k - ./bin/quantize ${model_f16} ${model_q6_k} q6_k + ./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0 + ./bin/llama-quantize ${model_f16} ${model_q4_0} q4_0 + ./bin/llama-quantize ${model_f16} ${model_q4_1} q4_1 + ./bin/llama-quantize ${model_f16} ${model_q5_0} q5_0 + ./bin/llama-quantize ${model_f16} ${model_q5_1} q5_1 + ./bin/llama-quantize ${model_f16} ${model_q2_k} q2_k + ./bin/llama-quantize ${model_f16} ${model_q3_k} q3_k + ./bin/llama-quantize ${model_f16} ${model_q4_k} q4_k + ./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k + ./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k - (time ./bin/main --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log - (time ./bin/main --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log - (time ./bin/main --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log - (time ./bin/main --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log - (time ./bin/main --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log - (time ./bin/main --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log - (time ./bin/main --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log - (time ./bin/main --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log - (time ./bin/main --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log - (time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log - (time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log + (time ./bin/llama-cli --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log + (time ./bin/llama-cli --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log + (time ./bin/llama-cli --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log + (time ./bin/llama-cli --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log + (time ./bin/llama-cli --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log + (time ./bin/llama-cli --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log + (time ./bin/llama-cli --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log + (time ./bin/llama-cli --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log + (time ./bin/llama-cli --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log + (time ./bin/llama-cli --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log + (time ./bin/llama-cli --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log - (time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log - (time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log - (time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log - (time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log - (time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log - (time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log - (time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log - (time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log - (time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log - (time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log - (time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log + (time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log + (time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log + (time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log + (time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log + (time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log + (time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log + (time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log + (time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log + (time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log + (time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log + (time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log - (time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log + (time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log - (time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log function check_ppl { qnt="$1" @@ -569,47 +569,47 @@ function gg_run_pythia_2_8b { wiki_test="${path_wiki}/wiki.test.raw" - ./bin/quantize ${model_f16} ${model_q8_0} q8_0 - ./bin/quantize ${model_f16} ${model_q4_0} q4_0 - ./bin/quantize ${model_f16} ${model_q4_1} q4_1 - ./bin/quantize ${model_f16} ${model_q5_0} q5_0 - ./bin/quantize ${model_f16} ${model_q5_1} q5_1 - ./bin/quantize ${model_f16} ${model_q2_k} q2_k - ./bin/quantize ${model_f16} ${model_q3_k} q3_k - ./bin/quantize ${model_f16} ${model_q4_k} q4_k - ./bin/quantize ${model_f16} ${model_q5_k} q5_k - ./bin/quantize ${model_f16} ${model_q6_k} q6_k + ./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0 + ./bin/llama-quantize ${model_f16} ${model_q4_0} q4_0 + ./bin/llama-quantize ${model_f16} ${model_q4_1} q4_1 + ./bin/llama-quantize ${model_f16} ${model_q5_0} q5_0 + ./bin/llama-quantize ${model_f16} ${model_q5_1} q5_1 + ./bin/llama-quantize ${model_f16} ${model_q2_k} q2_k + ./bin/llama-quantize ${model_f16} ${model_q3_k} q3_k + ./bin/llama-quantize ${model_f16} ${model_q4_k} q4_k + ./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k + ./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k - (time ./bin/main --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log - (time ./bin/main --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log - (time ./bin/main --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log - (time ./bin/main --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log - (time ./bin/main --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log - (time ./bin/main --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log - (time ./bin/main --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log - (time ./bin/main --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log - (time ./bin/main --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log - (time ./bin/main --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log - (time ./bin/main --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log + (time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log + (time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log + (time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log + (time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log + (time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log + (time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log + (time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log + (time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log + (time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log + (time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log + (time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log - (time ./bin/perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log - (time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log - (time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log - (time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log - (time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log - (time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log - (time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log - (time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log - (time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log - (time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log - (time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log + (time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log + (time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log + (time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log + (time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log + (time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log + (time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log + (time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log + (time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log + (time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log + (time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log + (time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log - (time ./bin/imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log + (time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log - (time ./bin/save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log - (time ./bin/save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log + (time ./bin/llama-save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log function check_ppl { qnt="$1" @@ -693,10 +693,10 @@ function gg_run_embd_bge_small { model_f16="${path_models}/ggml-model-f16.gguf" model_q8_0="${path_models}/ggml-model-q8_0.gguf" - ./bin/quantize ${model_f16} ${model_q8_0} q8_0 + ./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0 - (time ./bin/embedding --model ${model_f16} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log - (time ./bin/embedding --model ${model_q8_0} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log + (time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log + (time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log set +e } diff --git a/cmake/arm64-windows-llvm.cmake b/cmake/arm64-windows-llvm.cmake index 46fba6514..802379680 100644 --- a/cmake/arm64-windows-llvm.cmake +++ b/cmake/arm64-windows-llvm.cmake @@ -9,7 +9,7 @@ set( CMAKE_CXX_COMPILER clang++ ) set( CMAKE_C_COMPILER_TARGET ${target} ) set( CMAKE_CXX_COMPILER_TARGET ${target} ) -set( arch_c_flags "-march=armv8.7-a -fvectorize -ffp-model=fast" ) +set( arch_c_flags "-march=armv8.7-a -fvectorize -ffp-model=fast -fno-finite-math-only" ) set( warn_c_flags "-Wno-format -Wno-unused-variable -Wno-unused-function -Wno-gnu-zero-variadic-macro-arguments" ) set( CMAKE_C_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" ) diff --git a/codecov.yml b/codecov.yml deleted file mode 100644 index a301c5b2c..000000000 --- a/codecov.yml +++ /dev/null @@ -1,14 +0,0 @@ -comment: off - -coverage: - status: - project: - default: - target: auto - threshold: 0 - base: auto - patch: - default: - target: auto - threshold: 0 - base: auto diff --git a/common/CMakeLists.txt b/common/CMakeLists.txt index 0ec8d6d8d..171530c91 100644 --- a/common/CMakeLists.txt +++ b/common/CMakeLists.txt @@ -84,4 +84,4 @@ endif () target_include_directories(${TARGET} PUBLIC .) target_compile_features(${TARGET} PUBLIC cxx_std_11) -target_link_libraries(${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama) +target_link_libraries(${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads) diff --git a/common/common.cpp b/common/common.cpp index 022bfe287..cfdedcbae 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -6,21 +6,21 @@ #include "llama.h" #include -#include +#include #include +#include +#include #include #include #include -#include #include +#include #include #include #include #include #include #include -#include -#include #if defined(__APPLE__) && defined(__MACH__) #include @@ -199,19 +199,13 @@ void gpt_params_handle_model_default(gpt_params & params) { } params.hf_file = params.model; } else if (params.model.empty()) { - std::string cache_directory = fs_get_cache_directory(); - const bool success = fs_create_directory_with_parents(cache_directory); - if (!success) { - throw std::runtime_error("failed to create cache directory: " + cache_directory); - } - params.model = cache_directory + string_split(params.hf_file, '/').back(); + params.model = fs_get_cache_file(string_split(params.hf_file, '/').back()); } } else if (!params.model_url.empty()) { if (params.model.empty()) { auto f = string_split(params.model_url, '#').front(); f = string_split(f, '?').front(); - f = string_split(f, '/').back(); - params.model = "models/" + f; + params.model = fs_get_cache_file(string_split(f, '/').back()); } } else if (params.model.empty()) { params.model = DEFAULT_MODEL_PATH; @@ -237,10 +231,7 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { } } - if (params.prompt_cache_all && - (params.interactive || params.interactive_first || - params.instruct)) { - + if (params.prompt_cache_all && (params.interactive || params.interactive_first)) { throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n"); } @@ -265,22 +256,26 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { } bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { - bool result = true; + const auto params_org = params; // the example can modify the default params + try { - if (!gpt_params_parse_ex(argc, argv, params)) { - gpt_params_print_usage(argc, argv, gpt_params()); - exit(0); + if (!gpt_params_parse_ex(argc, argv, params) || params.usage) { + params = params_org; + params.usage = true; + return false; } - } - catch (const std::invalid_argument & ex) { + } catch (const std::invalid_argument & ex) { fprintf(stderr, "%s\n", ex.what()); - gpt_params_print_usage(argc, argv, gpt_params()); - exit(1); + params = params_org; + return false; } - return result; + + return true; } bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) { + const char split_delim = ','; + llama_sampling_params & sparams = params.sparams; if (arg == "-s" || arg == "--seed") { @@ -288,7 +283,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa invalid_param = true; return true; } - // This is temporary, in the future the samplign state will be moved fully to llama_sampling_context. + // TODO: this is temporary, in the future the sampling state will be moved fully to llama_sampling_context. params.seed = std::stoul(argv[i]); sparams.seed = std::stoul(argv[i]); return true; @@ -349,6 +344,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa params.escape = true; return true; } + if (arg == "--no-escape") { + params.escape = false; + return true; + } if (arg == "--prompt-cache") { if (++i >= argc) { invalid_param = true; @@ -403,7 +402,21 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa } return true; } - if (arg == "-n" || arg == "--n-predict") { + if (arg == "--in-file") { + if (++i >= argc) { + invalid_param = true; + return true; + } + std::ifstream file(argv[i]); + if (!file) { + fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); + invalid_param = true; + return true; + } + params.in_files.push_back(argv[i]); + return true; + } + if (arg == "-n" || arg == "--predict" || arg == "--n-predict") { if (++i >= argc) { invalid_param = true; return true; @@ -528,6 +541,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; } else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; } else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; } + else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; } else { invalid_param = true; } return true; } @@ -900,34 +914,22 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa params.interactive = true; return true; } - if (arg == "--interactive-specials") { - params.interactive_specials = true; - return true; - } - if (arg == "--special") { + if (arg == "-sp" || arg == "--special") { params.special = true; return true; } - if (arg == "--embedding") { + if (arg == "--embedding" || arg == "--embeddings") { params.embedding = true; return true; } - if (arg == "--interactive-first") { + if (arg == "-if" || arg == "--interactive-first") { params.interactive_first = true; return true; } - if (arg == "-ins" || arg == "--instruct") { - params.instruct = true; - return true; - } if (arg == "-cnv" || arg == "--conversation") { params.conversation = true; return true; } - if (arg == "-cml" || arg == "--chatml") { - params.chatml = true; - return true; - } if (arg == "--infill") { params.infill = true; return true; @@ -964,7 +966,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa params.flash_attn = true; return true; } - if (arg == "--color") { + if (arg == "-co" || arg == "--color") { params.use_color = true; return true; } @@ -972,26 +974,26 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa params.use_mlock = true; return true; } - if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") { + if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") { if (++i >= argc) { invalid_param = true; return true; } params.n_gpu_layers = std::stoi(argv[i]); if (!llama_supports_gpu_offload()) { - fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n"); + fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers option will be ignored\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); } return true; } - if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") { + if (arg == "-ngld" || arg == "--gpu-layers-draft" || arg == "--gpu-layers-draft") { if (++i >= argc) { invalid_param = true; return true; } params.n_gpu_layers_draft = std::stoi(argv[i]); if (!llama_supports_gpu_offload()) { - fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n"); + fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); } return true; @@ -1087,6 +1089,18 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa else { invalid_param = true; } return true; } + if (arg == "-v" || arg == "--verbose") { + params.verbosity = 1; + return true; + } + if (arg == "--verbosity") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.verbosity = std::stoi(argv[i]); + return true; + } if (arg == "--verbose-prompt") { params.verbose_prompt = true; return true; @@ -1151,6 +1165,14 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa params.ppl_stride = std::stoi(argv[i]); return true; } + if (arg == "--ppl-output-type") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.ppl_output_type = std::stoi(argv[i]); + return true; + } if (arg == "-ptc" || arg == "--print-token-count") { if (++i >= argc) { invalid_param = true; @@ -1163,14 +1185,6 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa params.check_tensors = true; return true; } - if (arg == "--ppl-output-type") { - if (++i >= argc) { - invalid_param = true; - return true; - } - params.ppl_output_type = std::stoi(argv[i]); - return true; - } if (arg == "--hellaswag") { params.hellaswag = true; return true; @@ -1242,19 +1256,15 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa } return true; } - if (arg == "-h" || arg == "--help") { - gpt_params_print_usage(argc, argv, gpt_params()); - exit(0); + if (arg == "-h" || arg == "--help" || arg == "--usage" ) { + params.usage = true; + return true; } if (arg == "--version") { fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT); fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET); exit(0); } - if (arg == "--random-prompt") { - params.random_prompt = true; - return true; - } if (arg == "--in-prefix-bos") { params.input_prefix_bos = true; return true; @@ -1321,6 +1331,335 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa } return true; } + if (arg == "--host") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.hostname = argv[i]; + return true; + } + if (arg == "--port") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.port = std::stoi(argv[i]); + return true; + } + if (arg == "--path") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.public_path = argv[i]; + return true; + } + if (arg == "--api-key") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.api_keys.push_back(argv[i]); + return true; + } + if (arg == "--api-key-file") { + if (++i >= argc) { + invalid_param = true; + return true; + } + std::ifstream key_file(argv[i]); + if (!key_file) { + fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); + invalid_param = true; + return true; + } + std::string key; + while (std::getline(key_file, key)) { + if (!key.empty()) { + params.api_keys.push_back(key); + } + } + key_file.close(); + return true; + } + if (arg == "--ssl-key-file") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.ssl_file_key = argv[i]; + return true; + } + if (arg == "--ssl-cert-file") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.ssl_file_cert = argv[i]; + return true; + } + if (arg == "--timeout" || arg == "-to") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.timeout_read = std::stoi(argv[i]); + params.timeout_write = std::stoi(argv[i]); + return true; + } + if (arg == "--threads-http") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.n_threads_http = std::stoi(argv[i]); + return true; + } + if (arg == "-spf" || arg == "--system-prompt-file") { + if (++i >= argc) { + invalid_param = true; + return true; + } + std::ifstream file(argv[i]); + if (!file) { + fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); + invalid_param = true; + return true; + } + std::string system_prompt; + std::copy( + std::istreambuf_iterator(file), + std::istreambuf_iterator(), + std::back_inserter(system_prompt) + ); + params.system_prompt = system_prompt; + return true; + } + if (arg == "--log-format") { + if (++i >= argc) { + invalid_param = true; + return true; + } + if (std::strcmp(argv[i], "json") == 0) { + params.log_json = true; + } else if (std::strcmp(argv[i], "text") == 0) { + params.log_json = false; + } else { + invalid_param = true; + return true; + } + return true; + } + if (arg == "--no-slots") { + params.endpoint_slots = false; + return true; + } + if (arg == "--metrics") { + params.endpoint_metrics = true; + return true; + } + if (arg == "--slot-save-path") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.slot_save_path = argv[i]; + // if doesn't end with DIRECTORY_SEPARATOR, add it + if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) { + params.slot_save_path += DIRECTORY_SEPARATOR; + } + return true; + } + if (arg == "--chat-template") { + if (++i >= argc) { + invalid_param = true; + return true; + } + if (!llama_chat_verify_template(argv[i])) { + fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]); + fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n"); + invalid_param = true; + return true; + } + params.chat_template = argv[i]; + return true; + } + if (arg == "--slot-prompt-similarity" || arg == "-sps") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.slot_prompt_similarity = std::stof(argv[i]); + return true; + } + if (arg == "-pps") { + params.is_pp_shared = true; + return true; + } + if (arg == "-npp") { + if (++i >= argc) { + invalid_param = true; + return true; + } + auto p = string_split(argv[i], split_delim); + params.n_pp.insert(params.n_pp.end(), p.begin(), p.end()); + return true; + } + if (arg == "-ntg") { + if (++i >= argc) { + invalid_param = true; + return true; + } + auto p = string_split(argv[i], split_delim); + params.n_tg.insert(params.n_tg.end(), p.begin(), p.end()); + return true; + } + if (arg == "-npl") { + if (++i >= argc) { + invalid_param = true; + return true; + } + auto p = string_split(argv[i], split_delim); + params.n_pl.insert(params.n_pl.end(), p.begin(), p.end()); + return true; + } + if (arg == "--context-file") { + if (++i >= argc) { + invalid_param = true; + return true; + } + std::ifstream file(argv[i], std::ios::binary); + if (!file) { + fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); + invalid_param = true; + return true; + } + params.context_files.push_back(argv[i]); + return true; + } + if (arg == "--chunk-size") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.chunk_size = std::stoi(argv[i]); + return true; + } + if (arg == "--chunk-separator") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.chunk_separator = argv[i]; + return true; + } + if (arg == "--junk") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.n_junk = std::stoi(argv[i]); + return true; + } + if (arg == "--pos") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.i_pos = std::stoi(argv[i]); + return true; + } + if (arg == "-o" || arg == "--output" || arg == "--output-file") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.out_file = argv[i]; + params.cvector_outfile = argv[i]; + return true; + } + if (arg == "-ofreq" || arg == "--output-frequency") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.n_out_freq = std::stoi(argv[i]); + return true; + } + if (arg == "--save-frequency") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.n_save_freq = std::stoi(argv[i]); + return true; + } + if (arg == "--process-output") { + params.process_output = true; + return true; + } + if (arg == "--no-ppl") { + params.compute_ppl = false; + return true; + } + if (arg == "--chunk" || arg == "--from-chunk") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.i_chunk = std::stoi(argv[i]); + return true; + } + // cvector params + if (arg == "--completions-file") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.cvector_completions_file = argv[i]; + return true; + } + if (arg == "--positive-file") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.cvector_positive_file = argv[i]; + return true; + } + if (arg == "--negative-file") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.cvector_negative_file = argv[i]; + return true; + } + if (arg == "--completions") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.n_completions = std::stoi(argv[i]); + return true; + } + if (arg == "--pca-batch") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.n_pca_batch = std::stoi(argv[i]); + return true; + } + if (arg == "--pca-iter") { + if (++i >= argc) { + invalid_param = true; + return true; + } + params.n_pca_iterations = std::stoi(argv[i]); + return true; + } #ifndef LOG_DISABLE_LOGS // Parse args for logging parameters if (log_param_single_parse(argv[i])) { @@ -1348,6 +1687,16 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa return false; } +#ifdef __GNUC__ +#ifdef __MINGW32__ +#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__))) +#else +#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__))) +#endif +#else +#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) +#endif + void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { const llama_sampling_params & sparams = params.sparams; @@ -1359,198 +1708,314 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param } sampler_type_names.pop_back(); - printf("\n"); - printf("usage: %s [options]\n", argv[0]); - printf("\n"); - printf("options:\n"); - printf(" -h, --help show this help message and exit\n"); - printf(" --version show version and build info\n"); - printf(" -i, --interactive run in interactive mode\n"); - printf(" --special special tokens output enabled\n"); - printf(" --interactive-specials allow special tokens in user text, in interactive mode\n"); - printf(" --interactive-first run in interactive mode and wait for input right away\n"); - printf(" -cnv, --conversation run in conversation mode (does not print special tokens and suffix/prefix)\n"); - printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n"); - printf(" -cml, --chatml run in chatml mode (use with ChatML-compatible models)\n"); - printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n"); - printf(" -r PROMPT, --reverse-prompt PROMPT\n"); - printf(" halt generation at PROMPT, return control in interactive mode\n"); - printf(" (can be specified more than once for multiple prompts).\n"); - printf(" --color colorise output to distinguish prompt and user input from generations\n"); - printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n"); - printf(" -t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads); - printf(" -tb N, --threads-batch N\n"); - printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n"); - printf(" -td N, --threads-draft N"); - printf(" number of threads to use during generation (default: same as --threads)\n"); - printf(" -tbd N, --threads-batch-draft N\n"); - printf(" number of threads to use during batch and prompt processing (default: same as --threads-draft)\n"); - printf(" -p PROMPT, --prompt PROMPT\n"); - printf(" prompt to start generation with (default: empty)\n"); - printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n"); - printf(" --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n"); - printf(" --prompt-cache-all if specified, saves user input and generations to cache as well.\n"); - printf(" not supported with --interactive or other interactive options\n"); - printf(" --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n"); - printf(" --random-prompt start with a randomized prompt.\n"); - printf(" --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n"); - printf(" --in-prefix STRING string to prefix user inputs with (default: empty)\n"); - printf(" --in-suffix STRING string to suffix after user inputs with (default: empty)\n"); - printf(" -f FNAME, --file FNAME\n"); - printf(" prompt file to start generation.\n"); - printf(" -bf FNAME, --binary-file FNAME\n"); - printf(" binary file containing multiple choice tasks.\n"); - printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict); - printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx); - printf(" -b N, --batch-size N logical maximum batch size (default: %d)\n", params.n_batch); - printf(" -ub N, --ubatch-size N\n"); - printf(" physical maximum batch size (default: %d)\n", params.n_ubatch); - printf(" --samplers samplers that will be used for generation in the order, separated by \';\'\n"); - printf(" (default: %s)\n", sampler_type_names.c_str()); - printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sampler_type_chars.c_str()); - printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k); - printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p); - printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p); - printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z); - printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p); - printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n); - printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat); - printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present); - printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq); - printf(" --dynatemp-range N dynamic temperature range (default: %.1f, 0.0 = disabled)\n", (double)sparams.dynatemp_range); - printf(" --dynatemp-exp N dynamic temperature exponent (default: %.1f)\n", (double)sparams.dynatemp_exponent); - printf(" --mirostat N use Mirostat sampling.\n"); - printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"); - printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat); - printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta); - printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau); - printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n"); - printf(" modifies the likelihood of token appearing in the completion,\n"); - printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"); - printf(" or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n"); - printf(" --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n"); - printf(" --grammar-file FNAME file to read grammar from\n"); - printf(" -j SCHEMA, --json-schema SCHEMA\n"); - printf(" JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object.\n"); - printf(" For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead\n"); - printf(" --cfg-negative-prompt PROMPT\n"); - printf(" negative prompt to use for guidance. (default: empty)\n"); - printf(" --cfg-negative-prompt-file FNAME\n"); - printf(" negative prompt file to use for guidance. (default: empty)\n"); - printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale); - printf(" --rope-scaling {none,linear,yarn}\n"); - printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n"); - printf(" --rope-scale N RoPE context scaling factor, expands context by a factor of N\n"); - printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n"); - printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n"); - printf(" --yarn-orig-ctx N YaRN: original context size of model (default: 0 = model training context size)\n"); - printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n"); - printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n"); - printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow); - printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast); - printf(" --pooling {none,mean,cls}\n"); - printf(" pooling type for embeddings, use model default if unspecified\n"); - printf(" -dt N, --defrag-thold N\n"); - printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold); - printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n"); - printf(" --penalize-nl penalize newline tokens\n"); - printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp); - printf(" --all-logits return logits for all tokens in the batch (default: disabled)\n"); - printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n"); - printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks); - printf(" --winogrande compute Winogrande score over random tasks from datafile supplied with -f\n"); - printf(" --winogrande-tasks N number of tasks to use when computing the Winogrande score (default: %zu)\n", params.winogrande_tasks); - printf(" --multiple-choice compute multiple choice score over random tasks from datafile supplied with -f\n"); - printf(" --multiple-choice-tasks N number of tasks to use when computing the multiple choice score (default: %zu)\n", params.winogrande_tasks); - printf(" --kl-divergence computes KL-divergence to logits provided via --kl-divergence-base\n"); - printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep); - printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft); - printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks); - printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel); - printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences); - printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split); - printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n"); - printf(" -fa, --flash-attn enable Flash Attention (default: %s)\n", params.flash_attn ? "enabled" : "disabled"); - printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n"); - printf(" --image IMAGE_FILE path to an image file. use with multimodal models. Specify multiple times for batching\n"); + struct option_info { + LLAMA_COMMON_ATTRIBUTE_FORMAT(4, 5) + option_info(const std::string & tags, const char * args, const char * desc, ...) : tags(tags), args(args), desc(desc) { + va_list args_list; + va_start(args_list, desc); + char buffer[1024]; + vsnprintf(buffer, sizeof(buffer), desc, args_list); + va_end(args_list); + this->desc = buffer; + } + + option_info(const std::string & grp) : grp(grp) {} + + std::string tags; + std::string args; + std::string desc; + std::string grp; + }; + + std::vector options; + + // TODO: filter by tags + + options.push_back({ "general" }); + options.push_back({ "*", "-h, --help, --usage", "print usage and exit" }); + options.push_back({ "*", " --version", "show version and build info" }); + options.push_back({ "*", "-v, --verbose", "print verbose information" }); + options.push_back({ "*", " --verbosity N", "set specific verbosity level (default: %d)", params.verbosity }); + options.push_back({ "*", " --verbose-prompt", "print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false" }); + options.push_back({ "*", " --no-display-prompt", "don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false" }); + options.push_back({ "*", "-co, --color", "colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false" }); + options.push_back({ "*", "-s, --seed SEED", "RNG seed (default: %d, use random seed for < 0)", params.seed }); + options.push_back({ "*", "-t, --threads N", "number of threads to use during generation (default: %d)", params.n_threads }); + options.push_back({ "*", "-tb, --threads-batch N", "number of threads to use during batch and prompt processing (default: same as --threads)" }); + options.push_back({ "speculative", "-td, --threads-draft N", "number of threads to use during generation (default: same as --threads)" }); + options.push_back({ "speculative", "-tbd, --threads-batch-draft N", + "number of threads to use during batch and prompt processing (default: same as --threads-draft)" }); + options.push_back({ "speculative", " --draft N", "number of tokens to draft for speculative decoding (default: %d)", params.n_draft }); + options.push_back({ "speculative", "-ps, --p-split N", "speculative decoding split probability (default: %.1f)", (double)params.p_split }); + options.push_back({ "*", "-lcs, --lookup-cache-static FNAME", + "path to static lookup cache to use for lookup decoding (not updated by generation)" }); + options.push_back({ "*", "-lcd, --lookup-cache-dynamic FNAME", + "path to dynamic lookup cache to use for lookup decoding (updated by generation)" }); + + options.push_back({ "*", "-c, --ctx-size N", "size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx }); + options.push_back({ "*", "-n, --predict N", "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)", params.n_predict }); + options.push_back({ "*", "-b, --batch-size N", "logical maximum batch size (default: %d)", params.n_batch }); + options.push_back({ "*", "-ub, --ubatch-size N", "physical maximum batch size (default: %d)", params.n_ubatch }); + options.push_back({ "*", " --keep N", "number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep }); + options.push_back({ "*", " --chunks N", "max number of chunks to process (default: %d, -1 = all)", params.n_chunks }); + options.push_back({ "*", "-fa, --flash-attn", "enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled" }); + options.push_back({ "*", "-p, --prompt PROMPT", "prompt to start generation with (default: '%s')", params.prompt.c_str() }); + options.push_back({ "*", "-f, --file FNAME", "a file containing the prompt (default: none)" }); + options.push_back({ "*", " --in-file FNAME", "an input file (repeat to specify multiple files)" }); + options.push_back({ "*", "-bf, --binary-file FNAME", "binary file containing the prompt (default: none)" }); + options.push_back({ "*", "-e, --escape", "process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false" }); + options.push_back({ "*", " --no-escape", "do not process escape sequences" }); + options.push_back({ "main", "-ptc, --print-token-count N", "print token count every N tokens (default: %d)", params.n_print }); + options.push_back({ "main", " --prompt-cache FNAME", "file to cache prompt state for faster startup (default: none)" }); + options.push_back({ "main", " --prompt-cache-all", "if specified, saves user input and generations to cache as well\n" + "not supported with --interactive or other interactive options" }); + options.push_back({ "main", " --prompt-cache-ro", "if specified, uses the prompt cache but does not update it" }); + options.push_back({ "main", "-r, --reverse-prompt PROMPT", + "halt generation at PROMPT, return control in interactive mode\n" + "can be specified more than once for multiple prompts" }); + options.push_back({ "main", "-sp, --special", "special tokens output enabled (default: %s)", params.special ? "true" : "false" }); + options.push_back({ "main", "-cnv, --conversation", "run in conversation mode (does not print special tokens and suffix/prefix) (default: %s)", params.conversation ? "true" : "false" }); + options.push_back({ "main infill", "-i, --interactive", "run in interactive mode (default: %s)", params.interactive ? "true" : "false" }); + options.push_back({ "main infill", "-if, --interactive-first", "run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false" }); + options.push_back({ "main infill", "-mli, --multiline-input", "allows you to write or paste multiple lines without ending each in '\\'" }); + options.push_back({ "main infill", " --in-prefix-bos", "prefix BOS to user inputs, preceding the `--in-prefix` string" }); + options.push_back({ "main infill", " --in-prefix STRING", "string to prefix user inputs with (default: empty)" }); + options.push_back({ "main infill", " --in-suffix STRING", "string to suffix after user inputs with (default: empty)" }); + + options.push_back({ "sampling" }); + options.push_back({ "*", " --samplers SAMPLERS", "samplers that will be used for generation in the order, separated by \';\'\n" + "(default: %s)", sampler_type_names.c_str() }); + options.push_back({ "*", " --sampling-seq SEQUENCE", + "simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str() }); + options.push_back({ "*", " --ignore-eos", "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)" }); + options.push_back({ "*", " --penalize-nl", "penalize newline tokens (default: %s)", sparams.penalize_nl ? "true" : "false" }); + options.push_back({ "*", " --temp N", "temperature (default: %.1f)", (double)sparams.temp }); + options.push_back({ "*", " --top-k N", "top-k sampling (default: %d, 0 = disabled)", sparams.top_k }); + options.push_back({ "*", " --top-p N", "top-p sampling (default: %.1f, 1.0 = disabled)", (double)sparams.top_p }); + options.push_back({ "*", " --min-p N", "min-p sampling (default: %.1f, 0.0 = disabled)", (double)sparams.min_p }); + options.push_back({ "*", " --tfs N", "tail free sampling, parameter z (default: %.1f, 1.0 = disabled)", (double)sparams.tfs_z }); + options.push_back({ "*", " --typical N", "locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)sparams.typical_p }); + options.push_back({ "*", " --repeat-last-n N", "last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", sparams.penalty_last_n }); + options.push_back({ "*", " --repeat-penalty N", "penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)sparams.penalty_repeat }); + options.push_back({ "*", " --presence-penalty N", "repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)sparams.penalty_present }); + options.push_back({ "*", " --frequency-penalty N", "repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)sparams.penalty_freq }); + options.push_back({ "*", " --dynatemp-range N", "dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)sparams.dynatemp_range }); + options.push_back({ "*", " --dynatemp-exp N", "dynamic temperature exponent (default: %.1f)", (double)sparams.dynatemp_exponent }); + options.push_back({ "*", " --mirostat N", "use Mirostat sampling.\n" + "Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n" + "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", sparams.mirostat }); + options.push_back({ "*", " --mirostat-lr N", "Mirostat learning rate, parameter eta (default: %.1f)", (double)sparams.mirostat_eta }); + options.push_back({ "*", " --mirostat-ent N", "Mirostat target entropy, parameter tau (default: %.1f)", (double)sparams.mirostat_tau }); + options.push_back({ "*", " -l TOKEN_ID(+/-)BIAS", "modifies the likelihood of token appearing in the completion,\n" + "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n" + "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'" }); + options.push_back({ "main", " --cfg-negative-prompt PROMPT", + "negative prompt to use for guidance (default: '%s')", sparams.cfg_negative_prompt.c_str() }); + options.push_back({ "main", " --cfg-negative-prompt-file FNAME", + "negative prompt file to use for guidance" }); + options.push_back({ "main", " --cfg-scale N", "strength of guidance (default: %.1f, 1.0 = disable)", (double)sparams.cfg_scale }); + + options.push_back({ "grammar" }); + options.push_back({ "*", " --grammar GRAMMAR", "BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", sparams.grammar.c_str() }); + options.push_back({ "*", " --grammar-file FNAME", "file to read grammar from" }); + options.push_back({ "*", "-j, --json-schema SCHEMA", + "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\n" + "For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead" }); + + options.push_back({ "embedding" }); + options.push_back({ "embedding", " --pooling {none,mean,cls}", + "pooling type for embeddings, use model default if unspecified" }); + + options.push_back({ "context hacking" }); + options.push_back({ "*", " --rope-scaling {none,linear,yarn}", + "RoPE frequency scaling method, defaults to linear unless specified by the model" }); + options.push_back({ "*", " --rope-scale N", "RoPE context scaling factor, expands context by a factor of N" }); + options.push_back({ "*", " --rope-freq-base N", "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)" }); + options.push_back({ "*", " --rope-freq-scale N", "RoPE frequency scaling factor, expands context by a factor of 1/N" }); + options.push_back({ "*", " --yarn-orig-ctx N", "YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx }); + options.push_back({ "*", " --yarn-ext-factor N", "YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor }); + options.push_back({ "*", " --yarn-attn-factor N", "YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor }); + options.push_back({ "*", " --yarn-beta-slow N", "YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow }); + options.push_back({ "*", " --yarn-beta-fast N", "YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast }); + options.push_back({ "*", "-gan, --grp-attn-n N", "group-attention factor (default: %d)", params.grp_attn_n }); + options.push_back({ "*", "-gaw, --grp-attn-w N", "group-attention width (default: %.1f)", (double)params.grp_attn_w }); + options.push_back({ "*", "-dkvc, --dump-kv-cache", "verbose print of the KV cache" }); + options.push_back({ "*", "-nkvo, --no-kv-offload", "disable KV offload" }); + options.push_back({ "*", "-ctk, --cache-type-k TYPE", "KV cache data type for K (default: %s)", params.cache_type_k.c_str() }); + options.push_back({ "*", "-ctv, --cache-type-v TYPE", "KV cache data type for V (default: %s)", params.cache_type_v.c_str() }); + + options.push_back({ "perplexity" }); + options.push_back({ "perplexity", " --all-logits", "return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false" }); + options.push_back({ "perplexity", " --hellaswag", "compute HellaSwag score over random tasks from datafile supplied with -f" }); + options.push_back({ "perplexity", " --hellaswag-tasks N", "number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks }); + options.push_back({ "perplexity", " --winogrande", "compute Winogrande score over random tasks from datafile supplied with -f" }); + options.push_back({ "perplexity", " --winogrande-tasks N", "number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks }); + options.push_back({ "perplexity", " --multiple-choice", "compute multiple choice score over random tasks from datafile supplied with -f" }); + options.push_back({ "perplexity", " --multiple-choice-tasks N", + "number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks }); + options.push_back({ "perplexity", " --kl-divergence", "computes KL-divergence to logits provided via --kl-divergence-base" }); + options.push_back({ "perplexity", " --ppl-stride N", "stride for perplexity calculation (default: %d)", params.ppl_stride }); + options.push_back({ "perplexity", " --ppl-output-type {0,1}", + "output type for perplexity calculation (default: %d)", params.ppl_output_type }); + + options.push_back({ "parallel" }); + options.push_back({ "*", "-dt, --defrag-thold N", "KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold }); + options.push_back({ "*", "-np, --parallel N", "number of parallel sequences to decode (default: %d)", params.n_parallel }); + options.push_back({ "*", "-ns, --sequences N", "number of sequences to decode (default: %d)", params.n_sequences }); + options.push_back({ "*", "-cb, --cont-batching", "enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled" }); + + options.push_back({ "multi-modality" }); + options.push_back({ "*", " --mmproj FILE", "path to a multimodal projector file for LLaVA. see examples/llava/README.md" }); + options.push_back({ "*", " --image FILE", "path to an image file. use with multimodal models. Specify multiple times for batching" }); + + options.push_back({ "backend" }); + options.push_back({ "*", " --rpc SERVERS", "comma separated list of RPC servers" }); + if (llama_supports_mlock()) { - printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n"); + options.push_back({ "*", " --mlock", "force system to keep model in RAM rather than swapping or compressing" }); } if (llama_supports_mmap()) { - printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n"); + options.push_back({ "*", " --no-mmap", "do not memory-map model (slower load but may reduce pageouts if not using mlock)" }); } - printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n"); - printf(" - distribute: spread execution evenly over all nodes\n"); - printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n"); - printf(" - numactl: use the CPU map provided by numactl\n"); - printf(" if run without this previously, it is recommended to drop the system page cache before using this\n"); - printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n"); + options.push_back({ "*", " --numa TYPE", "attempt optimizations that help on some NUMA systems\n" + " - distribute: spread execution evenly over all nodes\n" + " - isolate: only spawn threads on CPUs on the node that execution started on\n" + " - numactl: use the CPU map provided by numactl\n" + "if run without this previously, it is recommended to drop the system page cache before using this\n" + "see https://github.com/ggerganov/llama.cpp/issues/1437" }); + if (llama_supports_gpu_offload()) { - printf(" -ngl N, --n-gpu-layers N\n"); - printf(" number of layers to store in VRAM\n"); - printf(" -ngld N, --n-gpu-layers-draft N\n"); - printf(" number of layers to store in VRAM for the draft model\n"); - printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n"); - printf(" how to split the model across multiple GPUs, one of:\n"); - printf(" - none: use one GPU only\n"); - printf(" - layer (default): split layers and KV across GPUs\n"); - printf(" - row: split rows across GPUs\n"); - printf(" -ts SPLIT, --tensor-split SPLIT\n"); - printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n"); - printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n"); - printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu); + options.push_back({ "*", "-ngl, --gpu-layers N", + "number of layers to store in VRAM" }); + options.push_back({ "*", "-ngld, --gpu-layers-draft N", + "number of layers to store in VRAM for the draft model" }); + options.push_back({ "*", "-sm, --split-mode SPLIT_MODE", + "how to split the model across multiple GPUs, one of:\n" + " - none: use one GPU only\n" + " - layer (default): split layers and KV across GPUs\n" + " - row: split rows across GPUs" }); + options.push_back({ "*", "-ts, --tensor-split SPLIT", + "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1" }); + options.push_back({ "*", "-mg, --main-gpu i", "the GPU to use for the model (with split-mode = none),\n" + "or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu }); } - printf(" --rpc SERVERS comma separated list of RPC servers\n"); - printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false"); - printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false"); - printf(" -gan N, --grp-attn-n N\n"); - printf(" group-attention factor (default: %d)\n", params.grp_attn_n); - printf(" -gaw N, --grp-attn-w N\n"); - printf(" group-attention width (default: %.1f)\n", (double)params.grp_attn_w); - printf(" -dkvc, --dump-kv-cache\n"); - printf(" verbose print of the KV cache\n"); - printf(" -nkvo, --no-kv-offload\n"); - printf(" disable KV offload\n"); - printf(" -ctk TYPE, --cache-type-k TYPE\n"); - printf(" KV cache data type for K (default: %s)\n", params.cache_type_k.c_str()); - printf(" -ctv TYPE, --cache-type-v TYPE\n"); - printf(" KV cache data type for V (default: %s)\n", params.cache_type_v.c_str()); - printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n"); - printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n"); - printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n"); - printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n"); - printf(" --control-vector FNAME\n"); - printf(" add a control vector\n"); - printf(" --control-vector-scaled FNAME S\n"); - printf(" add a control vector with user defined scaling S\n"); - printf(" --control-vector-layer-range START END\n"); - printf(" layer range to apply the control vector(s) to, start and end inclusive\n"); - printf(" -m FNAME, --model FNAME\n"); - printf(" model path (default: models/$filename with filename from --hf-file or --model-url if set, otherwise %s)\n", DEFAULT_MODEL_PATH); - printf(" -md FNAME, --model-draft FNAME\n"); - printf(" draft model for speculative decoding (default: unused)\n"); - printf(" -mu MODEL_URL, --model-url MODEL_URL\n"); - printf(" model download url (default: unused)\n"); - printf(" -hfr REPO, --hf-repo REPO\n"); - printf(" Hugging Face model repository (default: unused)\n"); - printf(" -hff FILE, --hf-file FILE\n"); - printf(" Hugging Face model file (default: unused)\n"); - printf(" -ld LOGDIR, --logdir LOGDIR\n"); - printf(" path under which to save YAML logs (no logging if unset)\n"); - printf(" -lcs FNAME, --lookup-cache-static FNAME\n"); - printf(" path to static lookup cache to use for lookup decoding (not updated by generation)\n"); - printf(" -lcd FNAME, --lookup-cache-dynamic FNAME\n"); - printf(" path to dynamic lookup cache to use for lookup decoding (updated by generation)\n"); - printf(" --override-kv KEY=TYPE:VALUE\n"); - printf(" advanced option to override model metadata by key. may be specified multiple times.\n"); - printf(" types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n"); - printf(" -ptc N, --print-token-count N\n"); - printf(" print token count every N tokens (default: %d)\n", params.n_print); - printf(" --check-tensors check model tensor data for invalid values\n"); - printf("\n"); + + options.push_back({ "model" }); + options.push_back({ "*", " --check-tensors", "check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false" }); + options.push_back({ "*", " --override-kv KEY=TYPE:VALUE", + "advanced option to override model metadata by key. may be specified multiple times.\n" + "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false" }); + options.push_back({ "*", " --lora FNAME", "apply LoRA adapter (implies --no-mmap)" }); + options.push_back({ "*", " --lora-scaled FNAME S", "apply LoRA adapter with user defined scaling S (implies --no-mmap)" }); + options.push_back({ "*", " --lora-base FNAME", "optional model to use as a base for the layers modified by the LoRA adapter" }); + options.push_back({ "*", " --control-vector FNAME", "add a control vector" }); + options.push_back({ "*", " --control-vector-scaled FNAME SCALE", + "add a control vector with user defined scaling SCALE" }); + options.push_back({ "*", " --control-vector-layer-range START END", + "layer range to apply the control vector(s) to, start and end inclusive" }); + options.push_back({ "*", "-m, --model FNAME", "model path (default: models/$filename with filename from --hf-file\n" + "or --model-url if set, otherwise %s)", DEFAULT_MODEL_PATH }); + options.push_back({ "*", "-md, --model-draft FNAME", "draft model for speculative decoding (default: unused)" }); + options.push_back({ "*", "-mu, --model-url MODEL_URL", "model download url (default: unused)" }); + options.push_back({ "*", "-hfr, --hf-repo REPO", "Hugging Face model repository (default: unused)" }); + options.push_back({ "*", "-hff, --hf-file FILE", "Hugging Face model file (default: unused)" }); + + options.push_back({ "retrieval" }); + options.push_back({ "retrieval", " --context-file FNAME", "file to load context from (repeat to specify multiple files)" }); + options.push_back({ "retrieval", " --chunk-size N", "minimum length of embedded text chunks (default: %d)", params.chunk_size }); + options.push_back({ "retrieval", " --chunk-separator STRING", + "separator between chunks (default: '%s')", params.chunk_separator.c_str() }); + + options.push_back({ "passkey" }); + options.push_back({ "passkey", " --junk N", "number of times to repeat the junk text (default: %d)", params.n_junk }); + options.push_back({ "passkey", " --pos N", "position of the passkey in the junk text (default: %d)", params.i_pos }); + + options.push_back({ "imatrix" }); + options.push_back({ "imatrix", "-o, --output FNAME", "output file (default: '%s')", params.out_file.c_str() }); + options.push_back({ "imatrix", " --output-frequency N", "output the imatrix every N iterations (default: %d)", params.n_out_freq }); + options.push_back({ "imatrix", " --save-frequency N", "save an imatrix copy every N iterations (default: %d)", params.n_save_freq }); + options.push_back({ "imatrix", " --process-output", "collect data for the output tensor (default: %s)", params.process_output ? "true" : "false" }); + options.push_back({ "imatrix", " --no-ppl", "do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false" }); + options.push_back({ "imatrix", " --chunk N", "start processing the input from chunk N (default: %d)", params.i_chunk }); + + options.push_back({ "bench" }); + options.push_back({ "bench", "-pps", "is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false" }); + options.push_back({ "bench", "-npp n0,n1,...", "number of prompt tokens" }); + options.push_back({ "bench", "-ntg n0,n1,...", "number of text generation tokens" }); + options.push_back({ "bench", "-npl n0,n1,...", "number of parallel prompts" }); + + options.push_back({ "server" }); + options.push_back({ "server", " --host HOST", "ip address to listen (default: %s)", params.hostname.c_str() }); + options.push_back({ "server", " --port PORT", "port to listen (default: %d)", params.port }); + options.push_back({ "server", " --path PATH", "path to serve static files from (default: %s)", params.public_path.c_str() }); + options.push_back({ "server", " --embedding(s)", "enable embedding endpoint (default: %s)", params.embedding ? "enabled" : "disabled" }); + options.push_back({ "server", " --api-key KEY", "API key to use for authentication (default: none)" }); + options.push_back({ "server", " --api-key-file FNAME", "path to file containing API keys (default: none)" }); + options.push_back({ "server", " --ssl-key-file FNAME", "path to file a PEM-encoded SSL private key" }); + options.push_back({ "server", " --ssl-cert-file FNAME", "path to file a PEM-encoded SSL certificate" }); + options.push_back({ "server", " --timeout N", "server read/write timeout in seconds (default: %d)", params.timeout_read }); + options.push_back({ "server", " --threads-http N", "number of threads used to process HTTP requests (default: %d)", params.n_threads_http }); + options.push_back({ "server", " --system-prompt-file FNAME", + "set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications" }); + options.push_back({ "server", " --log-format {text,json}", + "log output format: json or text (default: json)" }); + options.push_back({ "server", " --metrics", "enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled" }); + options.push_back({ "server", " --no-slots", "disables slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled" }); + options.push_back({ "server", " --slot-save-path PATH", "path to save slot kv cache (default: disabled)" }); + options.push_back({ "server", " --chat-template JINJA_TEMPLATE", + "set custom jinja chat template (default: template taken from model's metadata)\n" + "only commonly used templates are accepted:\n" + "https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template" }); + options.push_back({ "server", "-sps, --slot-prompt-similarity SIMILARITY", + "how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity }); + #ifndef LOG_DISABLE_LOGS - log_print_usage(); + options.push_back({ "logging" }); + options.push_back({ "*", " --simple-io", "use basic IO for better compatibility in subprocesses and limited consoles" }); + options.push_back({ "*", "-ld, --logdir LOGDIR", "path under which to save YAML logs (no logging if unset)" }); + options.push_back({ "logging", " --log-test", "Run simple logging test" }); + options.push_back({ "logging", " --log-disable", "Disable trace logs" }); + options.push_back({ "logging", " --log-enable", "Enable trace logs" }); + options.push_back({ "logging", " --log-file FNAME", "Specify a log filename (without extension)" }); + options.push_back({ "logging", " --log-new", "Create a separate new log file on start. " + "Each log file will have unique name: \"..log\"" }); + options.push_back({ "logging", " --log-append", "Don't truncate the old log file." }); #endif // LOG_DISABLE_LOGS + + options.push_back({ "cvector" }); + options.push_back({ "cvector", "-o, --output FNAME", "output file (default: '%s')", params.cvector_outfile.c_str() }); + options.push_back({ "cvector", " --positive-file FNAME", "positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str() }); + options.push_back({ "cvector", " --negative-file FNAME", "negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str() }); + options.push_back({ "cvector", " --completions-file FNAME", + "completions file (default: '%s')", params.cvector_completions_file.c_str() }); + options.push_back({ "cvector", " --completions N", "number of lines of completions file to use (default: %d)", params.n_completions }); + options.push_back({ "cvector", " --pca-batch N", "batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch }); + options.push_back({ "cvector", " --pca-iter N", "number of iterations used for PCA (default: %d)", params.n_pca_iterations }); + + printf("usage: %s [options]\n", argv[0]); + + for (const auto & o : options) { + if (!o.grp.empty()) { + printf("\n%s:\n\n", o.grp.c_str()); + continue; + } + printf(" %-32s", o.args.c_str()); + if (o.args.length() > 30) { + printf("\n%34s", ""); + } + + const auto desc = o.desc; + size_t start = 0; + size_t end = desc.find('\n'); + while (end != std::string::npos) { + printf("%s\n%34s", desc.substr(start, end - start).c_str(), ""); + start = end + 1; + end = desc.find('\n', start); + } + + printf("%s\n", desc.substr(start).c_str()); + } + printf("\n"); } std::string gpt_params_get_system_info(const gpt_params & params) { @@ -1610,24 +2075,6 @@ std::string string_get_sortable_timestamp() { return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns); } -std::string string_random_prompt(std::mt19937 & rng) { - const int r = rng() % 10; - switch (r) { - case 0: return "So"; - case 1: return "Once upon a time"; - case 2: return "When"; - case 3: return "The"; - case 4: return "After"; - case 5: return "If"; - case 6: return "import"; - case 7: return "He"; - case 8: return "She"; - case 9: return "They"; - } - - GGML_UNREACHABLE(); -} - void string_process_escapes(std::string & input) { std::size_t input_len = input.length(); std::size_t output_idx = 0; @@ -1887,6 +2334,16 @@ std::string fs_get_cache_directory() { return ensure_trailing_slash(cache_directory); } +std::string fs_get_cache_file(const std::string & filename) { + GGML_ASSERT(filename.find(DIRECTORY_SEPARATOR) == std::string::npos); + std::string cache_directory = fs_get_cache_directory(); + const bool success = fs_create_directory_with_parents(cache_directory); + if (!success) { + throw std::runtime_error("failed to create cache directory: " + cache_directory); + } + return cache_directory + filename; +} + // // Model utils @@ -2201,7 +2658,14 @@ static bool llama_download_file(const std::string & url, const std::string & pat } // Set the output file - std::unique_ptr outfile(fopen(path_temporary.c_str(), "wb"), fclose); + + struct FILE_deleter { + void operator()(FILE * f) const { + fclose(f); + } + }; + + std::unique_ptr outfile(fopen(path_temporary.c_str(), "wb")); if (!outfile) { fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path.c_str()); return false; @@ -2503,6 +2967,12 @@ bool llama_should_add_bos_token(const llama_model * model) { return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM); } +bool llama_chat_verify_template(const std::string & tmpl) { + llama_chat_message chat[] = {{"user", "test"}}; + int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0); + return res >= 0; +} + // // KV cache utils // @@ -2844,7 +3314,6 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false"); fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false"); fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false"); - fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false"); fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false"); fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false"); fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false"); @@ -2903,9 +3372,7 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l yaml_dump_string_multiline(stream, "in_prefix", params.input_prefix.c_str()); fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false"); yaml_dump_string_multiline(stream, "in_suffix", params.input_prefix.c_str()); - fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false"); fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false"); - fprintf(stream, "interactive_specials: %s # default: false\n", params.interactive_specials ? "true" : "false"); fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false"); fprintf(stream, "keep: %d # default: 0\n", params.n_keep); fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str()); @@ -2955,7 +3422,6 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false"); fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false"); yaml_dump_vector_int(stream, "prompt_tokens", prompt_tokens); - fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false"); fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat); fprintf(stream, "reverse_prompt:\n"); diff --git a/common/common.h b/common/common.h index 264504830..9a1dc4a2f 100644 --- a/common/common.h +++ b/common/common.h @@ -56,66 +56,66 @@ struct gpt_params { uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed int32_t n_threads = cpu_get_num_math(); - int32_t n_threads_draft = -1; - int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads) - int32_t n_threads_batch_draft = -1; - int32_t n_predict = -1; // new tokens to predict - int32_t n_ctx = 512; // context size - int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS) - int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS) - int32_t n_keep = 0; // number of tokens to keep from initial prompt - int32_t n_draft = 5; // number of tokens to draft during speculative decoding - int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) - int32_t n_parallel = 1; // number of parallel sequences to decode - int32_t n_sequences = 1; // number of sequences to decode - float p_split = 0.1f; // speculative decoding split probability - int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) - int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) - llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs - int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors - float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs - int32_t n_beams = 0; // if non-zero then use beam search of given width. - int32_t grp_attn_n = 1; // group-attention factor - int32_t grp_attn_w = 512; // group-attention width - int32_t n_print = -1; // print token count every n tokens (-1 = disabled) - float rope_freq_base = 0.0f; // RoPE base frequency - float rope_freq_scale = 0.0f; // RoPE frequency scaling factor + int32_t n_threads_draft = -1; + int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads) + int32_t n_threads_batch_draft = -1; + int32_t n_predict = -1; // new tokens to predict + int32_t n_ctx = 0; // context size + int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS) + int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS) + int32_t n_keep = 0; // number of tokens to keep from initial prompt + int32_t n_draft = 5; // number of tokens to draft during speculative decoding + int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) + int32_t n_parallel = 1; // number of parallel sequences to decode + int32_t n_sequences = 1; // number of sequences to decode + float p_split = 0.1f; // speculative decoding split probability + int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) + int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default) + int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors + float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs + int32_t grp_attn_n = 1; // group-attention factor + int32_t grp_attn_w = 512; // group-attention width + int32_t n_print = -1; // print token count every n tokens (-1 = disabled) + float rope_freq_base = 0.0f; // RoPE base frequency + float rope_freq_scale = 0.0f; // RoPE frequency scaling factor float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor - float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor + float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor float yarn_beta_fast = 32.0f; // YaRN low correction dim - float yarn_beta_slow = 1.0f; // YaRN high correction dim - int32_t yarn_orig_ctx = 0; // YaRN original context length + float yarn_beta_slow = 1.0f; // YaRN high correction dim + int32_t yarn_orig_ctx = 0; // YaRN original context length float defrag_thold = -1.0f; // KV cache defragmentation threshold - std::string rpc_servers = ""; // comma separated list of RPC servers ggml_backend_sched_eval_callback cb_eval = nullptr; void * cb_eval_user_data = nullptr; ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED; + enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings // // sampling parameters struct llama_sampling_params sparams; - std::string model = ""; // model path - std::string model_draft = ""; // draft model for speculative decoding + std::string model = ""; // model path + std::string model_draft = ""; // draft model for speculative decoding std::string model_alias = "unknown"; // model alias - std::string model_url = ""; // model url to download - std::string hf_repo = ""; // HF repo - std::string hf_file = ""; // HF file + std::string model_url = ""; // model url to download + std::string hf_repo = ""; // HF repo + std::string hf_file = ""; // HF file std::string prompt = ""; - std::string prompt_file = ""; // store the external prompt file name - std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state - std::string input_prefix = ""; // string to prefix user inputs with - std::string input_suffix = ""; // string to suffix user inputs with - std::vector antiprompt; // string upon seeing which more user input is prompted - std::string logdir = ""; // directory in which to save YAML log files + std::string prompt_file = ""; // store the external prompt file name + std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state + std::string input_prefix = ""; // string to prefix user inputs with + std::string input_suffix = ""; // string to suffix user inputs with + std::string logdir = ""; // directory in which to save YAML log files std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding - std::string logits_file = ""; // file for saving *all* logits + std::string logits_file = ""; // file for saving *all* logits + std::string rpc_servers = ""; // comma separated list of RPC servers + std::vector in_files; // all input files + std::vector antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts) std::vector kv_overrides; // TODO: avoid tuple, use struct @@ -124,37 +124,36 @@ struct gpt_params { std::vector control_vectors; // control vector with user defined scale + int32_t verbosity = 0; int32_t control_vector_layer_start = -1; // layer range for control vector int32_t control_vector_layer_end = -1; // layer range for control vector - int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used. - int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line - // (which is more convenient to use for plotting) - // - bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt - size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score + int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used. + int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line + // (which is more convenient to use for plotting) + // + bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt + size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score - bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt - size_t winogrande_tasks= 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed + bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt + size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed - bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt - size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed + bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt + size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed - bool kl_divergence = false; // compute KL divergence + bool kl_divergence = false; // compute KL divergence - bool random_prompt = false; // do not randomize prompt if none provided + bool usage = false; // print usage bool use_color = false; // use color to distinguish generations and inputs - bool interactive = false; // interactive mode - bool interactive_specials = false; // whether to allow special tokens from user, during interactive mode bool special = false; // enable special token output + bool interactive = false; // interactive mode + bool interactive_first = false; // wait for user input immediately bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix) - bool chatml = false; // chatml mode (used for models trained on chatml syntax) bool prompt_cache_all = false; // save user input and generations to prompt cache bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it bool embedding = false; // get only sentence embedding - bool escape = false; // escape "\n", "\r", "\t", "\'", "\"", and "\\" - bool interactive_first = false; // wait for user input immediately + bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\" bool multiline_input = false; // reverse the usage of `\` bool simple_io = false; // improves compatibility with subprocesses and limited consoles bool cont_batching = true; // insert new sequences for decoding on-the-fly @@ -162,7 +161,6 @@ struct gpt_params { bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix bool ignore_eos = false; // ignore generated EOS tokens - bool instruct = false; // instruction mode (used for Alpaca models) bool logits_all = false; // return logits for all tokens in the batch bool use_mmap = true; // use mmap for faster loads bool use_mlock = false; // use mlock to keep model in memory @@ -180,6 +178,68 @@ struct gpt_params { // multimodal models (see examples/llava) std::string mmproj = ""; // path to multimodal projector std::vector image; // path to image file(s) + + // server params + int32_t port = 8080; // server listens on this network port + int32_t timeout_read = 600; // http read timeout in seconds + int32_t timeout_write = timeout_read; // http write timeout in seconds + int32_t n_threads_http = -1; // number of threads to process HTTP requests + + std::string hostname = "127.0.0.1"; + std::string public_path = ""; + std::string chat_template = ""; + std::string system_prompt = ""; + + std::vector api_keys; + + std::string ssl_file_key = ""; + std::string ssl_file_cert = ""; + + bool endpoint_slots = true; + bool endpoint_metrics = false; + + bool log_json = false; + + std::string slot_save_path; + + float slot_prompt_similarity = 0.5f; + + // batched-bench params + bool is_pp_shared = false; + + std::vector n_pp; + std::vector n_tg; + std::vector n_pl; + + // retrieval params + std::vector context_files; // context files to embed + + int32_t chunk_size = 64; // chunk size for context embedding + + std::string chunk_separator = "\n"; // chunk separator for context embedding + + // passkey params + int32_t n_junk = 250; // number of times to repeat the junk text + int32_t i_pos = -1; // position of the passkey in the junk text + + // imatrix params + std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file + + int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations + int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations + int32_t i_chunk = 0; // start processing from this chunk + + bool process_output = false; // collect data for the output tensor + bool compute_ppl = true; // whether to compute perplexity + + // cvector-generator params + int n_completions = 64; + int n_pca_batch = 20; + int n_pca_iterations = 1000; + std::string cvector_outfile = "control_vector.gguf"; + std::string cvector_completions_file = "examples/cvector-generator/completions.txt"; + std::string cvector_positive_file = "examples/cvector-generator/positive.txt"; + std::string cvector_negative_file = "examples/cvector-generator/negative.txt"; }; void gpt_params_handle_model_default(gpt_params & params); @@ -199,7 +259,20 @@ std::vector string_split(std::string input, char separator); std::string string_strip(const std::string & str); std::string string_get_sortable_timestamp(); -std::string string_random_prompt(std::mt19937 & rng); + +template +static std::vector string_split(const std::string & str, char delim) { + std::vector values; + std::istringstream str_stream(str); + std::string token; + while (std::getline(str_stream, token, delim)) { + T value; + std::istringstream token_stream(token); + token_stream >> value; + values.push_back(value); + } + return values; +} bool string_parse_kv_override(const char * data, std::vector & overrides); void string_process_escapes(std::string & input); @@ -212,6 +285,7 @@ bool fs_validate_filename(const std::string & filename); bool fs_create_directory_with_parents(const std::string & path); std::string fs_get_cache_directory(); +std::string fs_get_cache_file(const std::string & filename); // // Model utils @@ -282,6 +356,13 @@ std::string llama_detokenize_bpe( // defaults to true when model type is SPM, otherwise false. bool llama_should_add_bos_token(const llama_model * model); +// +// Chat template utils +// + +// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid +bool llama_chat_verify_template(const std::string & tmpl); + // // KV cache utils // diff --git a/common/grammar-parser.cpp b/common/grammar-parser.cpp index b5bc7d49b..a518b766d 100644 --- a/common/grammar-parser.cpp +++ b/common/grammar-parser.cpp @@ -46,8 +46,12 @@ namespace grammar_parser { state.rules[rule_id] = rule; } + static bool is_digit_char(char c) { + return '0' <= c && c <= '9'; + } + static bool is_word_char(char c) { - return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || ('0' <= c && c <= '9'); + return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || is_digit_char(c); } static std::pair parse_hex(const char * src, int size) { @@ -99,6 +103,17 @@ namespace grammar_parser { return pos; } + static const char * parse_int(const char * src) { + const char * pos = src; + while (is_digit_char(*pos)) { + pos++; + } + if (pos == src) { + throw std::runtime_error(std::string("expecting integer at ") + src); + } + return pos; + } + static std::pair parse_char(const char * src) { if (*src == '\\') { switch (src[1]) { @@ -137,6 +152,60 @@ namespace grammar_parser { bool is_nested) { size_t last_sym_start = out_elements.size(); const char * pos = src; + + auto handle_repetitions = [&](int min_times, int max_times) { + + if (last_sym_start == out_elements.size()) { + throw std::runtime_error(std::string("expecting preceding item to */+/?/{ at ") + pos); + } + + // apply transformation to previous symbol (last_sym_start to end) according to + // the following rewrite rules: + // S{m,n} --> S S S (m times) S'(n-m) + // S'(x) ::= S S'(x-1) | + // (... n-m definitions of these S' rules ...) + // S'(1) ::= S | + // S{m,} --> S S S (m times) S' + // S' ::= S S' | + // S* --> S{0,} + // --> S' ::= S S' | + // S+ --> S{1,} + // --> S S' + // S' ::= S S' | + // S? --> S{0,1} + // --> S' + // S' ::= S | + + std::vector previous_elements(out_elements.begin() + last_sym_start, out_elements.end()); + if (min_times == 0) { + out_elements.resize(last_sym_start); + } else { + // Repeat the previous elements (min_times - 1) times + for (int i = 1; i < min_times; i++) { + out_elements.insert(out_elements.end(), previous_elements.begin(), previous_elements.end()); + } + } + + uint32_t last_rec_rule_id = 0; + auto n_opt = max_times < 0 ? 1 : max_times - min_times; + + std::vector rec_rule(previous_elements); + for (int i = 0; i < n_opt; i++) { + rec_rule.resize(previous_elements.size()); + uint32_t rec_rule_id = generate_symbol_id(state, rule_name); + if (i > 0 || max_times < 0) { + rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, max_times < 0 ? rec_rule_id : last_rec_rule_id}); + } + rec_rule.push_back({LLAMA_GRETYPE_ALT, 0}); + rec_rule.push_back({LLAMA_GRETYPE_END, 0}); + add_rule(state, rec_rule_id, rec_rule); + last_rec_rule_id = rec_rule_id; + } + if (n_opt > 0) { + out_elements.push_back({LLAMA_GRETYPE_RULE_REF, last_rec_rule_id}); + } + }; + while (*pos) { if (*pos == '"') { // literal string pos++; @@ -197,40 +266,51 @@ namespace grammar_parser { throw std::runtime_error(std::string("expecting ')' at ") + pos); } pos = parse_space(pos + 1, is_nested); - } else if (*pos == '*' || *pos == '+' || *pos == '?') { // repetition operator - if (last_sym_start == out_elements.size()) { - throw std::runtime_error(std::string("expecting preceding item to */+/? at ") + pos); - } - - // apply transformation to previous symbol (last_sym_start to end) according to - // rewrite rules: - // S* --> S' ::= S S' | - // S+ --> S' ::= S S' | S - // S? --> S' ::= S | - uint32_t sub_rule_id = generate_symbol_id(state, rule_name); - std::vector sub_rule; - // add preceding symbol to generated rule - sub_rule.insert( - sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end()); - if (*pos == '*' || *pos == '+') { - // cause generated rule to recurse - sub_rule.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id}); - } - // mark start of alternate def - sub_rule.push_back({LLAMA_GRETYPE_ALT, 0}); - if (*pos == '+') { - // add preceding symbol as alternate only for '+' (otherwise empty) - sub_rule.insert( - sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end()); - } - sub_rule.push_back({LLAMA_GRETYPE_END, 0}); - add_rule(state, sub_rule_id, sub_rule); - - // in original rule, replace previous symbol with reference to generated rule - out_elements.resize(last_sym_start); - out_elements.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id}); - + } else if (*pos == '.') { // any char + last_sym_start = out_elements.size(); + out_elements.push_back({LLAMA_GRETYPE_CHAR_ANY, 0}); pos = parse_space(pos + 1, is_nested); + } else if (*pos == '*') { + pos = parse_space(pos + 1, is_nested); + handle_repetitions(0, -1); + } else if (*pos == '+') { + pos = parse_space(pos + 1, is_nested); + handle_repetitions(1, -1); + } else if (*pos == '?') { + pos = parse_space(pos + 1, is_nested); + handle_repetitions(0, 1); + } else if (*pos == '{') { + pos = parse_space(pos + 1, is_nested); + + if (!is_digit_char(*pos)) { + throw std::runtime_error(std::string("expecting an int at ") + pos); + } + const char * int_end = parse_int(pos); + int min_times = std::stoul(std::string(pos, int_end - pos)); + pos = parse_space(int_end, is_nested); + + int max_times = -1; + + if (*pos == '}') { + max_times = min_times; + pos = parse_space(pos + 1, is_nested); + } else if (*pos == ',') { + pos = parse_space(pos + 1, is_nested); + + if (is_digit_char(*pos)) { + const char * int_end = parse_int(pos); + max_times = std::stoul(std::string(pos, int_end - pos)); + pos = parse_space(int_end, is_nested); + } + + if (*pos != '}') { + throw std::runtime_error(std::string("expecting '}' at ") + pos); + } + pos = parse_space(pos + 1, is_nested); + } else { + throw std::runtime_error(std::string("expecting ',' at ") + pos); + } + handle_repetitions(min_times, max_times); } else { break; } @@ -325,6 +405,7 @@ namespace grammar_parser { case LLAMA_GRETYPE_CHAR_NOT: return true; case LLAMA_GRETYPE_CHAR_ALT: return true; case LLAMA_GRETYPE_CHAR_RNG_UPPER: return true; + case LLAMA_GRETYPE_CHAR_ANY: return true; default: return false; } } @@ -339,6 +420,7 @@ namespace grammar_parser { case LLAMA_GRETYPE_CHAR_NOT: fprintf(file, "CHAR_NOT"); break; case LLAMA_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break; case LLAMA_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break; + case LLAMA_GRETYPE_CHAR_ANY: fprintf(file, "CHAR_ANY"); break; } switch (elem.type) { case LLAMA_GRETYPE_END: @@ -350,6 +432,7 @@ namespace grammar_parser { case LLAMA_GRETYPE_CHAR_NOT: case LLAMA_GRETYPE_CHAR_RNG_UPPER: case LLAMA_GRETYPE_CHAR_ALT: + case LLAMA_GRETYPE_CHAR_ANY: fprintf(file, "(\""); print_grammar_char(file, elem.value); fprintf(file, "\") "); @@ -407,11 +490,15 @@ namespace grammar_parser { } print_grammar_char(file, elem.value); break; + case LLAMA_GRETYPE_CHAR_ANY: + fprintf(file, "."); + break; } if (is_char_element(elem)) { switch (rule[i + 1].type) { case LLAMA_GRETYPE_CHAR_ALT: case LLAMA_GRETYPE_CHAR_RNG_UPPER: + case LLAMA_GRETYPE_CHAR_ANY: break; default: fprintf(file, "] "); diff --git a/common/json-schema-to-grammar.cpp b/common/json-schema-to-grammar.cpp index 9a71f5d8d..10b9b3d1d 100644 --- a/common/json-schema-to-grammar.cpp +++ b/common/json-schema-to-grammar.cpp @@ -16,92 +16,55 @@ static std::string join(Iterator begin, Iterator end, const std::string & separa static std::string repeat(const std::string & str, size_t n); -static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "", bool item_rule_is_literal = false) { +static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "") { + auto has_max = max_items != std::numeric_limits::max(); + + if (min_items == 0 && max_items == 1) { + return item_rule + "?"; + } + if (separator_rule.empty()) { - if (min_items == 0 && max_items == 1) { - return item_rule + "?"; - } else if (min_items == 1 && max_items == std::numeric_limits::max()) { + if (min_items == 1 && !has_max) { return item_rule + "+"; - } - } - - std::string result; - if (min_items > 0) { - if (item_rule_is_literal && separator_rule.empty()) { - result = "\"" + repeat(std::string(item_rule.begin() + 1, item_rule.end() - 1), min_items) + "\""; + } else if (min_items == 0 && !has_max) { + return item_rule + "*"; } else { - std::vector items(min_items, item_rule); - result = join(items.begin(), items.end(), separator_rule.empty() ? " " : " " + separator_rule + " "); + return item_rule + "{" + std::to_string(min_items) + "," + (has_max ? std::to_string(max_items) : "") + "}"; } } - std::function opt_repetitions = [&](int up_to_n, bool prefix_with_sep) -> std::string { - auto content = prefix_with_sep && !separator_rule.empty() ? separator_rule + " " + item_rule : item_rule; - - if (up_to_n == 0) { - return ""; - } else if (up_to_n == 1) { - return "(" + content + ")?"; - } else if (!separator_rule.empty() && !prefix_with_sep) { - return "(" + content + " " + opt_repetitions(up_to_n - 1, true) + ")?"; - } else { - std::string res = repeat("(" + content + " ", up_to_n); - // strip trailing space - res = res.substr(0, res.length() - 1); - res += repeat(")?", up_to_n); - return res; - } - }; - - if (min_items > 0 && max_items != min_items) { - result += " "; + auto result = item_rule + " " + build_repetition("(" + separator_rule + " " + item_rule + ")", min_items == 0 ? 0 : min_items - 1, has_max ? max_items - 1 : max_items); + if (min_items == 0) { + result = "(" + result + ")?"; } - - if (max_items != std::numeric_limits::max()) { - result += opt_repetitions(max_items - min_items, min_items > 0); - } else { - std::string item_operator = "(" + (separator_rule.empty() ? "" : separator_rule + " ") + item_rule + ")"; - if (min_items == 0 && !separator_rule.empty()) { - result = "(" + item_rule + " " + item_operator + "*)?"; - } else { - result += item_operator + "*"; - } - } - return result; } -const std::string SPACE_RULE = "\" \"?"; +const std::string SPACE_RULE = "| \" \" | \"\\n\" [ \\t]{0,20}"; struct BuiltinRule { std::string content; std::vector deps; }; -const std::string _up_to_15_digits = build_repetition("[0-9]", 0, 15); - std::unordered_map PRIMITIVE_RULES = { {"boolean", {"(\"true\" | \"false\") space", {}}}, - {"decimal-part", {"[0-9] " + _up_to_15_digits, {}}}, - {"integral-part", {"[0-9] | [1-9] " + _up_to_15_digits, {}}}, + {"decimal-part", {"[0-9]{1,16}", {}}}, + {"integral-part", {"[0] | [1-9] [0-9]{0,15}", {}}}, {"number", {"(\"-\"? integral-part) (\".\" decimal-part)? ([eE] [-+]? integral-part)? space", {"integral-part", "decimal-part"}}}, {"integer", {"(\"-\"? integral-part) space", {"integral-part"}}}, {"value", {"object | array | string | number | boolean | null", {"object", "array", "string", "number", "boolean", "null"}}}, {"object", {"\"{\" space ( string \":\" space value (\",\" space string \":\" space value)* )? \"}\" space", {"string", "value"}}}, {"array", {"\"[\" space ( value (\",\" space value)* )? \"]\" space", {"value"}}}, - {"uuid", {"\"\\\"\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] " - "\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] " - "\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] " - "\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] " - "\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] \"\\\"\" space", {}}}, - {"char", {"[^\"\\\\] | \"\\\\\" ([\"\\\\/bfnrt] | \"u\" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])", {}}}, + {"uuid", {"\"\\\"\" [0-9a-fA-F]{8} \"-\" [0-9a-fA-F]{4} \"-\" [0-9a-fA-F]{4} \"-\" [0-9a-fA-F]{4} \"-\" [0-9a-fA-F]{12} \"\\\"\" space", {}}}, + {"char", {"[^\"\\\\\\x7F\\x00-\\x1F] | [\\\\] ([\"\\\\bfnrt] | \"u\" [0-9a-fA-F]{4})", {}}}, {"string", {"\"\\\"\" char* \"\\\"\" space", {"char"}}}, {"null", {"\"null\" space", {}}}, }; std::unordered_map STRING_FORMAT_RULES = { - {"date", {"[0-9] [0-9] [0-9] [0-9] \"-\" ( \"0\" [1-9] | \"1\" [0-2] ) \"-\" ( \"0\" [1-9] | [1-2] [0-9] | \"3\" [0-1] )", {}}}, - {"time", {"([01] [0-9] | \"2\" [0-3]) \":\" [0-5] [0-9] \":\" [0-5] [0-9] ( \".\" [0-9] [0-9] [0-9] )? ( \"Z\" | ( \"+\" | \"-\" ) ( [01] [0-9] | \"2\" [0-3] ) \":\" [0-5] [0-9] )", {}}}, + {"date", {"[0-9]{4} \"-\" ( \"0\" [1-9] | \"1\" [0-2] ) \"-\" ( \"0\" [1-9] | [1-2] [0-9] | \"3\" [0-1] )", {}}}, + {"time", {"([01] [0-9] | \"2\" [0-3]) \":\" [0-5] [0-9] \":\" [0-5] [0-9] ( \".\" [0-9]{3} )? ( \"Z\" | ( \"+\" | \"-\" ) ( [01] [0-9] | \"2\" [0-3] ) \":\" [0-5] [0-9] )", {}}}, {"date-time", {"date \"T\" time", {"date", "time"}}}, {"date-string", {"\"\\\"\" date \"\\\"\" space", {"date"}}}, {"time-string", {"\"\\\"\" time \"\\\"\" space", {"time"}}}, @@ -385,8 +348,7 @@ private: sub_is_literal ? "\"" + sub + "\"" : sub, min_times, max_times, - "", - sub_is_literal + "" ); seq.back().second = false; } else { diff --git a/convert-hf-to-gguf-update.py b/convert-hf-to-gguf-update.py index 84b72348d..67598b561 100755 --- a/convert-hf-to-gguf-update.py +++ b/convert-hf-to-gguf-update.py @@ -1,4 +1,5 @@ #!/usr/bin/env python3 +# -*- coding: utf-8 -*- # This script downloads the tokenizer models of the specified models from Huggingface and # generates the get_vocab_base_pre() function for convert-hf-to-gguf.py @@ -82,6 +83,8 @@ models = [ {"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", }, {"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", }, {"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", }, + {"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", }, + {"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", }, ] @@ -211,7 +214,7 @@ src_func = f""" """ convert_py_pth = pathlib.Path("convert-hf-to-gguf.py") -convert_py = convert_py_pth.read_text() +convert_py = convert_py_pth.read_text(encoding="utf-8") convert_py = re.sub( r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)", lambda m: m.group(1) + src_func + m.group(3), @@ -219,7 +222,7 @@ convert_py = re.sub( flags=re.DOTALL | re.MULTILINE, ) -convert_py_pth.write_text(convert_py) +convert_py_pth.write_text(convert_py, encoding="utf-8") logger.info("+++ convert-hf-to-gguf.py was updated") diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index ad071b974..8ce79d146 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -1,4 +1,5 @@ #!/usr/bin/env python3 +# -*- coding: utf-8 -*- from __future__ import annotations @@ -46,11 +47,12 @@ class Model: _model_classes: dict[str, type[Model]] = {} dir_model: Path - ftype: int + ftype: gguf.LlamaFileType is_big_endian: bool endianess: gguf.GGUFEndian use_temp_file: bool lazy: bool + model_name: str | None part_names: list[str] is_safetensors: bool hparams: dict[str, Any] @@ -63,7 +65,7 @@ class Model: # subclasses should define this! model_arch: gguf.MODEL_ARCH - def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool): + def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool, model_name: str | None): if type(self) is Model: raise TypeError(f"{type(self).__name__!r} should not be directly instantiated") self.dir_model = dir_model @@ -72,10 +74,11 @@ class Model: self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE self.use_temp_file = use_temp_file self.lazy = not eager - self.part_names = Model.get_model_part_names(self.dir_model, ".safetensors") + self.model_name = model_name + self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors") self.is_safetensors = len(self.part_names) > 0 if not self.is_safetensors: - self.part_names = Model.get_model_part_names(self.dir_model, ".bin") + self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin") self.hparams = Model.load_hparams(self.dir_model) self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"]) self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count) @@ -93,7 +96,7 @@ class Model: ftype_lw: str = ftype_up.lower() # allow templating the file name with the output ftype, useful with the "auto" ftype self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up) - self.gguf_writer = gguf.GGUFWriter(self.fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file) + self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file) @classmethod def __init_subclass__(cls): @@ -181,7 +184,7 @@ class Model: return new_name def set_gguf_parameters(self): - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_block_count(self.block_count) if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None: @@ -323,21 +326,21 @@ class Model: def write(self): self.write_tensors() - self.gguf_writer.write_header_to_file() + self.gguf_writer.write_header_to_file(self.fname_out) self.gguf_writer.write_kv_data_to_file() self.gguf_writer.write_tensors_to_file(progress=True) self.gguf_writer.close() def write_vocab(self): - self.gguf_writer.write_header_to_file() + self.gguf_writer.write_header_to_file(self.fname_out) self.gguf_writer.write_kv_data_to_file() self.gguf_writer.close() @staticmethod - def get_model_part_names(dir_model: Path, suffix: str) -> list[str]: + def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]: part_names: list[str] = [] for filename in os.listdir(dir_model): - if filename.endswith(suffix): + if filename.startswith(prefix) and filename.endswith(suffix): part_names.append(filename) part_names.sort() @@ -474,6 +477,12 @@ class Model: if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d": # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct res = "smaug-bpe" + if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360": + # ref: https://huggingface.co/LumiOpen/Poro-34B-chat + res = "poro-chat" + if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a": + # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code + res = "jina-v2-code" if res is None: logger.warning("\n") @@ -661,7 +670,7 @@ class GPTNeoXModel(Model): def set_gguf_parameters(self): block_count = self.hparams["num_hidden_layers"] - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) @@ -794,7 +803,7 @@ class MPTModel(Model): def set_gguf_parameters(self): block_count = self.hparams["n_layers"] - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_context_length(self.hparams["max_seq_len"]) self.gguf_writer.add_embedding_length(self.hparams["d_model"]) self.gguf_writer.add_block_count(block_count) @@ -846,7 +855,7 @@ class OrionModel(Model): raise ValueError("gguf: can not find ctx length parameter.") self.gguf_writer.add_file_type(self.ftype) - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_source_hf_repo(hf_repo) self.gguf_writer.add_tensor_data_layout("Meta AI original pth") self.gguf_writer.add_context_length(ctx_length) @@ -883,7 +892,7 @@ class BaichuanModel(Model): else: raise ValueError("gguf: can not find ctx length parameter.") - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_source_hf_repo(hf_repo) self.gguf_writer.add_tensor_data_layout("Meta AI original pth") self.gguf_writer.add_context_length(ctx_length) @@ -958,7 +967,11 @@ class XverseModel(Model): from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(dir_model) vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) - assert max(tokenizer.vocab.values()) < vocab_size + # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size, + # because vocab_size is the count of items, and indexes start at 0. + max_vocab_index = max(tokenizer.get_vocab().values()) + if max_vocab_index >= vocab_size: + raise ValueError("Vocabulary size exceeds expected maximum size.") reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()} added_vocab = tokenizer.get_added_vocab() @@ -1006,7 +1019,7 @@ class XverseModel(Model): else: raise ValueError("gguf: can not find ctx length parameter.") - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_source_hf_repo(hf_repo) self.gguf_writer.add_tensor_data_layout("Meta AI original pth") self.gguf_writer.add_context_length(ctx_length) @@ -1202,7 +1215,7 @@ class StableLMModel(Model): hparams = self.hparams block_count = hparams["num_hidden_layers"] - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) @@ -1391,6 +1404,48 @@ class LlamaModel(Model): raise ValueError(f"Unprocessed experts: {experts}") +@Model.register("BitnetForCausalLM") +class BitnetModel(Model): + model_arch = gguf.MODEL_ARCH.BITNET + + def set_vocab(self): + self._set_vocab_sentencepiece() + + def set_gguf_parameters(self): + super().set_gguf_parameters() + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) + self.gguf_writer.add_rope_scaling_factor(1.0) + + def weight_quant(self, weight): + dtype = weight.dtype + weight = weight.float() + s = 1 / weight.abs().mean().clamp(min=1e-5) + weight = (weight * s).round().clamp(-1, 1) / s + scale = weight.abs().max().unsqueeze(0) + weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype) + weight = torch.sign(weight).type(dtype) + return weight.type(dtype), scale.type(torch.float32) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + new_name = self.map_tensor_name(name) + + if any(self.match_model_tensor_name(new_name, key, bid) for key in [ + gguf.MODEL_TENSOR.ATTN_Q, + gguf.MODEL_TENSOR.ATTN_K, + gguf.MODEL_TENSOR.ATTN_V, + gguf.MODEL_TENSOR.ATTN_OUT, + gguf.MODEL_TENSOR.FFN_UP, + gguf.MODEL_TENSOR.FFN_DOWN, + gguf.MODEL_TENSOR.FFN_GATE, + ]): + # transform weight into 1/0/-1 (in fp32) + weight_torch, scale_torch = self.weight_quant(data_torch) + yield (new_name, weight_torch) + yield (new_name.removesuffix(".weight") + ".scale", scale_torch) + else: + yield (new_name, data_torch) + + @Model.register("GrokForCausalLM") class GrokModel(Model): model_arch = gguf.MODEL_ARCH.GROK @@ -1623,6 +1678,12 @@ class Qwen2MoeModel(Model): super().set_gguf_parameters() if (n_experts := self.hparams.get("num_experts")) is not None: self.gguf_writer.add_expert_count(n_experts) + if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None: + self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size) + logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}") + if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None: + self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size) + logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}") _experts: list[dict[str, Tensor]] | None = None @@ -1677,7 +1738,7 @@ class GPT2Model(Model): model_arch = gguf.MODEL_ARCH.GPT2 def set_gguf_parameters(self): - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_block_count(self.hparams["n_layer"]) self.gguf_writer.add_context_length(self.hparams["n_ctx"]) self.gguf_writer.add_embedding_length(self.hparams["n_embd"]) @@ -2244,7 +2305,7 @@ class GemmaModel(Model): hparams = self.hparams block_count = hparams["num_hidden_layers"] - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_context_length(hparams["max_position_embeddings"]) self.gguf_writer.add_embedding_length(hparams["hidden_size"]) self.gguf_writer.add_block_count(block_count) @@ -2344,7 +2405,7 @@ class MambaModel(Model): # Fail early for models which don't have a block expansion factor of 2 assert d_inner == 2 * d_model - self.gguf_writer.add_name(self.dir_model.name) + self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name) self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default self.gguf_writer.add_embedding_length(d_model) self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading @@ -2451,11 +2512,13 @@ class JinaBertV2Model(BertModel): def get_tensors(self): for name, data in super().get_tensors(): - if 'gated_layers' in name: + if 'gated_layer' in name: d1 = data[:self.intermediate_size, :] name1 = name.replace('gated_layers', 'gated_layers_w') + name1 = name1.replace('up_gated_layer', 'gated_layers_v') d2 = data[self.intermediate_size:, :] name2 = name.replace('gated_layers', 'gated_layers_v') + name2 = name2.replace('up_gated_layer', 'gated_layers_w') yield name1, d1 yield name2, d2 continue @@ -2846,7 +2909,7 @@ def main() -> None: logger.error(f"Model {hparams['architectures'][0]} is not supported") sys.exit(1) - model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy) + model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy, args.model_name) logger.info("Set model parameters") model_instance.set_gguf_parameters() diff --git a/docs/HOWTO-add-model.md b/docs/HOWTO-add-model.md index 138124248..3eec077ea 100644 --- a/docs/HOWTO-add-model.md +++ b/docs/HOWTO-add-model.md @@ -100,7 +100,7 @@ Have a look at existing implementation like `build_llama`, `build_dbrx` or `buil When implementing a new graph, please note that the underlying `ggml` backends might not support them all, support for missing backend operations can be added in another PR. -Note: to debug the inference graph: you can use [eval-callback](../examples/eval-callback). +Note: to debug the inference graph: you can use [llama-eval-callback](../examples/eval-callback). ## GGUF specification diff --git a/docs/token_generation_performance_tips.md b/docs/token_generation_performance_tips.md index 3c4343147..c0840cad5 100644 --- a/docs/token_generation_performance_tips.md +++ b/docs/token_generation_performance_tips.md @@ -3,7 +3,7 @@ ## Verifying that the model is running on the GPU with CUDA Make sure you compiled llama with the correct env variables according to [this guide](../README.md#CUDA), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example: ```shell -./main -m "path/to/model.gguf" -ngl 200000 -p "Please sir, may I have some " +./llama-cli -m "path/to/model.gguf" -ngl 200000 -p "Please sir, may I have some " ``` When running llama, before it starts the inference work, it will output diagnostic information that shows whether cuBLAS is offloading work to the GPU. Look for these lines: @@ -27,7 +27,7 @@ RAM: 32GB Model: `TheBloke_Wizard-Vicuna-30B-Uncensored-GGML/Wizard-Vicuna-30B-Uncensored.q4_0.gguf` (30B parameters, 4bit quantization, GGML) -Run command: `./main -m "path/to/model.gguf" -p "An extremely detailed description of the 10 best ethnic dishes will follow, with recipes: " -n 1000 [additional benchmark flags]` +Run command: `./llama-cli -m "path/to/model.gguf" -p "An extremely detailed description of the 10 best ethnic dishes will follow, with recipes: " -n 1000 [additional benchmark flags]` Result: diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index d8c95f36d..12173746a 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -12,45 +12,46 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR}) if (EMSCRIPTEN) else() + add_subdirectory(cvector-generator) add_subdirectory(baby-llama) - add_subdirectory(batched) add_subdirectory(batched-bench) - add_subdirectory(beam-search) + add_subdirectory(batched) add_subdirectory(benchmark) add_subdirectory(convert-llama2c-to-ggml) add_subdirectory(embedding) add_subdirectory(eval-callback) + add_subdirectory(export-lora) add_subdirectory(finetune) - add_subdirectory(gritlm) + add_subdirectory(gbnf-validator) add_subdirectory(gguf-split) + add_subdirectory(gguf) + add_subdirectory(gritlm) + add_subdirectory(imatrix) add_subdirectory(infill) add_subdirectory(llama-bench) add_subdirectory(llava) add_subdirectory(minicpmv) - if (LLAMA_SYCL) - add_subdirectory(sycl) - endif() - add_subdirectory(main) - add_subdirectory(tokenize) - add_subdirectory(parallel) - add_subdirectory(perplexity) - add_subdirectory(quantize) - add_subdirectory(quantize-stats) - add_subdirectory(retrieval) - add_subdirectory(save-load-state) - add_subdirectory(simple) - add_subdirectory(passkey) - add_subdirectory(speculative) add_subdirectory(lookahead) add_subdirectory(lookup) - add_subdirectory(gguf) - add_subdirectory(train-text-from-scratch) - add_subdirectory(imatrix) - if (LLAMA_BUILD_SERVER) - add_subdirectory(server) - endif() - add_subdirectory(export-lora) + add_subdirectory(main) + add_subdirectory(parallel) + add_subdirectory(passkey) + add_subdirectory(perplexity) + add_subdirectory(quantize-stats) + add_subdirectory(quantize) + add_subdirectory(retrieval) if (LLAMA_RPC) add_subdirectory(rpc) endif() + if (LLAMA_BUILD_SERVER) + add_subdirectory(server) + endif() + if (LLAMA_SYCL) + add_subdirectory(sycl) + endif() + add_subdirectory(save-load-state) + add_subdirectory(simple) + add_subdirectory(speculative) + add_subdirectory(tokenize) + add_subdirectory(train-text-from-scratch) endif() diff --git a/examples/Miku.sh b/examples/Miku.sh index b9174b4e6..0f6c8c878 100755 --- a/examples/Miku.sh +++ b/examples/Miku.sh @@ -22,7 +22,7 @@ if [ -n "$N_THREAD" ]; then GEN_OPTIONS+=(--threads "$N_THREAD") fi -./main "${GEN_OPTIONS[@]}" \ +./llama-cli "${GEN_OPTIONS[@]}" \ --model "$MODEL" \ --in-prefix " " \ --in-suffix "${AI_NAME}:" \ diff --git a/examples/alpaca.sh b/examples/alpaca.sh deleted file mode 100755 index 8d2bae691..000000000 --- a/examples/alpaca.sh +++ /dev/null @@ -1,19 +0,0 @@ -#!/bin/bash - -# -# Temporary script - will be removed in the future -# - -cd `dirname $0` -cd .. - -./main -m ./models/alpaca.13b.ggmlv3.q8_0.bin \ - --color \ - -f ./prompts/alpaca.txt \ - --ctx_size 2048 \ - -n -1 \ - -ins -b 256 \ - --top_k 10000 \ - --temp 0.2 \ - --repeat_penalty 1.1 \ - -t 7 diff --git a/examples/baby-llama/CMakeLists.txt b/examples/baby-llama/CMakeLists.txt index 7b70227a5..71b82105c 100644 --- a/examples/baby-llama/CMakeLists.txt +++ b/examples/baby-llama/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET baby-llama) +set(TARGET llama-baby-llama) add_executable(${TARGET} baby-llama.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/baby-llama/baby-llama.cpp b/examples/baby-llama/baby-llama.cpp index bf0125e75..4f6c3746a 100644 --- a/examples/baby-llama/baby-llama.cpp +++ b/examples/baby-llama/baby-llama.cpp @@ -522,8 +522,8 @@ static struct ggml_tensor * forward( // wk shape [n_embd, n_embd, 1, 1] // Qcur shape [n_embd/n_head, n_head, N, 1] // Kcur shape [n_embd/n_head, n_head, N, 1] - struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0, 0); - struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0, 0); + struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0); + struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0); // store key and value to memory { @@ -759,8 +759,8 @@ static struct ggml_tensor * forward_batch( // wk shape [n_embd, n_embd, 1, 1] // Qcur shape [n_embd/n_head, n_head, N, n_batch] // Kcur shape [n_embd/n_head, n_head, N, n_batch] - struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0, 0); - struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0, 0); + struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0); + struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0); assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); @@ -1056,7 +1056,7 @@ static struct ggml_tensor * forward_lora( model->layers[il].wqb, cur)), n_embd/n_head, n_head, N), - KQ_pos, n_rot, 0, 0); + KQ_pos, n_rot, 0); struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, @@ -1065,7 +1065,7 @@ static struct ggml_tensor * forward_lora( model->layers[il].wkb, cur)), n_embd/n_head, n_head, N), - KQ_pos, n_rot, 0, 0); + KQ_pos, n_rot, 0); // store key and value to memory { diff --git a/examples/base-translate.sh b/examples/base-translate.sh index 00dedd0df..103a52f55 100755 --- a/examples/base-translate.sh +++ b/examples/base-translate.sh @@ -58,4 +58,4 @@ echo "$2 model=$1 # generate the most likely continuation until the string "===" is found -./main -m $model -f $ftmp -n 64 --temp 0 --repeat-penalty 1.0 --no-penalize-nl -r "===" $eargs +./llama-cli -m $model -f $ftmp -n 64 --temp 0 --repeat-penalty 1.0 --no-penalize-nl -r "===" $eargs diff --git a/examples/batched-bench/CMakeLists.txt b/examples/batched-bench/CMakeLists.txt index 40a032c51..959acaeee 100644 --- a/examples/batched-bench/CMakeLists.txt +++ b/examples/batched-bench/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET batched-bench) +set(TARGET llama-batched-bench) add_executable(${TARGET} batched-bench.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/batched-bench/README.md b/examples/batched-bench/README.md index bf951baf7..4a07fe6bb 100644 --- a/examples/batched-bench/README.md +++ b/examples/batched-bench/README.md @@ -10,16 +10,16 @@ There are 2 modes of operation: - `prompt is shared` - there is a common prompt of size `PP` used by all batches (i.e. `N_KV = PP + B*TG`) ```bash -./batched-bench MODEL_PATH [N_KV_MAX] [N_BATCH] [N_UBATCH] [IS_PP_SHARED] [NGL] [MMQ] +./llama-batched-bench -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps] # LLaMA 7B, F16, N_KV_MAX = 16384 (8GB), prompt not shared -./batched-bench ./models/llama-7b/ggml-model-f16.gguf 16384 2048 512 0 99 +./llama-batched-bench -m ./models/llama-7b/ggml-model-f16.gguf -c 16384 -b 2048 -ub 512 -ngl 99 # LLaMA 7B, Q8_0, N_KV_MAX = 16384 (8GB), prompt is shared -./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 16384 2048 512 1 99 +./llama-batched-bench -m ./models/llama-7b/ggml-model-q8_0.gguf -c 16384 -b 2048 -ub 512 -ngl 99 -pps # custom set of batches -./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 2048 512 512 0 999 0 128,256,512 128,256 1,2,4,8,16,32 +./llama-batched-bench -m ./models/llama-7b/ggml-model-q8_0.gguf -c 2048 -b 512 -ub 512 -ngl 999 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 ``` ## Sample results diff --git a/examples/batched-bench/batched-bench.cpp b/examples/batched-bench/batched-bench.cpp index 2924d8116..718f0a61a 100644 --- a/examples/batched-bench/batched-bench.cpp +++ b/examples/batched-bench/batched-bench.cpp @@ -28,67 +28,27 @@ static std::vector parse_list(char * p) { return ret; } +static void print_usage(int argc, char ** argv, const gpt_params & params) { + gpt_params_print_usage(argc, argv, params); + + LOG_TEE("\nexample usage:\n"); + LOG_TEE("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]); + LOG_TEE("\n"); +} + int main(int argc, char ** argv) { gpt_params params; - if (argc == 1 || argv[1][0] == '-') { - printf("usage: %s MODEL_PATH [N_KV_MAX] [N_BATCH] [N_UBATCH] [FATTN] [IS_PP_SHARED] [NGL] \n" , argv[0]); - printf(" , and PL are comma-separated lists of numbers without spaces\n\n"); - printf(" example: %s ggml-model-f16.gguf 2048 2048 512 0 999 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]); - return 1 ; + if (!gpt_params_parse(argc, argv, params)) { + print_usage(argc, argv, params); + return 1; } - int n_kv_max = 2048; - int n_batch = 2048; - int n_ubatch = 512; - bool flash_attn = false; - int is_pp_shared = 0; - int n_gpu_layers = 0; + int is_pp_shared = params.is_pp_shared; - std::vector n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, }; - std::vector n_tg = { 128, 256, }; - std::vector n_pl = { 1, 2, 4, 8, 16, 32, }; - //std::vector n_pl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, }; - - if (argc >= 2) { - params.model = argv[1]; - } - - if (argc >= 3) { - n_kv_max = std::atoi(argv[2]); - } - - if (argc >= 4) { - n_batch = std::atoi(argv[3]); - } - - if (argc >= 5) { - n_ubatch = std::atoi(argv[4]); - } - - if (argc >= 6) { - flash_attn = std::atoi(argv[5]); - } - - if (argc >= 7) { - is_pp_shared = std::atoi(argv[6]); - } - - if (argc >= 8) { - n_gpu_layers = std::atoi(argv[7]); - } - - if (argc >= 9) { - n_pp = parse_list(argv[8]); - } - - if (argc >= 10) { - n_tg = parse_list(argv[9]); - } - - if (argc >= 11) { - n_pl = parse_list(argv[10]); - } + std::vector n_pp = params.n_pp; + std::vector n_tg = params.n_tg; + std::vector n_pl = params.n_pl; // init LLM @@ -97,12 +57,7 @@ int main(int argc, char ** argv) { // initialize the model - llama_model_params model_params = llama_model_default_params(); - - const std::vector t_split(llama_max_devices(), 0.0f); - - model_params.n_gpu_layers = n_gpu_layers; - model_params.tensor_split = t_split.data(); + llama_model_params model_params = llama_model_params_from_gpt_params(params); llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); @@ -111,16 +66,7 @@ int main(int argc, char ** argv) { return 1; } - llama_context_params ctx_params = llama_context_default_params(); - - ctx_params.seed = 1234; - ctx_params.n_ctx = n_kv_max; - ctx_params.n_batch = n_batch; - ctx_params.n_ubatch = n_ubatch; - ctx_params.flash_attn = flash_attn; - - ctx_params.n_threads = params.n_threads; - ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; + llama_context_params ctx_params = llama_context_params_from_gpt_params(params); // ensure enough sequences are available ctx_params.n_seq_max = *std::max_element(n_pl.begin(), n_pl.end()); @@ -132,6 +78,8 @@ int main(int argc, char ** argv) { return 1; } + const int32_t n_kv_max = llama_n_ctx(ctx); + llama_batch batch = llama_batch_init(n_kv_max, 0, 1); // decode in batches of ctx_params.n_batch tokens @@ -175,7 +123,7 @@ int main(int argc, char ** argv) { } LOG_TEE("\n"); - LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, n_batch, n_ubatch, flash_attn, is_pp_shared, n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch); + LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch); LOG_TEE("\n"); LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s"); diff --git a/examples/batched.swift/Makefile b/examples/batched.swift/Makefile index 2afb24fb8..1f9156e58 100755 --- a/examples/batched.swift/Makefile +++ b/examples/batched.swift/Makefile @@ -1,6 +1,6 @@ .PHONY: build build: - xcodebuild -scheme batched_swift -destination "generic/platform=macOS" -derivedDataPath build - rm -f ./batched_swift - ln -s ./build/Build/Products/Debug/batched_swift ./batched_swift + xcodebuild -scheme llama-batched-swift -destination "generic/platform=macOS" -derivedDataPath build + rm -f ./llama-batched-swift + ln -s ./build/Build/Products/Debug/llama-batched-swift ./llama-batched-swift diff --git a/examples/batched.swift/Package.swift b/examples/batched.swift/Package.swift index 826491def..7e8afd084 100644 --- a/examples/batched.swift/Package.swift +++ b/examples/batched.swift/Package.swift @@ -4,7 +4,7 @@ import PackageDescription let package = Package( - name: "batched_swift", + name: "llama-batched-swift", platforms: [.macOS(.v12)], dependencies: [ .package(name: "llama", path: "../../"), @@ -13,7 +13,7 @@ let package = Package( // Targets are the basic building blocks of a package, defining a module or a test suite. // Targets can depend on other targets in this package and products from dependencies. .executableTarget( - name: "batched_swift", + name: "llama-batched-swift", dependencies: ["llama"], path: "Sources", linkerSettings: [.linkedFramework("Foundation"), .linkedFramework("AppKit")] diff --git a/examples/batched.swift/README.md b/examples/batched.swift/README.md index 4c2721fe8..7f2e2fcdc 100644 --- a/examples/batched.swift/README.md +++ b/examples/batched.swift/README.md @@ -1,4 +1,4 @@ This is a swift clone of `examples/batched`. $ `make` -$ `./batched_swift MODEL_PATH [PROMPT] [PARALLEL]` +$ `./llama-batched-swift MODEL_PATH [PROMPT] [PARALLEL]` diff --git a/examples/batched/CMakeLists.txt b/examples/batched/CMakeLists.txt index 6aa178d4d..77e33343b 100644 --- a/examples/batched/CMakeLists.txt +++ b/examples/batched/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET batched) +set(TARGET llama-batched) add_executable(${TARGET} batched.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/batched/README.md b/examples/batched/README.md index 5d7303317..6013aab01 100644 --- a/examples/batched/README.md +++ b/examples/batched/README.md @@ -3,7 +3,7 @@ The example demonstrates batched generation from a given prompt ```bash -./batched ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is" 4 +./llama-batched -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" -np 4 ... diff --git a/examples/batched/batched.cpp b/examples/batched/batched.cpp index 591bc6e57..62d9b144d 100644 --- a/examples/batched/batched.cpp +++ b/examples/batched/batched.cpp @@ -7,48 +7,31 @@ #include #include +static void print_usage(int argc, char ** argv, const gpt_params & params) { + gpt_params_print_usage(argc, argv, params); + + LOG_TEE("\nexample usage:\n"); + LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]); + LOG_TEE("\n"); +} + int main(int argc, char ** argv) { gpt_params params; - if (argc == 1 || argv[1][0] == '-') { - printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL] [LEN] [NGL]\n" , argv[0]); - return 1 ; + params.prompt = "Hello my name is"; + params.n_predict = 32; + + if (!gpt_params_parse(argc, argv, params)) { + print_usage(argc, argv, params); + return 1; } + // number of parallel batches - int n_parallel = 1; + int n_parallel = params.n_parallel; // total length of the sequences including the prompt - int n_len = 32; - - // number of layers to offload to the GPU - int n_gpu_layers = 0; - - if (argc >= 2) { - params.model = argv[1]; - } - - if (argc >= 3) { - params.prompt = argv[2]; - } - - if (argc >= 4) { - n_parallel = std::atoi(argv[3]); - } - - if (argc >= 5) { - n_len = std::atoi(argv[4]); - } - - if (argc >= 6) { - n_gpu_layers = std::atoi(argv[5]); - } - - if (params.prompt.empty()) { - params.prompt = "Hello my name is"; - } - - string_process_escapes(params.prompt); + int n_predict = 32; // init LLM @@ -57,9 +40,7 @@ int main(int argc, char ** argv) { // initialize the model - llama_model_params model_params = llama_model_default_params(); - - model_params.n_gpu_layers = n_gpu_layers; + llama_model_params model_params = llama_model_params_from_gpt_params(params); llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); @@ -73,18 +54,14 @@ int main(int argc, char ** argv) { std::vector tokens_list; tokens_list = ::llama_tokenize(model, params.prompt, true); - const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel; + const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel; // initialize the context - llama_context_params ctx_params = llama_context_default_params(); + llama_context_params ctx_params = llama_context_params_from_gpt_params(params); - ctx_params.seed = 1234; ctx_params.n_ctx = n_kv_req; - ctx_params.n_batch = std::max(n_len, n_parallel); - ctx_params.n_seq_max = n_parallel; - ctx_params.n_threads = params.n_threads; - ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; + ctx_params.n_batch = std::max(n_predict, n_parallel); llama_context * ctx = llama_new_context_with_model(model, ctx_params); @@ -93,9 +70,9 @@ int main(int argc, char ** argv) { return 1; } - const int n_ctx = llama_n_ctx(ctx); + const int n_ctx = llama_n_ctx(ctx); - LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req); + LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req); // make sure the KV cache is big enough to hold all the prompt and generated tokens if (n_kv_req > n_ctx) { @@ -156,7 +133,7 @@ int main(int argc, char ** argv) { const auto t_main_start = ggml_time_us(); - while (n_cur <= n_len) { + while (n_cur <= n_predict) { // prepare the next batch llama_batch_clear(batch); @@ -192,7 +169,7 @@ int main(int argc, char ** argv) { //const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); // is it an end of generation? -> mark the stream as finished - if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) { + if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) { i_batch[i] = -1; LOG_TEE("\n"); if (n_parallel > 1) { diff --git a/examples/beam-search/beam-search.cpp b/examples/beam-search/beam-search.cpp deleted file mode 100644 index 3d34378a5..000000000 --- a/examples/beam-search/beam-search.cpp +++ /dev/null @@ -1,188 +0,0 @@ -#include "common.h" -#include "llama.h" - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) -#include -#include -#elif defined (_WIN32) -#define WIN32_LEAN_AND_MEAN -#ifndef NOMINMAX -# define NOMINMAX -#endif -#include -#include -#endif - -// Used for debugging to print out beam tokens. -struct ostream_beam_view { - llama_context * ctx; - llama_beam_view beam_view; -}; - -static std::ostream & operator<<(std::ostream & os, const ostream_beam_view & obv) { - os << "p(" << obv.beam_view.p << ") eob(" << std::boolalpha << obv.beam_view.eob << ") tokens("; - for (size_t i = 0 ; i < obv.beam_view.n_tokens ; ++i) { - os << llama_token_to_piece(obv.ctx, obv.beam_view.tokens[i]); - } - return os << ')'; -} - -// Put here anything you want back in beam_search_callback(). -struct beam_search_callback_data { - llama_context * ctx; - std::vector response; -}; - -// In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same. -// For example, eob can be flagged due to maximum token length, stop words, etc. -static bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, size_t n_tokens) { - return n_tokens && llama_token_is_eog(llama_get_model(callback_data.ctx), tokens[n_tokens-1]); -} - -// Function matching type llama_beam_search_callback_fn_t. -// Custom callback example is called each time the beams lengths increase: -// * Show progress by printing ',' following by number of convergent beam tokens if any. -// * When all beams converge to a common prefix, they are made available in beams_state.beams[0]. -// This is also called when the stop condition is met. -// Collect tokens into std::vector response which is pointed to by callback_data. -static void beam_search_callback(void * callback_data_ptr, llama_beams_state beams_state) { - auto& callback_data = *static_cast(callback_data_ptr); - // Mark beams as EOS as needed. - for (size_t i = 0 ; i < beams_state.n_beams ; ++i) { - llama_beam_view& beam_view = beams_state.beam_views[i]; - if (!beam_view.eob && is_at_eob(callback_data, beam_view.tokens, beam_view.n_tokens)) { - beam_view.eob = true; - } - } - printf(","); // Show progress - if (const size_t n = beams_state.common_prefix_length) { - callback_data.response.resize(callback_data.response.size() + n); - assert(0u < beams_state.n_beams); - const llama_token * tokens = beams_state.beam_views[0].tokens; - std::copy(tokens, tokens + n, callback_data.response.end() - n); - printf("%zu", n); - } - fflush(stdout); -#if 1 // DEBUG: print current beams for this iteration - std::cout << "\n\nCurrent beams (last_call=" << beams_state.last_call << "):\n"; - for (size_t i = 0 ; i < beams_state.n_beams ; ++i) { - std::cout << "beams["< 3 ) - { - params.prompt = argv[3]; - } - - if ( params.prompt.empty() ) - { - params.prompt = "### Request:\nHow many countries are there?\n\n### Response:\n"; - } - - //--------------------------------- - // Init LLM : - //--------------------------------- - - llama_backend_init(); - llama_numa_init(params.numa); - - llama_model * model; - llama_context * ctx; - - std::tie(model, ctx) = llama_init_from_gpt_params( params ); - - if ( model == NULL ) - { - fprintf( stderr , "%s: error: unable to load model\n" , __func__ ); - return 1; - } - - //--------------------------------- - // Tokenize the prompt : - //--------------------------------- - - std::vector tokens_list = llama_tokenize(ctx, params.prompt, true); - - const size_t max_context_size = llama_n_ctx( ctx ); - const size_t max_tokens_list_size = max_context_size - 4 ; - - if (tokens_list.size() > max_tokens_list_size) - { - fprintf( stderr , "%s: error: prompt too long (%zu tokens, max %zu)\n" , - __func__ , tokens_list.size() , max_tokens_list_size ); - return 1; - } - - fprintf( stderr, "\n\n" ); - - // Print the tokens from the prompt : - - for( auto id : tokens_list ) - { - std::cout << llama_token_to_piece(ctx, id); - } - std::cout << std::flush; - - int n_past = 0; - - if (llama_decode(ctx, llama_batch_get_one(tokens_list.data(), tokens_list.size(), n_past, 0))) - { - fprintf(stderr, "%s : failed to eval prompt.\n" , __func__ ); - return 1; - } - n_past += tokens_list.size(); - - beam_search_callback_data callback_data{ctx, {}}; - size_t const beam_width = static_cast(params.n_beams); - int const n_predict = 256; - llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict); - - std::cout << "\n\n"; - for (llama_token const token_id : callback_data.response) { - std::cout << llama_token_to_piece(ctx,token_id); - } - std::cout << std::endl; - - llama_free( ctx ); - llama_free_model( model ); - - llama_backend_free(); - - return 0; -} diff --git a/examples/benchmark/CMakeLists.txt b/examples/benchmark/CMakeLists.txt index 2bb47bab5..34a58cc02 100644 --- a/examples/benchmark/CMakeLists.txt +++ b/examples/benchmark/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET benchmark) +set(TARGET llama-bench-matmult) add_executable(${TARGET} benchmark-matmult.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE llama build_info ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/chat-13B.sh b/examples/chat-13B.sh index 35c089d57..1828903c3 100755 --- a/examples/chat-13B.sh +++ b/examples/chat-13B.sh @@ -30,7 +30,7 @@ sed -e "s/\[\[USER_NAME\]\]/$USER_NAME/g" \ $PROMPT_TEMPLATE > $PROMPT_FILE # shellcheck disable=SC2086 # Intended splitting of GEN_OPTIONS -./main $GEN_OPTIONS \ +./llama-cli $GEN_OPTIONS \ --model "$MODEL" \ --threads "$N_THREAD" \ --n_predict "$N_PREDICTS" \ diff --git a/examples/chat-persistent.sh b/examples/chat-persistent.sh index 22f5b83d3..d9cab9836 100755 --- a/examples/chat-persistent.sh +++ b/examples/chat-persistent.sh @@ -62,7 +62,7 @@ fi if [[ ! -e "$PROMPT_CACHE_FILE" ]]; then echo 'Prompt cache does not exist, building...' # Default batch_size to 64 here for better user feedback during initial prompt processing - ./main 2>>"$LOG" \ + ./llama-cli 2>>"$LOG" \ --batch_size 64 \ "${OPTS[@]}" \ --prompt-cache "$PROMPT_CACHE_FILE" \ @@ -109,13 +109,13 @@ while read -e line; do printf '%s: ' "$AI_NAME" >>"$CUR_PROMPT_FILE" - ./main 2>>"$LOG" "${OPTS[@]}" \ + ./llama-cli 2>>"$LOG" "${OPTS[@]}" \ --prompt-cache "$CUR_PROMPT_CACHE" \ --prompt-cache-all \ --file "$CUR_PROMPT_FILE" \ --reverse-prompt "${USER_NAME}:" \ --n_predict "$n_predict" | - skip_bytes 1 | # skip BOS token added by ./main + skip_bytes 1 | # skip BOS token added by ./llama-cli tee "$CUR_PROMPT_FILE.tmp" | # save prompt + generation to tmp file skip_bytes "$n_prompt_len_pre" # print generation @@ -133,7 +133,7 @@ while read -e line; do # TODO get both messages in one go if ! session_size_msg="$(tail -n30 "$LOG" | grep -oE "$SESSION_SIZE_MSG_PATTERN")" || ! sample_time_msg="$(tail -n10 "$LOG" | grep -oE "$SAMPLE_TIME_MSG_PATTERN")"; then - echo >&2 "Couldn't get number of tokens from ./main output!" + echo >&2 "Couldn't get number of tokens from ./llama-cli output!" exit 1 fi @@ -144,7 +144,7 @@ while read -e line; do fi # Update cache for next prompt in background, ideally during user input - ./main >>"$LOG_BG" 2>&1 "${OPTS[@]}" \ + ./llama-cli >>"$LOG_BG" 2>&1 "${OPTS[@]}" \ --prompt-cache "$NEXT_PROMPT_CACHE" \ --file "$NEXT_PROMPT_FILE" \ --n_predict 1 & diff --git a/examples/chat-vicuna.sh b/examples/chat-vicuna.sh index 8c7b7bef4..ffdd20084 100755 --- a/examples/chat-vicuna.sh +++ b/examples/chat-vicuna.sh @@ -30,7 +30,7 @@ sed -e "s/\[\[USER_NAME\]\]/$USER_NAME/g" \ $PROMPT_TEMPLATE > $PROMPT_FILE # shellcheck disable=SC2086 # Intended splitting of GEN_OPTIONS -./bin/main $GEN_OPTIONS \ +./bin/llama-cli $GEN_OPTIONS \ --model "$MODEL" \ --threads "$N_THREAD" \ --n_predict "$N_PREDICTS" \ diff --git a/examples/chat.sh b/examples/chat.sh index d567acecd..9f85d1e26 100755 --- a/examples/chat.sh +++ b/examples/chat.sh @@ -11,6 +11,6 @@ cd .. # # "--keep 48" is based on the contents of prompts/chat-with-bob.txt # -./main -m ./models/llama-7b/ggml-model-q4_0.gguf -c 512 -b 1024 -n 256 --keep 48 \ +./llama-cli -m ./models/llama-7b/ggml-model-q4_0.gguf -c 512 -b 1024 -n 256 --keep 48 \ --repeat_penalty 1.0 --color -i \ -r "User:" -f prompts/chat-with-bob.txt diff --git a/examples/convert-legacy-llama.py b/examples/convert-legacy-llama.py index fd8401015..721a57c00 100755 --- a/examples/convert-legacy-llama.py +++ b/examples/convert-legacy-llama.py @@ -176,7 +176,7 @@ class Params: rope_scaling_type: gguf.RopeScalingType | None = None f_rope_freq_base: float | None = None f_rope_scale: float | None = None - n_orig_ctx: int | None = None + n_ctx_orig: int | None = None rope_finetuned: bool | None = None ftype: GGMLFileType | None = None @@ -226,7 +226,7 @@ class Params: with open(config_path) as f: config = json.load(f) - rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None + rope_scaling_type = f_rope_scale = n_ctx_orig = rope_finetuned = None rope_scaling = config.get("rope_scaling") if rope_scaling is not None and (typ := rope_scaling.get("type")): @@ -236,7 +236,7 @@ class Params: rope_scaling_type = gguf.RopeScalingType.LINEAR elif typ == "yarn": rope_scaling_type = gguf.RopeScalingType.YARN - n_orig_ctx = rope_scaling['original_max_position_embeddings'] + n_ctx_orig = rope_scaling['original_max_position_embeddings'] rope_finetuned = rope_scaling['finetuned'] else: raise NotImplementedError(f'Unknown rope scaling type: {typ}') @@ -272,7 +272,7 @@ class Params: f_rope_freq_base = config.get("rope_theta"), rope_scaling_type = rope_scaling_type, f_rope_scale = f_rope_scale, - n_orig_ctx = n_orig_ctx, + n_ctx_orig = n_ctx_orig, rope_finetuned = rope_finetuned, ) @@ -864,8 +864,8 @@ class OutputFile: self.gguf.add_rope_scaling_type(params.rope_scaling_type) self.gguf.add_rope_scaling_factor(params.f_rope_scale) - if params.n_orig_ctx is not None: - self.gguf.add_rope_scaling_orig_ctx_len(params.n_orig_ctx) + if params.n_ctx_orig is not None: + self.gguf.add_rope_scaling_orig_ctx_len(params.n_ctx_orig) if params.rope_finetuned is not None: self.gguf.add_rope_scaling_finetuned(params.rope_finetuned) diff --git a/examples/convert-llama2c-to-ggml/CMakeLists.txt b/examples/convert-llama2c-to-ggml/CMakeLists.txt index e262d44f9..a6790e617 100644 --- a/examples/convert-llama2c-to-ggml/CMakeLists.txt +++ b/examples/convert-llama2c-to-ggml/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET convert-llama2c-to-ggml) +set(TARGET llama-convert-llama2c-to-ggml) add_executable(${TARGET} convert-llama2c-to-ggml.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/convert-llama2c-to-ggml/README.md b/examples/convert-llama2c-to-ggml/README.md index 742dcf7a3..5774ac83c 100644 --- a/examples/convert-llama2c-to-ggml/README.md +++ b/examples/convert-llama2c-to-ggml/README.md @@ -8,7 +8,7 @@ To convert the model first download the models from the [llama2.c](https://githu After successful compilation, following usage options are available: ``` -usage: ./convert-llama2c-to-ggml [options] +usage: ./llama-convert-llama2c-to-ggml [options] options: -h, --help show this help message and exit @@ -19,10 +19,10 @@ options: An example command using a model from [karpathy/tinyllamas](https://huggingface.co/karpathy/tinyllamas) is as follows: -`$ ./convert-llama2c-to-ggml --copy-vocab-from-model llama-2-7b-chat.gguf.q2_K.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.gguf.bin` +`$ ./llama-convert-llama2c-to-ggml --copy-vocab-from-model llama-2-7b-chat.gguf.q2_K.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.gguf.bin` Note: The vocabulary for `stories260K.bin` should be its own tokenizer `tok512.bin` found in [karpathy/tinyllamas/stories260K](https://huggingface.co/karpathy/tinyllamas/tree/main/stories260K). Now you can use the model with a command like: -`$ ./main -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256` +`$ ./llama-cli -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256` diff --git a/examples/beam-search/CMakeLists.txt b/examples/cvector-generator/CMakeLists.txt similarity index 64% rename from examples/beam-search/CMakeLists.txt rename to examples/cvector-generator/CMakeLists.txt index f0e37468b..0a559d60c 100644 --- a/examples/beam-search/CMakeLists.txt +++ b/examples/cvector-generator/CMakeLists.txt @@ -1,5 +1,5 @@ -set(TARGET beam-search) -add_executable(${TARGET} beam-search.cpp) +set(TARGET llama-cvector-generator) +add_executable(${TARGET} cvector-generator.cpp pca.hpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_11) diff --git a/examples/cvector-generator/README.md b/examples/cvector-generator/README.md new file mode 100644 index 000000000..5182e906d --- /dev/null +++ b/examples/cvector-generator/README.md @@ -0,0 +1,34 @@ +# cvector-generator + +This example demonstrates how to generate a control vector using gguf models. + +Related PRs: +- [Add support for control vectors](https://github.com/ggerganov/llama.cpp/pull/5970) +- (Issue) [Generate control vector using llama.cpp](https://github.com/ggerganov/llama.cpp/issues/6880) +- [Add cvector-generator example](https://github.com/ggerganov/llama.cpp/pull/7514) + +## Examples + +```sh +# CPU only +./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf + +# With GPU +./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99 + +# With advanced options +./cvector-generator -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99 --completions 128 --pca-iter 2000 --pca-batch 100 + +# To see help message +./cvector-generator -h +# Then, have a look at "cvector" section +``` + +## Tips and tricks + +If you have multiple lines per prompt, you can escape the newline character (change it to `\n`). For example: + +``` +<|im_start|>system\nAct like a person who is extremely happy.<|im_end|> +<|im_start|>system\nYou are in a very good mood today<|im_end|> +``` diff --git a/examples/cvector-generator/completions.txt b/examples/cvector-generator/completions.txt new file mode 100644 index 000000000..abc45ffd8 --- /dev/null +++ b/examples/cvector-generator/completions.txt @@ -0,0 +1,582 @@ + +That game +I can see +Hmm, this +I can relate to +Who is +I understand the +Ugh, +What the hell was +Hey, did anyone +Although +Thank you for choosing +What are you +Oh w +How dare you open +It was my pleasure +I'm hon +I appreciate that you +Are you k +Whoever left this +It's always +Ew, +Hey, I l +Hello? Is someone +I understand that +That poem +Aww, poor +Hey, it +Alright, who +I didn't +Well, life +The document +Oh no, this +I'm concerned +Hello, this is +This art +Hmm, this drink +Hi there! +It seems +Is +Good +I can't +Ex +Who are +I can see that +Wow, +Today is a +Hey friend +Sometimes friends +Oh, this old +The weather outside +This place is sur +I appreciate your input +Thank you for the +Look at +I'm disappoint +To my +How dare you +That's an +This piece of art +Eww +This park is +This is incredible +Oh no, someone +Exc +Well, it' +I warned +Hey, I understand +Hey, I saw +How dare you go +What the he +Hey +It's +Hello? Hello? +It +Oh no! +This is the perfect +Good morning, +Oh no, there +It's so +Yeah +Uh, +Hello everyone +Who turned off +The weather +Who' +Hey, this +Wait, +Eww, gross +Excuse +It seems like you +Thank you so +What happened? +Oh my g +I am deeply sad +I war +Okay, let' +Hey, that +That was a beautiful +Oh no! That +What happened +Hey there +The artist' +What?! +Hey, it' +I am disappoint +It seems like +Oh no! The +This park is a +If you +Yes! I did +It sounds +What +Who is it +Hmm, that +That's strange +Yeah, that was +That's interesting +This park +What the hell +Who is that +I feel like my +Oh well +What the hell is +Hello? Hello +To my dearest +Bless you!\" +Thank you for +Oh, looks like +Can you please +This place is +Eww, what +Bless you +Is everything +Hey, I just +Whoever left these +Well, that' +I feel +Hey, do you +It's sad +Oh no, it +Hey, that' +Oh my god, +Thank you, +Hello little one, +I apolog +Hey team, I +How dare you read +Who is this and +Whoever left +Hi there! W +A +If you have +I was +U +Bless +Well, this +Oh, I' +It's a +Eww, +Is everything okay? +Oh, I +Hello, can you +Al +That was a great +What are +I understand that not +Oh no, not +Who is it?\" +Hey, can we +Whoever is taking +I would love to +Hey, I noticed +Hey, could +I understand that there +Hello? +D +Oh man, I +Thank you so much +Oh no, my +Dear [Name +Uh +I remember +Hey, who +Well, it +Are you +I understand that it +Hey, is +I would +Who is this +Excuse me +Alright +I am thrilled +Sometimes friends have +Who the +It's interesting +I would love +E +Hello? Is anyone +Well, this is +This place +Well, +I warned you +Hey, watch where +Oh my +That' +Sometimes friends have different +I understand that everyone +What? +What do these notes +I can relate +I'm not +I understand +To my dear +Guys +Well +Hey, I appreciate +Wow, what +Dear +That melody +Who the hell +Today is +Hello little +Wow, look +That's great +Love is never wrong +I'm having +Whoa, did +Ugh +Can you please provide +I miss you, +I feel uncom +I know +Ugh, this +Hey, watch +Oh great, a +I didn +Okay +That game of char +Oh +I appreciate +Who's there +I am so +Oh great, someone +Hey, could you +I remember wondering +Wait, what? +What do +Hello? Can +Hey there, +That game of +This is incred +Oh my gosh +Oh great, f +I appreciate your +It sounds like +What the heck +Okay, I understand +Ew +I understand that this +Uh, hi +Hi everyone! +What the hell? +Thank you for your +Oh no, the +Wow, I +Who turned +Dear [ +Whoever +This is a +Whoa, he +What in the world +Although the physical +Hello, who is +That's amaz +Hey, I know +Okay, that +Hi everyone +Hey, is everything +I understand your fr +Oh no, poor +Oh, look +Good morning +Ew, gross +Oh no, did +Look at the family +Hey team +Yes! +Hey, can I +Okay, that' +It's great +Love is +Hey, what +Good morning, world +Who is it? +That poem really reson +I +That's +I understand the task +Gu +Hello? Who' +This postcard is +Whoa, +Oh, that +I understand that I +Whoever is +Hello? Who is +I'm really +Wow, this +Can +This artwork really +This is a shame +I miss you too +Who are you? +Today is a difficult +Hey, just +Are you okay +I am +Hi, +Wow, that +Hey there! Can +Okay, stay +Oh great, just +Yeah, +Hello? Can you +Oh, looks +Thank you for sharing +I'm glad +Hey, is that +Hmm +It was my +It sounds like you +Wow, your +I was promised certain +That was such a +Thank +Excuse you +That was +Hey team, +I feel un +It was +What' +Hey friend, I +How +Saying goodbye +That +It's heart +How dare +Oh, +Hello, may +What's this +Thank you for recogn +Aww, that +Oh, I remember +Hmm, that' +I miss +I know this +Wait +Is everything okay +Who is that person +Wow, you +Oh great +I'm sad +Wow, the +I am very disappoint +Who turned off the +I understand that things +I'm very +Hi +That's very +Okay, I +Oh no, +Wow, there +What's wrong +I apologize for +Hey, I +Can I help you +Oh, I didn +Alright, +Oh wow, +Oh my goodness +I know this event +What in the +Saying +Yeah, that +Guys, I +Hey, this v +This post +Are +Hey, can +Hello? Is +I can only imagine +Oh, that sounds +Hey, is anyone +I am disappointed +Hello, +Hey everyone, I +That was such +It's okay +The artist +Whoa +I understand that mistakes +Can I help +Who +Hi everyone! I +Hey, can you +Wow, how +Today +Oh no, I +Oh well, I +Well, that +This is the +Yes! I finally +Hey there little +Hello everyone! +Love is never +Look at the +This postcard +Oh great, +Can I +Hmm, this is +I understand your +Oh, look at +B +I'm so +Whoa, this +W +Oh, this +Sometimes +This piece of +What the +That was a +Hey, do +Oh no +Whoa, what +I feel like I +The documentary +Hello +Hello little one +I understand that my +Eww, that +Wow, an +Yes! Finally, +Although the physical location +Whoever is watching +That movie +I remember wondering about +Hey there, little +Who's +Hello, who +Hello everyone! Thank +Hello, can +That's too +Hey, just wanted +Hey there, I +Saying good +Hey there! +Who is there? +Oh my good +I am very +Oh no, what +Wow, thank +I was promised +Hi, is +Hey, I' +Guys, the +Oh no, that +Who is there +Hello, this +That movie really touched +If you have something +The documentary was +I'm starting +Are you kidd +That movie really +Hey everyone, +Thank you for considering +I didn' +Yes! I +Can you +Oh my god +Hey, whoever +That melody really +Thank you, little +Hello, may I +Look +Wow, we +It looks +What do these +Oh wow +I apologize +What are you all +It's such +It's clear +Hey, I was +Hey friend, +I can only +The weather outside is +Eww, this +I miss you +Wow +Aww, +Hi, is there +This artwork +Okay, +Oh well, +This +I' +Say +Hey there little gu +Hmm, +Whoa, who +I am thr +Oh man +Okay, stay calm +I'm happy +Oh, this cur +Oh man, +I'm sorry +Hello? Who +What?! That +This piece +Hey everyone +That's so +Are you okay? +What happened? Where +Hi there +The +Who the hell entered +I can +Guys, +What's +What in +It's important +I'm +I'm coming +It' +Yes! Finally +Wait, what +Wow, reading +I'm surprised +Hey, did +Hey, +Okay, let +I understand that you +Who the hell threw +Eww, who +Thank you for thinking +Who is this?\" +I am deeply +Thank you for including +Oh no, an +It looks like you +Aww +I'm confused +Wow, it +That poem really +Yes +Hey there, is +Hey, what' +Thank you for remember +To +This is +Thank you for making +I can' +That mel +Wow, they +I feel like +Although the +Who are you +Love +If +What the hell are +I am so sad +Oh, I found +Thank you +It looks like +Well, life is +I appreciate that +The artist's +Whoa, that +It's never \ No newline at end of file diff --git a/examples/cvector-generator/cvector-generator.cpp b/examples/cvector-generator/cvector-generator.cpp new file mode 100644 index 000000000..355905cb0 --- /dev/null +++ b/examples/cvector-generator/cvector-generator.cpp @@ -0,0 +1,499 @@ +#include "common.h" +#include "llama.h" +#include "ggml.h" +#include "pca.hpp" + +#ifdef GGML_USE_CUDA +#include "ggml-cuda.h" +#endif + +#ifdef GGML_USE_METAL +#include "ggml-metal.h" +#endif + +#include +#include +#include +#include +#include +#include +#include +#include + + +////////////////////////////////////////////////// +// utils + +template +static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) { + std::string ret; + for (; begin != end; ++begin) { + ret += llama_token_to_piece(ctx, *begin); + } + + return ret; +} + +static void print_usage(int argc, char ** argv, const gpt_params & params) { + gpt_params_print_usage(argc, argv, params); + + printf("\nexample usage:\n"); + printf("\n CPU only: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf\n", argv[0]); + printf("\n with GPU: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99\n", argv[0]); + printf("\n advanced: %s -m ./dolphin-2.0-mistral-7b.Q4_K_M.gguf -ngl 99 --completions 128 --pca-iter 2000 --pca-batch 100\n", argv[0]); + printf("\n"); +} + +////////////////////////////////////////////////// + + +// cb_eval is reused for each pair of positive - negative prompt +struct callback_data { + ggml_context * ctx_ggml = nullptr; // holds v_pos, v_neg, v_diff_filtered + + int n_layers = 0; + int n_tokens = 0; + bool is_eval_pos = true; + + // each element of the vector correspond to one layer + std::vector v_pos; // vector of matrices of size [n_embd, n_tokens] + std::vector v_neg; // vector of matrices of size [n_embd, n_tokens] + std::vector v_diff_filtered; // vector of matrices of size [n_embd, n_nonzero_rows]. NOTE: n_nonzero_rows maybe different for each layer + + // save a tensor into either v_pos or v_neg (decided by is_eval_pos) + void save_tensor_for_layer(struct ggml_tensor * t) { + GGML_ASSERT(t->type == GGML_TYPE_F32); + + if (ctx_ggml == nullptr) { + // alloc a new ctx_ggml if needed + struct ggml_init_params params_ggml = { + /*.mem_size =*/ ggml_tensor_overhead() * n_layers * 3u, + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + ctx_ggml = ggml_init(params_ggml); + } + + // copy tensor data + auto n_bytes = ggml_nbytes(t); + struct ggml_tensor * t_layer = ggml_new_tensor_2d(ctx_ggml, t->type, t->ne[0], t->ne[1]); + t_layer->data = malloc(n_bytes); // TODO @ngxson : get rid of this malloc somehow + ggml_backend_tensor_get(t, t_layer->data, 0, n_bytes); + ggml_set_name(t_layer, ggml_get_name(t)); + //print_debug_tensor(t_layer); + + if (is_eval_pos) { + v_pos.push_back(t_layer); + } else { + v_neg.push_back(t_layer); + } + } + + // calculate diff (v_pos - v_neg) and place the result back to v_pos + // all zero rows in the diff tensor will also be removed + // NOTE: final layer is ignored. we only have (n_layers - 1) to process + std::vector calc_diff() { + for (float il = 0; il < v_pos.size(); il++) { + float * a = (float *) v_pos[il]->data; + float * b = (float *) v_neg[il]->data; + size_t n_elem = ggml_nelements(v_pos[il]); + for (size_t j = 0; j < n_elem; j++) { + a[j] -= b[j]; + } + //print_debug_tensor(v_pos[i]); + auto diff_filtered = filter_nonzero_rows(v_pos[il]); + v_diff_filtered.push_back(diff_filtered); + } + return v_diff_filtered; // for convinient, we return the result std::vector + } + + // delete zero rows from a given 2D tensor + struct ggml_tensor * filter_nonzero_rows(struct ggml_tensor * a) { + //printf("filter_nonzero_rows\n"); + auto is_row_all_zeros = [](struct ggml_tensor * t, int row, float eps) -> bool { + // check if given row containing all zero elements + int n_cols = t->ne[0]; // hint: should be equal to n_embd + for (int col = 0; col < n_cols; ++col) { + if (ggml_get_f32_nd(t, col, row, 0, 0) > eps) { + return false; + } + } + return true; + }; + std::vector rows_to_copy; // the idx of non-zero cols (to be copied to row of diff_filtered) + for (int i_row = 0; i_row < a->ne[1]; i_row++) { + if (!is_row_all_zeros(a, i_row, 1e-6)) { + rows_to_copy.push_back(i_row); + } + } + + // get "n_nonzero_rows" for the output "diff_filtered" + int n_nonzero_rows = rows_to_copy.size(); + //printf("n_nonzero_rows: %d\n", n_nonzero_rows); + int n_embd = a->ne[0]; + GGML_ASSERT(n_nonzero_rows > 0); + + // diff_filtered: [n_embd, n_nonzero_rows] + struct ggml_tensor * diff_filtered = ggml_new_tensor_2d( + ctx_ggml, GGML_TYPE_F32, n_embd, n_nonzero_rows); + ggml_format_name(diff_filtered, "diff_filtered_%s", a->name); + diff_filtered->data = malloc(ggml_nbytes(diff_filtered)); + + // copy non-zero rows + for (int dest_row = 0; dest_row < n_nonzero_rows; dest_row++) { + int src_row = rows_to_copy[dest_row]; + for (int i = 0; i < n_embd; i++) { + float src_elem = ggml_get_f32_nd(a, i, src_row, 0, 0); + ggml_set_f32_nd(diff_filtered, i, dest_row, 0, 0, src_elem); + } + } + + //print_debug_tensor(diff_filtered); + + return diff_filtered; + } + + // we don't implement destructor, because we want to reuse callback_data. we just want to free the tensors + void reset() { + for (auto ptr : v_pos) free(ptr->data); + for (auto ptr : v_neg) free(ptr->data); + for (auto ptr : v_diff_filtered) free(ptr->data); + v_pos.clear(); + v_neg.clear(); + v_diff_filtered.clear(); + if (ctx_ggml) { + ggml_free(ctx_ggml); + } + ctx_ggml = nullptr; + } +}; + +/** + * process_ctx is used to store the ggml context for pre-post processing the diff vectors + * in short, input => v_diff and output => v_final + */ +struct train_context { + ggml_context * ctx_ggml; + int n_embd; + int n_layers; + + /* pair of prompts to be used for generating final vector */ + std::vector positive_entries; + std::vector negative_entries; + + // each element of the vector correspond to one layer + // NOTE: the last layer is discard. therefore, we will have (n_layers - 1) elements here + // NOTE (2): v_diff is transposed from v_diff_tmp + std::vector v_diff; // vector of matrices of size [m, n_embd] where m ~ n_tokens * n_completions (v_diff contains no zero-rows) + std::vector v_final; // vector of vectors of size [n_embd] to be written to file + + // to easily re-alloc when concat v_diff, we temporary store v_diff in a vector instead of a tensor + // v_diff_tmp will get converted unto v_diff later on + std::vector> v_diff_tmp; + + train_context(int n_embd_, int n_layers_) { + n_embd = n_embd_; + n_layers = n_layers_; + struct ggml_init_params params_ggml = { + /*.mem_size =*/ ggml_tensor_overhead() * (n_layers - 1) * 2u, + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + ctx_ggml = ggml_init(params_ggml); + for (int il = 0; il < n_layers - 1; il++) { + std::vector empty; + v_diff_tmp.push_back(empty); + auto t = ggml_new_tensor_1d(ctx_ggml, GGML_TYPE_F32, n_embd); + t->data = malloc(ggml_nbytes(t)); // TODO: get rid of malloc if possible + v_final.push_back(t); + } + } + + // add new rows into existing tensor in v_diff_tmp + void concat_diff_tmp(const std::vector & diff_filtered) { + GGML_ASSERT((int) diff_filtered.size() == n_layers - 1); + for (int il = 0; il < n_layers - 1; il++) { + auto t = diff_filtered[il]; + auto & diff_tmp = v_diff_tmp[il]; + size_t curr_size = diff_tmp.size(); + diff_tmp.resize(curr_size + ggml_nbytes(t)); + memcpy(diff_tmp.data() + curr_size, t->data, ggml_nbytes(t)); + } + } + + // build the v_diff tensors from v_diff_tmp (v_diff need to be transposed) + // TODO @ngxson : maybe add option NOT to transpose v_diff; will be useful for "mean" method + void build_v_diff() { + printf("build_v_diff\n"); + for (int il = 0; il < n_layers - 1; il++) { + auto & diff_tmp = v_diff_tmp[il]; + int n_elem = diff_tmp.size() / sizeof(float); + GGML_ASSERT(n_elem % n_embd == 0); + int n_rows = n_elem / n_embd; + struct ggml_tensor * diff = ggml_new_tensor_2d(ctx_ggml, GGML_TYPE_F32, n_rows, n_embd); + ggml_set_name(diff, (std::string("diff_") + std::to_string(il)).c_str()); + // copy data & transpose + diff->data = malloc(ggml_nbytes(diff)); // TODO: get rid of this malloc if possible + float * arr = (float *) diff_tmp.data(); + for (int ir = 0; ir < n_rows; ++ir) { + for (int ic = 0; ic < n_embd; ++ic) { + float f = arr[ir*n_embd + ic]; + ggml_set_f32_nd(diff, ir, ic, 0, 0, f); + } + } + v_diff.push_back(diff); + print_debug_tensor(diff); + // free memory of diff_tmp + diff_tmp.resize(0); + } + } + + ~train_context() { + for (auto ptr : v_final) free(ptr->data); + for (auto ptr : v_diff) free(ptr->data); + // no need to free v_diff_tmp, since we didn't use malloc + ggml_free(ctx_ggml); + } +}; + +struct tokenized_prompt { + std::vector tokens_pos; + std::vector tokens_neg; + size_t max_seq_len; + + tokenized_prompt(llama_context * ctx, std::string pos, std::string neg) { + const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); + tokens_pos = ::llama_tokenize(ctx, pos, add_bos); + tokens_neg = ::llama_tokenize(ctx, neg, add_bos); + max_seq_len = std::max(tokens_pos.size(), tokens_neg.size()); + padding_seq(ctx, tokens_pos, max_seq_len); + padding_seq(ctx, tokens_neg, max_seq_len); + } + + void padding_seq(llama_context * ctx, std::vector & tokens, size_t len) { + // TODO: customize padding token + std::vector pad_tokens = ::llama_tokenize(ctx, " ", false); + llama_token pad_tok = pad_tokens.back(); + while (tokens.size() < len) { + tokens.push_back(pad_tok); + } + } +}; + +////////////////////////////////////////////////// + +template +static std::string to_string(const T & val) { + std::stringstream ss; + ss << val; + return ss.str(); +} + +static std::vector ctrlvec_load_prompt_file(std::string path, bool skip_empty_lines) { + std::vector output; + std::ifstream file(path); + if (!file.is_open()) { + fprintf(stderr, "error: unable to open file: %s\n", path.c_str()); + exit(1); + } + std::string line; + while (std::getline(file, line)) { + bool is_skip = skip_empty_lines && line.empty(); + if (!is_skip) { + string_process_escapes(line); + output.push_back(line); + } + } + file.close(); + return output; +} + +////////////////////////////////////////////////// + +static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) { + auto * cb_data = (callback_data *) user_data; + static const char * l_out_name = "l_out"; + const bool is_l_out = strncmp(t->name, l_out_name, strlen(l_out_name)) == 0; + + if (ask) { + return is_l_out; + } + + if (!is_l_out || t->ne[1] != cb_data->n_tokens) { + return true; + } + + // save the tensor to current context + cb_data->save_tensor_for_layer(t); + return true; +} + +static bool get_hidden_layers(llama_context * ctx, std::vector & tokens) { + llama_kv_cache_clear(ctx); + if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) { + fprintf(stderr, "%s : failed to eval\n", __func__); + return false; + } + return true; +} + +static void export_gguf(const std::vector & v_ctrl, const std::string fname, const std::string model_hint) { + struct gguf_context * ctx = gguf_init_empty(); + + const std::string arch = "controlvector"; + gguf_set_val_str(ctx, "general.architecture", arch.c_str()); + gguf_set_val_str(ctx, (arch + ".model_hint").c_str(), model_hint.c_str()); + gguf_set_val_i32(ctx, (arch + ".layer_count").c_str(), v_ctrl.size()); + + for (size_t i = 0; i < v_ctrl.size(); ++i) { + gguf_add_tensor(ctx, v_ctrl[i]); + print_debug_tensor(v_ctrl[i]); + printf("Added tensor: %s\n", v_ctrl[i]->name); + } + + printf("%s: writing file...\n", __func__); + gguf_write_to_file(ctx, fname.c_str(), false); + printf("%s: wrote file '%s'\n", __func__, fname.c_str()); + gguf_free(ctx); +} + +/** + * Load prompt files and completion file. + * Then format each pair of prompt + completion to make an entry. + */ +static int prepare_entries(gpt_params & params, train_context & ctx_train) { + // load prompts + std::vector positive_prompts = ctrlvec_load_prompt_file(params.cvector_positive_file, true); + std::vector negative_prompts = ctrlvec_load_prompt_file(params.cvector_negative_file, true); + if (positive_prompts.size() != negative_prompts.size()) { + fprintf(stderr, "number of positive and negative prompts must be equal\n"); + return 1; + } + if (positive_prompts.empty()) { + fprintf(stderr, "must provide at least one prompt pair\n"); + return 1; + } + + // create templated prompts + std::vector completions = ctrlvec_load_prompt_file(params.cvector_completions_file, false); + auto format_template = [](std::string persona, std::string suffix) { + // entry in positive/negative.txt must already be formatted i.e. "[INST] Act as if you're extremely happy. [/INST] " + return persona + suffix; + }; + for (size_t i = 0; i < positive_prompts.size(); ++i) { + for (int j = 0; j < std::min((int) completions.size(), params.n_completions); ++j) { + // TODO replicate the truncations done by the python implementation + ctx_train.positive_entries.push_back(format_template(positive_prompts[i], completions[j])); + ctx_train.negative_entries.push_back(format_template(negative_prompts[i], completions[j])); + } + } + return 0; +} + +int main(int argc, char ** argv) { + gpt_params params; + + if (!gpt_params_parse(argc, argv, params)) { + print_usage(argc, argv, params); + return 1; + } + + if (params.n_pca_iterations % params.n_pca_batch != 0) { + fprintf(stderr, "PCA iterations must by multiply of PCA batch size\n"); + return 1; + } + + + callback_data cb_data; + + // pass the callback to the backend scheduler + // it will be executed for each node during the graph computation + params.cb_eval = cb_eval; + params.cb_eval_user_data = &cb_data; + params.warmup = false; + + print_build_info(); + llama_backend_init(); + llama_numa_init(params.numa); + + // load the model to get hparams + llama_model * model; + llama_context * ctx; + std::tie(model, ctx) = llama_init_from_gpt_params(params); + + // int n_ctx = llama_n_ctx(ctx); + int n_layers = llama_n_layer(model); + int n_embd = llama_n_embd(model); + // get model hint param (a.k.a model arch name) + char model_hint[128]; + llama_model_meta_val_str(model, "general.architecture", model_hint, 128); + + // init train_context + train_context ctx_train(n_embd, n_layers); + + // load and prepare entries for training + prepare_entries(params, ctx_train); + + // we have to pretokenize everything because otherwise we don't know how much overhead to allocate ctx_diffs_wrapped + std::vector tokenized_prompts; + size_t n_total_tokens = 0; + for (size_t i = 0; i < ctx_train.positive_entries.size(); ++i) { + tokenized_prompt t(ctx, ctx_train.positive_entries[i], ctx_train.negative_entries[i]); + n_total_tokens += 2 * t.max_seq_len; + tokenized_prompts.push_back(std::move(t)); + } + + std::cout << "n_total_tokens: " << n_total_tokens << std::endl; + + for(size_t i = 0; i < ctx_train.positive_entries.size(); ++i) { + bool success = false; + tokenized_prompt t = tokenized_prompts[i]; + cb_data.n_layers = n_layers; + cb_data.n_tokens = t.max_seq_len; + + printf("Evaluating prompt[%d/%d]: \"%s\" - \"%s\" (%d tokens)\n", + (int) i+1, (int) ctx_train.positive_entries.size(), + tokens_to_str(ctx, t.tokens_pos.cbegin(), t.tokens_pos.cend()).c_str(), + tokens_to_str(ctx, t.tokens_neg.cbegin(), t.tokens_neg.cend()).c_str(), + (int) t.max_seq_len); + + cb_data.is_eval_pos = true; + success = get_hidden_layers(ctx, t.tokens_pos); + if (!success) break; + + cb_data.is_eval_pos = false; + success = get_hidden_layers(ctx, t.tokens_neg); + if (!success) break; + + // calculate diff and remove all zero rows + auto v_diff_filtered = cb_data.calc_diff(); + + // save & concat the filtered v_diff to ctx_train + ctx_train.concat_diff_tmp(v_diff_filtered); + + // reset for next iteration + cb_data.reset(); + } + + // done with the model, we can now free it to make gain some memory + printf("Done evaluate prompts, unload model...\n"); + llama_free(ctx); + llama_free_model(model); + + // prepare ctx_train for PCA + ctx_train.build_v_diff(); + + // run PCA + PCA::pca_params pca_params; + pca_params.n_threads = params.n_threads; + pca_params.n_batch = params.n_pca_batch; + pca_params.n_iterations = params.n_pca_iterations; + PCA::run_pca(pca_params, ctx_train.v_diff, ctx_train.v_final); + + // write output vectors to gguf + export_gguf(ctx_train.v_final, params.cvector_outfile, model_hint); + + llama_backend_free(); + + return 0; +} diff --git a/examples/cvector-generator/negative.txt b/examples/cvector-generator/negative.txt new file mode 100644 index 000000000..3e9951752 --- /dev/null +++ b/examples/cvector-generator/negative.txt @@ -0,0 +1 @@ +[INST] Act like a person who is extremely sad. [/INST] diff --git a/examples/cvector-generator/pca.hpp b/examples/cvector-generator/pca.hpp new file mode 100644 index 000000000..36eadaac2 --- /dev/null +++ b/examples/cvector-generator/pca.hpp @@ -0,0 +1,322 @@ +#include "common.h" +#include "llama.h" +#include "ggml.h" + +#ifdef GGML_USE_CUDA +#include "ggml-cuda.h" +#endif + +#ifdef GGML_USE_METAL +#include "ggml-metal.h" +#endif + +#include +#include +#include +#include +#include +#include +#include +#include + +#define DEBUG_POS 5 + +static void print_debug_tensor(struct ggml_tensor * t, bool with_data = true) { + printf("%s: %s (%s): [%d, %d]\n", __func__, t->name, ggml_type_name(t->type), (int) t->ne[0], (int) t->ne[1]); + if (!with_data) return; + printf("%s: %s[0] = [", __func__, t->name); + for (size_t i = 0; i <= DEBUG_POS; i++) { + printf(" %f,", ggml_get_f32_nd(t, i, 0, 0, 0)); + } + printf(" ... ]\n"); +} + +namespace PCA { + +// input params for PCA computations +struct pca_params { + int n_threads = 1; + int n_batch = 20; // number of iterations do to in one batch. larger the batch, more memory is used + int n_iterations = 1000; + float tolerance = 1e-7; + + // for debugging + int i_layer = 0; + int n_layers = 0; +}; + +// result from each iteration +struct pca_result { + struct ggml_tensor * calculated_square = NULL; + std::vector eigenvectors; + std::vector distances; +}; + +struct pca_model { + ggml_backend_t backend = NULL; + ggml_backend_buffer_t buffer; + struct ggml_context * ctx; // context to compute graph on target device + struct ggml_context * ctx_host; // host context to store results + + // tensors on target device + struct ggml_tensor * dev_input; + struct ggml_tensor * dev_square; + struct ggml_tensor * dev_eigenvector; + + pca_model(struct ggml_tensor * t_input) { +#ifdef GGML_USE_CUDA + fprintf(stderr, "%s: using CUDA backend\n", __func__); + backend = ggml_backend_cuda_init(0); // init device 0 + if (!backend) { + fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__); + } +#endif + +// TODO: enable Metal support when support for GGML_OP_SQRT is added +// #ifdef GGML_USE_METAL +// fprintf(stderr, "%s: using Metal backend\n", __func__); +// backend = ggml_backend_metal_init(); +// if (!backend) { +// fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__); +// } +// #endif + + // if there aren't GPU Backends fallback to CPU backend + if (!backend) { + backend = ggml_backend_cpu_init(); + } + + const int num_tensors = 4; + struct ggml_init_params params { + /*.mem_size =*/ ggml_tensor_overhead() * num_tensors, + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + ctx = ggml_init(params); + + auto n_samples = t_input->ne[0]; + auto n_embd = t_input->ne[1]; + + dev_input = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_samples, n_embd); + dev_square = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); + dev_eigenvector = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); + + ggml_set_name(dev_input, "dev_input"); + ggml_set_name(dev_square, "dev_square"); + ggml_set_name(dev_eigenvector, "dev_eigenvector"); + buffer = ggml_backend_alloc_ctx_tensors(ctx, backend); + ggml_backend_tensor_set(dev_input, t_input->data, 0, ggml_nbytes(t_input)); + + // initialize eigenvector to random normalized vector + { + std::vector random_vec(ggml_nelements(dev_eigenvector), 0.0); + std::default_random_engine generator(static_cast(std::time(0))); + std::uniform_real_distribution distribution(0.0, 1.0); + float sum_sqr = 0.0; // for normalizing random_vec + for (size_t i = 0; i < random_vec.size(); ++i) { + float f = distribution(generator); + sum_sqr += f * f; + random_vec[i] = f; + } + // normalize it + float random_vec_norm = std::sqrt(sum_sqr); + for (size_t i = 0; i < random_vec.size(); ++i) { + random_vec[i] /= random_vec_norm; + } + ggml_backend_tensor_set(dev_eigenvector, random_vec.data(), 0, ggml_nbytes(dev_eigenvector)); + } + } + + ~pca_model() { + ggml_free(ctx); + ggml_backend_buffer_free(buffer); + ggml_backend_free(backend); + } +}; + +static struct ggml_cgraph * build_graph_piter( + const struct pca_params & params, + const pca_model & model, + bool calc_square = false) { + GGML_ASSERT(params.n_batch > 0); + // TODO: buf_size must be able to scale with params.n_batch + static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(); + static std::vector buf(buf_size); + + struct ggml_init_params params0 = { + /*.mem_size =*/ buf_size, + /*.mem_buffer =*/ buf.data(), + /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph() + }; + // create a temporally context to build the graph + struct ggml_context * ctx0 = ggml_init(params0); + struct ggml_cgraph * gf = ggml_new_graph(ctx0); + + // turn v_diff_original into square matrix if needed + struct ggml_tensor * tmp_square; + if (calc_square) { + tmp_square = ggml_mul_mat(ctx0, model.dev_input, model.dev_input); + ggml_set_name(tmp_square, "tmp_square"); + } + + struct ggml_tensor * b_tensor; + struct ggml_tensor * distance; + struct ggml_tensor * old_eigen = model.dev_eigenvector; + struct ggml_tensor * input_square = calc_square ? tmp_square : model.dev_square; + + for (int i = 0; i < params.n_batch; ++i) { + // b_tensor = square * eigenvector^T + b_tensor = ggml_mul_mat(ctx0, input_square, old_eigen); + ggml_set_name(b_tensor, "b_tensor"); + + // normalize + b_tensor = ggml_div_inplace(ctx0, + b_tensor, + ggml_sqrt_inplace(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, b_tensor))) + ); + ggml_format_name(b_tensor, "b_tensor_norm_%d", i); + + // calculate distance(new eigenvector - old eigenvector) + // we don't use ggml_sub because it may not be implemented on GPU backend + struct ggml_tensor * new_sub_old = ggml_add(ctx0, old_eigen, ggml_scale(ctx0, b_tensor, -1)); + distance = ggml_sqrt_inplace(ctx0, + ggml_sum_rows(ctx0, ggml_sqr_inplace(ctx0, new_sub_old))); + ggml_format_name(distance, "distance_%d", i); + + old_eigen = b_tensor; + + // build operations nodes + ggml_build_forward_expand(gf, distance); + } + + // delete the temporally context used to build the graph + ggml_free(ctx0); + return gf; +} + +static ggml_status compute_piter( + const struct pca_params & params, + const pca_model & model, + struct ggml_cgraph * gf, + ggml_gallocr_t allocr, + struct pca_result & result) { + // allocate tensors + ggml_gallocr_alloc_graph(allocr, gf); + + if (ggml_backend_is_cpu(model.backend)) { + ggml_backend_cpu_set_n_threads(model.backend, params.n_threads); + } + +// TODO: enable GPU support when support for GGML_OP_SQRT is added +//#ifdef GGML_USE_METAL +// if (ggml_backend_is_metal(model.backend)) { +// ggml_backend_metal_set_n_cb(model.backend, params.n_threads); +// } +//#endif + + ggml_status res = ggml_backend_graph_compute(model.backend, gf); + if (res == GGML_STATUS_SUCCESS) { + auto extract_i = [](std::string prefix, std::string str) -> int { + int i = -1; + if (str.rfind(prefix, 0) == 0) { + sscanf(str.c_str(), (prefix + "%d").c_str(), &i); + } + return i; + }; + result.calculated_square = NULL; + result.eigenvectors.clear(); + result.distances.clear(); + result.eigenvectors.resize(params.n_batch); + result.distances.resize(params.n_batch); + // get output nodes + for (int i = 0; i < gf->n_nodes; ++i) { + auto node = gf->nodes[i]; + int iter = -1; + // find b_tensor (without copying data from device) + if ((iter = extract_i("b_tensor_norm_", node->name)) > -1) { + result.eigenvectors[iter] = node; + } + // find distances, then copy data from device + if ((iter = extract_i("distance_", node->name)) > -1) { + float d; + ggml_backend_tensor_get(node, &d, 0, sizeof(float)); + result.distances[iter] = d; + // std::cout << node->name << " = " << d << "\n"; + } + // find tmp_square if it exists (without copying data from device) + if (std::string(node->name) == "tmp_square") { + result.calculated_square = node; + } + } + } + return res; +} + +static void power_iteration( + const struct pca_params & params, + struct ggml_tensor * input, // shape of input: [n_samples, n_embd] + struct ggml_tensor * output) { + //printf("in power iteration\n"); + struct pca_model model(input); + + ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend)); + struct pca_result result; + struct ggml_tensor * last_eigenvector = NULL; + + int n_iters = params.n_iterations / params.n_batch; // more batch, fewer iterations + for (int iter = 0; iter < n_iters; ++iter) { + bool calc_square = (iter == 0); // only need to calculate square for first iteration + struct ggml_cgraph * gf = build_graph_piter(params, model, calc_square); + // ggml_graph_dump_dot(gf, nullptr, "/tmp/_cgraph.dot"); + compute_piter(params, model, gf, allocr, result); + + for (size_t k = 0; k < result.distances.size(); ++k) { + last_eigenvector = result.eigenvectors[k]; + if (result.distances[k] < params.tolerance) { + break; // done + } + } + + if (calc_square) { + // copy and store the square matrix if needed + GGML_ASSERT(result.calculated_square != NULL); + ggml_backend_tensor_copy(result.calculated_square, model.dev_square); + } + + { + // copy last eigen vector and store as input for next iteration + GGML_ASSERT(last_eigenvector != NULL); + ggml_backend_tensor_copy(last_eigenvector, model.dev_eigenvector); + } + + printf("%s: layer %d/%d, iteration: %d / total: %d (batch = %d) ...\n", + __func__, params.i_layer+1, params.n_layers, iter, n_iters, params.n_batch); + } + + // get output tensor + GGML_ASSERT(last_eigenvector); + ggml_backend_tensor_get(last_eigenvector, output->data, 0, ggml_nbytes(last_eigenvector)); + //print_debug_tensor(output); + ggml_gallocr_free(allocr); +} + +static void run_pca( + struct pca_params & params, + const std::vector & v_input, // shape of v_input[0]: [n_samples, n_embd] + const std::vector & v_output) { + printf("%s: Running PCA...\n", __func__); + for (size_t il = 0; il < v_input.size(); ++il) { + + // prepare output vector + struct ggml_tensor * ctrl_out = v_output[il]; + ggml_format_name(ctrl_out, "direction.%ld", il+1); + + // run power_iteration + params.i_layer = il; + params.n_layers = v_input.size(); + power_iteration(params, v_input[il], ctrl_out); + printf("%s: Done layer %d / %d\n", __func__, (int) il+1, (int) v_input.size()); + } +} + +} diff --git a/examples/cvector-generator/positive.txt b/examples/cvector-generator/positive.txt new file mode 100644 index 000000000..880236787 --- /dev/null +++ b/examples/cvector-generator/positive.txt @@ -0,0 +1 @@ +[INST] Act like a person who is extremely happy. [/INST] diff --git a/examples/embedding/CMakeLists.txt b/examples/embedding/CMakeLists.txt index 8ffc33868..8256e789a 100644 --- a/examples/embedding/CMakeLists.txt +++ b/examples/embedding/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET embedding) +set(TARGET llama-embedding) add_executable(${TARGET} embedding.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/embedding/README.md b/examples/embedding/README.md index 6929454c5..2298ec3e7 100644 --- a/examples/embedding/README.md +++ b/examples/embedding/README.md @@ -9,13 +9,13 @@ To get started right away, run the following command, making sure to use the cor ### Unix-based systems (Linux, macOS, etc.): ```bash -./embedding -m ./path/to/model --log-disable -p "Hello World!" 2>/dev/null +./llama-embedding -m ./path/to/model --log-disable -p "Hello World!" 2>/dev/null ``` ### Windows: ```powershell -embedding.exe -m ./path/to/model --log-disable -p "Hello World!" 2>$null +llama-embedding.exe -m ./path/to/model --log-disable -p "Hello World!" 2>$null ``` The above command will output space-separated float values. diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp index 004399b5f..b4b73c017 100644 --- a/examples/embedding/embedding.cpp +++ b/examples/embedding/embedding.cpp @@ -17,9 +17,10 @@ static std::vector split_lines(const std::string & s) { return lines; } -static void batch_add_seq(llama_batch & batch, const std::vector & tokens, int seq_id) { - for (size_t i = 0; i < tokens.size(); i++) { - llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1); +static void batch_add_seq(llama_batch & batch, const std::vector & tokens, llama_seq_id seq_id) { + size_t n_tokens = tokens.size(); + for (size_t i = 0; i < n_tokens; i++) { + llama_batch_add(batch, tokens[i], i, { seq_id }, true); } } @@ -40,13 +41,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu // try to get sequence embeddings - supported only when pooling_type is not NONE const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); - if (embd == NULL) { - embd = llama_get_embeddings_ith(ctx, i); - if (embd == NULL) { - fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i); - continue; - } - } + GGML_ASSERT(embd != NULL && "failed to get sequence embeddings"); float * out = output + batch.seq_id[i][0] * n_embd; //TODO: I would also add a parameter here to enable normalization or not. @@ -63,6 +58,7 @@ int main(int argc, char ** argv) { gpt_params params; if (!gpt_params_parse(argc, argv, params)) { + gpt_params_print_usage(argc, argv, params); return 1; } @@ -79,9 +75,6 @@ int main(int argc, char ** argv) { fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); std::mt19937 rng(params.seed); - if (params.random_prompt) { - params.prompt = string_random_prompt(rng); - } llama_backend_init(); llama_numa_init(params.numa); @@ -99,6 +92,12 @@ int main(int argc, char ** argv) { const int n_ctx_train = llama_n_ctx_train(model); const int n_ctx = llama_n_ctx(ctx); + const enum llama_pooling_type pooling_type = llama_pooling_type(ctx); + if (pooling_type == LLAMA_POOLING_TYPE_NONE) { + fprintf(stderr, "%s: error: pooling type NONE not supported\n", __func__); + return 1; + } + if (n_ctx > n_ctx_train) { fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx); diff --git a/examples/eval-callback/CMakeLists.txt b/examples/eval-callback/CMakeLists.txt index c56ba780b..a48753d38 100644 --- a/examples/eval-callback/CMakeLists.txt +++ b/examples/eval-callback/CMakeLists.txt @@ -1,9 +1,9 @@ -set(TARGET eval-callback) +set(TARGET llama-eval-callback) add_executable(${TARGET} eval-callback.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_11) set(TEST_TARGET test-eval-callback) -add_test(NAME ${TEST_TARGET} COMMAND eval-callback --hf-repo ggml-org/models --hf-file tinyllamas/stories260K.gguf --model stories260K.gguf --prompt hello --seed 42 -ngl 0) +add_test(NAME ${TEST_TARGET} COMMAND llama-eval-callback --hf-repo ggml-org/models --hf-file tinyllamas/stories260K.gguf --model stories260K.gguf --prompt hello --seed 42 -ngl 0) set_property(TEST ${TEST_TARGET} PROPERTY LABELS eval-callback curl) diff --git a/examples/eval-callback/README.md b/examples/eval-callback/README.md index 66a37e878..63a57ad6b 100644 --- a/examples/eval-callback/README.md +++ b/examples/eval-callback/README.md @@ -6,7 +6,7 @@ It simply prints to the console all operations and tensor data. Usage: ```shell -eval-callback \ +llama-eval-callback \ --hf-repo ggml-org/models \ --hf-file phi-2/ggml-model-q4_0.gguf \ --model phi-2-q4_0.gguf \ diff --git a/examples/eval-callback/eval-callback.cpp b/examples/eval-callback/eval-callback.cpp index 51d67d6d9..64cd338c2 100644 --- a/examples/eval-callback/eval-callback.cpp +++ b/examples/eval-callback/eval-callback.cpp @@ -140,20 +140,18 @@ static bool run(llama_context * ctx, const gpt_params & params) { } int main(int argc, char ** argv) { - callback_data cb_data; gpt_params params; + if (!gpt_params_parse(argc, argv, params)) { + gpt_params_print_usage(argc, argv, params); return 1; } print_build_info(); std::mt19937 rng(params.seed); - if (params.random_prompt) { - params.prompt = string_random_prompt(rng); - } llama_backend_init(); llama_numa_init(params.numa); diff --git a/examples/export-lora/CMakeLists.txt b/examples/export-lora/CMakeLists.txt index cbbdaec67..1cef6e716 100644 --- a/examples/export-lora/CMakeLists.txt +++ b/examples/export-lora/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET export-lora) +set(TARGET llama-export-lora) add_executable(${TARGET} export-lora.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/export-lora/README.md b/examples/export-lora/README.md index 0cf3e8e45..1fb17feec 100644 --- a/examples/export-lora/README.md +++ b/examples/export-lora/README.md @@ -3,7 +3,7 @@ Apply LORA adapters to base model and export the resulting model. ``` -usage: export-lora [options] +usage: llama-export-lora [options] options: -h, --help show this help message and exit @@ -17,7 +17,7 @@ options: For example: ```bash -./bin/export-lora \ +./bin/llama-export-lora \ -m open-llama-3b-v2-q8_0.gguf \ -o open-llama-3b-v2-q8_0-english2tokipona-chat.gguf \ -l lora-open-llama-3b-v2-q8_0-english2tokipona-chat-LATEST.bin diff --git a/examples/finetune/CMakeLists.txt b/examples/finetune/CMakeLists.txt index 2b52d21cf..64afe6ddc 100644 --- a/examples/finetune/CMakeLists.txt +++ b/examples/finetune/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET finetune) +set(TARGET llama-finetune) add_executable(${TARGET} finetune.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/finetune/README.md b/examples/finetune/README.md index 2fafd505e..a6ae64983 100644 --- a/examples/finetune/README.md +++ b/examples/finetune/README.md @@ -7,7 +7,7 @@ Basic usage instructions: wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt # finetune LORA adapter -./bin/finetune \ +./bin/llama-finetune \ --model-base open-llama-3b-v2-q8_0.gguf \ --checkpoint-in chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf \ --checkpoint-out chk-lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.gguf \ @@ -18,7 +18,7 @@ wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/s --use-checkpointing # predict -./bin/main -m open-llama-3b-v2-q8_0.gguf --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin +./bin/llama-cli -m open-llama-3b-v2-q8_0.gguf --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin ``` **Only llama based models are supported!** The output files will be saved every N iterations (config with `--save-every N`). @@ -38,14 +38,14 @@ After 10 more iterations: Checkpoint files (`--checkpoint-in FN`, `--checkpoint-out FN`) store the training process. When the input checkpoint file does not exist, it will begin finetuning a new randomly initialized adapter. llama.cpp compatible LORA adapters will be saved with filename specified by `--lora-out FN`. -These LORA adapters can then be used by `main` together with the base model, like in the 'predict' example command above. +These LORA adapters can then be used by `llama-cli` together with the base model, like in the 'predict' example command above. -In `main` you can also load multiple LORA adapters, which will then be mixed together. +In `llama-cli` you can also load multiple LORA adapters, which will then be mixed together. For example if you have two LORA adapters `lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin` and `lora-open-llama-3b-v2-q8_0-bible-LATEST.bin`, you can mix them together like this: ```bash -./bin/main -m open-llama-3b-v2-q8_0.gguf \ +./bin/llama-cli -m open-llama-3b-v2-q8_0.gguf \ --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin \ --lora lora-open-llama-3b-v2-q8_0-bible-LATEST.bin ``` @@ -55,7 +55,7 @@ You can change how strong each LORA adapter is applied to the base model by usin For example to apply 40% of the 'shakespeare' LORA adapter, 80% of the 'bible' LORA adapter and 100% of yet another one: ```bash -./bin/main -m open-llama-3b-v2-q8_0.gguf \ +./bin/llama-cli -m open-llama-3b-v2-q8_0.gguf \ --lora-scaled lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin 0.4 \ --lora-scaled lora-open-llama-3b-v2-q8_0-bible-LATEST.bin 0.8 \ --lora lora-open-llama-3b-v2-q8_0-yet-another-one-LATEST.bin diff --git a/examples/finetune/finetune.cpp b/examples/finetune/finetune.cpp index 22425730f..71a4333ee 100644 --- a/examples/finetune/finetune.cpp +++ b/examples/finetune/finetune.cpp @@ -564,7 +564,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs( const int rope_mode = 0; return ggml_rope_ext(ctx, - t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx, 0, + t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f ); }; diff --git a/examples/finetune/finetune.sh b/examples/finetune/finetune.sh index 079bfa113..d7f2165e5 100644 --- a/examples/finetune/finetune.sh +++ b/examples/finetune/finetune.sh @@ -2,7 +2,7 @@ cd `dirname $0` cd ../.. -EXE="./finetune" +EXE="./llama-finetune" if [[ ! $LLAMA_MODEL_DIR ]]; then LLAMA_MODEL_DIR="./models"; fi if [[ ! $LLAMA_TRAINING_DIR ]]; then LLAMA_TRAINING_DIR="."; fi diff --git a/examples/gbnf-validator/CMakeLists.txt b/examples/gbnf-validator/CMakeLists.txt index 166e3ad2a..4edd6ec73 100644 --- a/examples/gbnf-validator/CMakeLists.txt +++ b/examples/gbnf-validator/CMakeLists.txt @@ -1,5 +1,5 @@ -set(TARGET gbnf-validator) +set(TARGET llama-gbnf-validator) add_executable(${TARGET} gbnf-validator.cpp) install(TARGETS ${TARGET} RUNTIME) -target_link_libraries(${TARGET} PRIVATE common grammar-parser llama ${CMAKE_THREAD_LIBS_INIT}) +target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_11) diff --git a/examples/gbnf-validator/gbnf-validator.cpp b/examples/gbnf-validator/gbnf-validator.cpp index 091069ffa..0406dc339 100644 --- a/examples/gbnf-validator/gbnf-validator.cpp +++ b/examples/gbnf-validator/gbnf-validator.cpp @@ -7,6 +7,8 @@ #include #include +#include +#include #include #include @@ -69,13 +71,14 @@ int main(int argc, char** argv) { return 1; } - fseek(grammar_file, 0, SEEK_END); - size_t grammar_size = ftell(grammar_file); - fseek(grammar_file, 0, SEEK_SET); - - std::string grammar_str(grammar_size, ' '); - fread(&grammar_str[0], 1, grammar_size, grammar_file); - fclose(grammar_file); + std::string grammar_str; + { + std::ifstream grammar_file(grammar_filename); + GGML_ASSERT(grammar_file.is_open() && "Failed to open grammar file"); + std::stringstream buffer; + buffer << grammar_file.rdbuf(); + grammar_str = buffer.str(); + } // Parse the GBNF grammar auto parsed_grammar = grammar_parser::parse(grammar_str.c_str()); @@ -100,20 +103,15 @@ int main(int argc, char** argv) { grammar_rules.size(), parsed_grammar.symbol_ids.at("root")); // Read the input file - FILE* input_file = fopen(input_filename.c_str(), "r"); - if (!input_file) { - fprintf(stdout, "Failed to open input file: %s\n", input_filename.c_str()); - return 1; + std::string input_str; + { + std::ifstream input_file(input_filename); + GGML_ASSERT(input_file.is_open() && "Failed to open input file"); + std::stringstream buffer; + buffer << input_file.rdbuf(); + input_str = buffer.str(); } - fseek(input_file, 0, SEEK_END); - size_t input_size = ftell(input_file); - fseek(input_file, 0, SEEK_SET); - - std::string input_str(input_size, ' '); - fread(&input_str[0], 1, input_size, input_file); - fclose(input_file); - // Validate the input string against the grammar size_t error_pos; std::string error_msg; diff --git a/examples/gguf-split/CMakeLists.txt b/examples/gguf-split/CMakeLists.txt index 828e62435..f63887da7 100644 --- a/examples/gguf-split/CMakeLists.txt +++ b/examples/gguf-split/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET gguf-split) +set(TARGET llama-gguf-split) add_executable(${TARGET} gguf-split.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/gguf-split/gguf-split.cpp b/examples/gguf-split/gguf-split.cpp index e04feeae3..881f0451c 100644 --- a/examples/gguf-split/gguf-split.cpp +++ b/examples/gguf-split/gguf-split.cpp @@ -61,10 +61,10 @@ static size_t split_str_to_n_bytes(std::string str) { int n; if (str.back() == 'M') { sscanf(str.c_str(), "%d", &n); - n_bytes = (size_t)n * 1024 * 1024; // megabytes + n_bytes = (size_t)n * 1000 * 1000; // megabytes } else if (str.back() == 'G') { sscanf(str.c_str(), "%d", &n); - n_bytes = (size_t)n * 1024 * 1024 * 1024; // gigabytes + n_bytes = (size_t)n * 1000 * 1000 * 1000; // gigabytes } else { throw std::invalid_argument("error: supported units are M (megabytes) or G (gigabytes), but got: " + std::string(1, str.back())); } @@ -284,7 +284,7 @@ struct split_strategy { struct ggml_tensor * t = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_out, i)); total_size += ggml_nbytes(t); } - total_size = total_size / 1024 / 1024; // convert to megabytes + total_size = total_size / 1000 / 1000; // convert to megabytes printf("split %05d: n_tensors = %d, total_size = %ldM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size); i_split++; } diff --git a/examples/gguf-split/tests.sh b/examples/gguf-split/tests.sh index 7ca6fa7f2..d5a92d605 100755 --- a/examples/gguf-split/tests.sh +++ b/examples/gguf-split/tests.sh @@ -18,8 +18,8 @@ fi set -x -SPLIT=$1/gguf-split -MAIN=$1/main +SPLIT=$1/llama-gguf-split +MAIN=$1/llama-cli WORK_PATH=$TMP_DIR/gguf-split ROOT_DIR=$(realpath $(dirname $0)/../../) @@ -41,7 +41,7 @@ echo PASS echo # 2b. Test the sharded model is loading properly -$MAIN --model $WORK_PATH/ggml-model-split-00001-of-00006.gguf --random-prompt --n-predict 32 +$MAIN --model $WORK_PATH/ggml-model-split-00001-of-00006.gguf --n-predict 32 echo PASS echo @@ -51,7 +51,7 @@ echo PASS echo # 3b. Test the merged model is loading properly -$MAIN --model $WORK_PATH/ggml-model-merge.gguf --random-prompt --n-predict 32 +$MAIN --model $WORK_PATH/ggml-model-merge.gguf --n-predict 32 echo PASS echo @@ -61,7 +61,7 @@ echo PASS echo # 4b. Test the sharded model is loading properly -$MAIN --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00007.gguf --random-prompt --n-predict 32 +$MAIN --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00007.gguf --n-predict 32 echo PASS echo @@ -71,7 +71,7 @@ echo #echo # 5b. Test the merged model is loading properly -#$MAIN --model $WORK_PATH/ggml-model-merge-2.gguf --random-prompt --n-predict 32 +#$MAIN --model $WORK_PATH/ggml-model-merge-2.gguf --n-predict 32 #echo PASS #echo @@ -81,7 +81,7 @@ echo PASS echo # 6b. Test the sharded model is loading properly -$MAIN --model $WORK_PATH/ggml-model-split-2G-00001-of-00002.gguf --random-prompt --n-predict 32 +$MAIN --model $WORK_PATH/ggml-model-split-2G-00001-of-00002.gguf --n-predict 32 echo PASS echo diff --git a/examples/gguf/CMakeLists.txt b/examples/gguf/CMakeLists.txt index 6481f087b..a9569b411 100644 --- a/examples/gguf/CMakeLists.txt +++ b/examples/gguf/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET gguf) +set(TARGET llama-gguf) add_executable(${TARGET} gguf.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE ggml ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/gpt4all.sh b/examples/gpt4all.sh deleted file mode 100755 index 5fd739e55..000000000 --- a/examples/gpt4all.sh +++ /dev/null @@ -1,15 +0,0 @@ -#!/bin/bash - -# -# Temporary script - will be removed in the future -# - -cd `dirname $0` -cd .. - -./main --color --instruct --threads 4 \ - --model ./models/gpt4all-7B/gpt4all-lora-quantized.bin \ - --file ./prompts/alpaca.txt \ - --batch_size 8 --ctx_size 2048 -n -1 \ - --repeat_last_n 64 --repeat_penalty 1.3 \ - --n_predict 128 --temp 0.1 --top_k 40 --top_p 0.95 diff --git a/examples/gritlm/CMakeLists.txt b/examples/gritlm/CMakeLists.txt index ac4a5ae79..86dfddca3 100644 --- a/examples/gritlm/CMakeLists.txt +++ b/examples/gritlm/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET gritlm) +set(TARGET llama-gritlm) add_executable(${TARGET} gritlm.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/gritlm/README.md b/examples/gritlm/README.md index a3a3c1389..786ba5736 100644 --- a/examples/gritlm/README.md +++ b/examples/gritlm/README.md @@ -26,7 +26,7 @@ $ scripts/hf.sh --repo cohesionet/GritLM-7B_gguf --file gritlm-7b_q4_1.gguf --ou Run the example using the downloaded model: ```console -$ ./gritlm -m models/gritlm-7b_q4_1.gguf +$ ./llama-gritlm -m models/gritlm-7b_q4_1.gguf Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "A purely peer-to-peer version of electronic cash w" is: 0.605 Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "All text-based language problems can be reduced to" is: 0.103 diff --git a/examples/gritlm/gritlm.cpp b/examples/gritlm/gritlm.cpp index 52fd719b3..2c61c2e1e 100644 --- a/examples/gritlm/gritlm.cpp +++ b/examples/gritlm/gritlm.cpp @@ -44,6 +44,7 @@ static std::vector> encode(llama_context * ctx, const std::ve // clear previous kv_cache values (irrelevant for embeddings) llama_kv_cache_clear(ctx); + llama_set_embeddings(ctx, true); llama_set_causal_attn(ctx, false); // run model @@ -98,7 +99,9 @@ static std::string generate(llama_context * ctx, const std::string & prompt, boo llama_token eos_token = llama_token_eos(mdl); llama_kv_cache_clear(ctx); + llama_set_embeddings(ctx, false); llama_set_causal_attn(ctx, true); + llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1); std::vector inputs = llama_tokenize(mdl, prompt, false, true); @@ -153,7 +156,9 @@ static std::string gritlm_instruction(const std::string & instruction) { int main(int argc, char * argv[]) { gpt_params params; + if (!gpt_params_parse(argc, argv, params)) { + gpt_params_print_usage(argc, argv, params); return 1; } @@ -164,8 +169,7 @@ int main(int argc, char * argv[]) { llama_model * mdl = llama_load_model_from_file(params.model.c_str(), mparams); - // create new context - set to embedding mode - cparams.embeddings = true; + // create generation context llama_context * ctx = llama_new_context_with_model(mdl, cparams); // ### Embedding/Representation ### diff --git a/examples/imatrix/CMakeLists.txt b/examples/imatrix/CMakeLists.txt index d688a1620..d4c8265bd 100644 --- a/examples/imatrix/CMakeLists.txt +++ b/examples/imatrix/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET imatrix) +set(TARGET llama-imatrix) add_executable(${TARGET} imatrix.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/imatrix/README.md b/examples/imatrix/README.md index 458c01b87..38b36ee5a 100644 --- a/examples/imatrix/README.md +++ b/examples/imatrix/README.md @@ -6,16 +6,19 @@ More information is available here: https://github.com/ggerganov/llama.cpp/pull/ ## Usage ``` -./imatrix -m -f [-o ] [--verbosity ] - [-ofreq num_chunks] [-ow <0 or 1>] [other common params] +./llama-imatrix \ + -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] [--verbosity 1] \ + [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \ + [--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...] ``` Here `-m` with a model name and `-f` with a file containing training data (such as e.g. `wiki.train.raw`) are mandatory. The parameters in square brackets are optional and have the following meaning: * `-o` (or `--output-file`) specifies the name of the file where the computed data will be stored. If missing `imatrix.dat` is used. * `--verbosity` specifies the verbosity level. If set to `0`, no output other than the perplexity of the processed chunks will be generated. If set to `1`, each time the results are saved a message is written to `stderr`. If `>=2`, a message is output each time data is collected for any tensor. Default verbosity level is `1`. -* `-ofreq` (or `--output-frequency`) specifies how often the so far computed result is saved to disk. Default is 10 (i.e., every 10 chunks) -* `-ow` (or `--output-weight`) specifies if data will be collected for the `output.weight` tensor. My experience is that it is better to not utilize the importance matrix when quantizing `output.weight`, so this is set to `false` by default. +* `--output-frequency` specifies how often the so far computed result is saved to disk. Default is 10 (i.e., every 10 chunks) +* `--save-frequency` specifies how often to save a copy of the imatrix in a separate file. Default is 0 (i.e., never) +* `--process-output` specifies if data will be collected for the `output.weight` tensor. My experience is that it is better to not utilize the importance matrix when quantizing `output.weight`, so this is set to `false` by default. For faster computation, make sure to use GPU offloading via the `-ngl` argument @@ -25,8 +28,8 @@ For faster computation, make sure to use GPU offloading via the `-ngl` argument LLAMA_CUDA=1 make -j # generate importance matrix (imatrix.dat) -./imatrix -m ggml-model-f16.gguf -f train-data.txt -ngl 99 +./llama-imatrix -m ggml-model-f16.gguf -f train-data.txt -ngl 99 # use the imatrix to perform a Q4_K_M quantization -./quantize --imatrix imatrix.dat ggml-model-f16.gguf ./ggml-model-q4_k_m.gguf q4_k_m +./llama-quantize --imatrix imatrix.dat ggml-model-f16.gguf ./ggml-model-q4_k_m.gguf q4_k_m ``` diff --git a/examples/imatrix/imatrix.cpp b/examples/imatrix/imatrix.cpp index 25a2351cc..574f5ed9c 100644 --- a/examples/imatrix/imatrix.cpp +++ b/examples/imatrix/imatrix.cpp @@ -17,39 +17,37 @@ #pragma warning(disable: 4244 4267) // possible loss of data #endif +static void print_usage(int argc, char ** argv, const gpt_params & params) { + gpt_params_print_usage(argc, argv, params); + + LOG_TEE("\nexample usage:\n"); + LOG_TEE("\n %s \\\n" + " -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] [--verbosity 1] \\\n" + " [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \\\n" + " [--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...]\n" , argv[0]); + LOG_TEE("\n"); +} + struct Stats { std::vector values; std::vector counts; int ncall = 0; }; -struct StatParams { - std::string dataset; - std::string ofile = "imatrix.dat"; - int n_output_frequency = 10; - int verbosity = 1; - int keep_every = 0; - bool collect_output_weight = false; -}; - class IMatrixCollector { public: IMatrixCollector() = default; - void set_parameters(StatParams&& params) { m_params = std::move(params); } + void set_params(gpt_params params) { m_params = std::move(params); } bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data); - void save_imatrix() const; - bool load_imatrix(const char * file_name, bool add); - static bool load_imatrix(const char * file_name, std::unordered_map& imatrix); + void save_imatrix(int ncall = -1) const; + bool load_imatrix(const char * file_name); private: std::unordered_map m_stats; - StatParams m_params; + gpt_params m_params; std::mutex m_mutex; int m_last_call = 0; std::vector m_src1_data; std::vector m_ids; // the expert ids from ggml_mul_mat_id - // - void save_imatrix(const char * file_name, const char * dataset) const; - void keep_imatrix(int ncall) const; }; // remove any prefix and suffixes from the name @@ -85,7 +83,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * if (t->op != GGML_OP_MUL_MAT) return false; // why are small batches ignored (<16 tokens)? if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false; - if (!(wname.substr(0, 4) == "blk." || (m_params.collect_output_weight && wname == "output.weight"))) return false; + if (!(wname.substr(0, 4) == "blk." || (m_params.process_output && wname == "output.weight"))) return false; return true; } @@ -153,21 +151,25 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * for (int j = 0; j < (int)src1->ne[0]; ++j) { e.values[e_start + j] += x[j]*x[j]; e.counts[e_start + j]++; + if (!std::isfinite(e.values[e_start + j])) { + fprintf(stderr, "%f detected in %s\n", e.values[e_start + j], wname.c_str()); + exit(1); + } } } } if (e.ncall > m_last_call) { m_last_call = e.ncall; - if (m_last_call % m_params.n_output_frequency == 0) { + if (m_last_call % m_params.n_out_freq == 0) { save_imatrix(); } - if (m_params.keep_every > 0 && m_last_call%m_params.keep_every == 0) { - keep_imatrix(m_last_call); + if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) { + save_imatrix(m_last_call); } } } } else { - auto& e = m_stats[wname]; + auto & e = m_stats[wname]; if (e.values.empty()) { e.values.resize(src1->ne[0], 0); e.counts.resize(src1->ne[0], 0); @@ -185,15 +187,19 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * for (int j = 0; j < (int)src1->ne[0]; ++j) { e.values[j] += x[j]*x[j]; e.counts[j]++; + if (!std::isfinite(e.values[j])) { + fprintf(stderr, "%f detected in %s\n", e.values[j], wname.c_str()); + exit(1); + } } } if (e.ncall > m_last_call) { m_last_call = e.ncall; - if (m_last_call % m_params.n_output_frequency == 0) { + if (m_last_call % m_params.n_out_freq == 0) { save_imatrix(); } - if (m_params.keep_every > 0 && m_last_call%m_params.keep_every == 0) { - keep_imatrix(m_last_call); + if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) { + save_imatrix(m_last_call); } } } @@ -201,33 +207,75 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * return true; } -void IMatrixCollector::save_imatrix() const { - save_imatrix(m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str(), m_params.dataset.c_str()); -} +void IMatrixCollector::save_imatrix(int ncall) const { + auto fname = m_params.out_file; + if (fname.empty()) { + fname = "imatrix.dat"; + } -void IMatrixCollector::keep_imatrix(int ncall) const { - auto file_name = m_params.ofile; - if (file_name.empty()) file_name = "imatrix.dat"; - file_name += ".at_"; - file_name += std::to_string(ncall); - save_imatrix(file_name.c_str(), m_params.dataset.c_str()); -} + if (ncall > 0) { + fname += ".at_"; + fname += std::to_string(ncall); + } + + // avoid writing imatrix entries that do not have full data + // this can happen with MoE models where some of the experts end up not being exercised by the provided training data + + int n_entries = 0; + std::vector to_store; + + bool is_first = true; // for printing + for (const auto & kv : m_stats) { + const int n_all = kv.second.counts.size(); + + if (n_all == 0) { + continue; + } + + int n_zeros = 0; + for (const int c : kv.second.counts) { + if (c == 0) { + n_zeros++; + } + } + + if (n_zeros != 0 && is_first) { + fprintf(stderr, "\n"); + is_first = false; + } + + if (n_zeros == n_all) { + fprintf(stderr, "%s: entry '%40s' has no data - skipping\n", __func__, kv.first.c_str()); + continue; + } + + if (n_zeros > 0) { + fprintf(stderr, "%s: entry '%40s' has partial data (%.2f%%) - skipping\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all); + continue; + } + + n_entries++; + to_store.push_back(kv.first); + } + + if (to_store.size() < m_stats.size()) { + fprintf(stderr, "%s: warning: storing only %zu out of %zu entries\n", __func__, to_store.size(), m_stats.size()); + } -void IMatrixCollector::save_imatrix(const char * fname, const char * dataset) const { std::ofstream out(fname, std::ios::binary); - int n_entries = m_stats.size(); out.write((const char *) &n_entries, sizeof(n_entries)); - for (const auto & p : m_stats) { - int len = p.first.size(); + for (const auto & name : to_store) { + const auto & stat = m_stats.at(name); + int len = name.size(); out.write((const char *) &len, sizeof(len)); - out.write(p.first.c_str(), len); - out.write((const char *) &p.second.ncall, sizeof(p.second.ncall)); - int nval = p.second.values.size(); + out.write(name.c_str(), len); + out.write((const char *) &stat.ncall, sizeof(stat.ncall)); + int nval = stat.values.size(); out.write((const char *) &nval, sizeof(nval)); if (nval > 0) { std::vector tmp(nval); for (int i = 0; i < nval; i++) { - tmp[i] = (p.second.values[i] / static_cast(p.second.counts[i])) * static_cast(p.second.ncall); + tmp[i] = (stat.values[i] / static_cast(stat.counts[i])) * static_cast(stat.ncall); } out.write((const char*)tmp.data(), nval*sizeof(float)); } @@ -236,26 +284,28 @@ void IMatrixCollector::save_imatrix(const char * fname, const char * dataset) co // Write the number of call the matrix was computed with out.write((const char *) &m_last_call, sizeof(m_last_call)); - // Write the dataset name at the end of the file to later on specify it in quantize - int n_dataset = strlen(dataset); - out.write((const char *) &n_dataset, sizeof(n_dataset)); - out.write(dataset, n_dataset); + // Write the input filename at the end of the file to later on specify it in quantize + { + int len = m_params.prompt_file.size(); + out.write((const char *) &len, sizeof(len)); + out.write(m_params.prompt_file.c_str(), len); + } if (m_params.verbosity > 0) { - fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname); + fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname.c_str()); } } -bool IMatrixCollector::load_imatrix(const char * imatrix_file, std::unordered_map& imatrix_data) { - std::ifstream in(imatrix_file, std::ios::binary); +bool IMatrixCollector::load_imatrix(const char * fname) { + std::ifstream in(fname, std::ios::binary); if (!in) { - printf("%s: failed to open %s\n",__func__,imatrix_file); + printf("%s: failed to open %s\n",__func__, fname); return false; } int n_entries; in.read((char*)&n_entries, sizeof(n_entries)); if (in.fail() || n_entries < 1) { - printf("%s: no data in file %s\n", __func__, imatrix_file); + printf("%s: no data in file %s\n", __func__, fname); return false; } for (int i = 0; i < n_entries; ++i) { @@ -263,23 +313,22 @@ bool IMatrixCollector::load_imatrix(const char * imatrix_file, std::unordered_ma std::vector name_as_vec(len+1); in.read((char *)name_as_vec.data(), len); if (in.fail()) { - printf("%s: failed reading name for entry %d from %s\n",__func__,i+1,imatrix_file); + printf("%s: failed reading name for entry %d from %s\n",__func__,i+1, fname); return false; } name_as_vec[len] = 0; std::string name{name_as_vec.data()}; - auto& e = imatrix_data[std::move(name)]; + auto & e = m_stats[std::move(name)]; int ncall; in.read((char*)&ncall, sizeof(ncall)); int nval; in.read((char *)&nval, sizeof(nval)); if (in.fail() || nval < 1) { printf("%s: failed reading number of values for entry %d\n",__func__,i); - imatrix_data = {}; + m_stats = {}; return false; } - // When re-called from load_imatrix() with add set, this will already be created. if (e.values.empty()) { e.values.resize(nval, 0); e.counts.resize(nval, 0); @@ -289,7 +338,7 @@ bool IMatrixCollector::load_imatrix(const char * imatrix_file, std::unordered_ma in.read((char*)tmp.data(), nval*sizeof(float)); if (in.fail()) { printf("%s: failed reading data for entry %d\n",__func__,i); - imatrix_data = {}; + m_stats = {}; return false; } @@ -304,13 +353,6 @@ bool IMatrixCollector::load_imatrix(const char * imatrix_file, std::unordered_ma return true; } -bool IMatrixCollector::load_imatrix(const char * file_name, bool add) { - if (!add) { - m_stats.clear(); - } - return load_imatrix(file_name, m_stats); -} - static IMatrixCollector g_collector; static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) { @@ -324,7 +366,7 @@ struct results_log_softmax { float prob; }; -static std::vector softmax(const std::vector& logits) { +static std::vector softmax(const std::vector & logits) { std::vector probs(logits.size()); float max_logit = logits[0]; for (float v : logits) { @@ -358,8 +400,7 @@ static results_log_softmax log_softmax(int n_vocab, const float * logits, int to static void process_logits( int n_vocab, const float * logits, const int * tokens, int n_token, std::vector & workers, - double & nll, double & nll2, float * logit_history, float * prob_history -) { + double & nll, double & nll2, float * logit_history, float * prob_history) { std::mutex mutex; int counter = 0; auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () { @@ -391,8 +432,7 @@ static void process_logits( } } -static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool compute_ppl, int from_chunk) { - +static bool compute_imatrix(llama_context * ctx, const gpt_params & params) { const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1); const int n_ctx = llama_n_ctx(ctx); @@ -405,13 +445,13 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool auto tim2 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast(tim2-tim1).count()); - if (from_chunk > 0) { - if (size_t((from_chunk + 2)*n_ctx) >= tokens.size()) { - fprintf(stderr, "%s: there will be not enough tokens left after removing %d chunks\n", __func__, from_chunk); + if (params.i_chunk > 0) { + if (size_t((params.i_chunk + 2)*n_ctx) >= tokens.size()) { + fprintf(stderr, "%s: there will be not enough tokens left after removing %d chunks\n", __func__, params.i_chunk); return false; } - fprintf(stderr, "%s: removing initial %d chunks (%d tokens)\n", __func__, from_chunk, from_chunk*n_ctx); - tokens.erase(tokens.begin(), tokens.begin() + from_chunk*n_ctx); + fprintf(stderr, "%s: removing initial %d chunks (%d tokens)\n", __func__, params.i_chunk, params.i_chunk*n_ctx); + tokens.erase(tokens.begin(), tokens.begin() + params.i_chunk*n_ctx); } if (int(tokens.size()) < 2*n_ctx) { @@ -424,7 +464,7 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool std::vector logit_history; std::vector prob_history; - if (compute_ppl) { + if (params.compute_ppl) { logit_history.resize(tokens.size()); prob_history.resize(tokens.size()); } @@ -446,7 +486,7 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool const int num_batches = (n_ctx + n_batch - 1) / n_batch; std::vector logits; - if (compute_ppl && num_batches > 1) { + if (params.compute_ppl && num_batches > 1) { logits.reserve((size_t)n_ctx * n_vocab); } @@ -482,7 +522,7 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool // restore the original token in case it was set to BOS tokens[batch_start] = token_org; - if (compute_ppl && num_batches > 1) { + if (params.compute_ppl && num_batches > 1) { const auto * batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); } @@ -501,7 +541,7 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0); } - if (compute_ppl) { + if (params.compute_ppl) { const int first = n_ctx/2; const auto all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx); process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, @@ -516,7 +556,7 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool } printf("\n"); - if (compute_ppl) { + if (params.compute_ppl) { nll2 /= count; nll /= count; const double ppl = exp(nll); @@ -533,111 +573,32 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool } int main(int argc, char ** argv) { - - StatParams sparams; - std::string prev_result_file; - std::string combine_files; - bool compute_ppl = true; - int from_chunk = 0; - std::vector args; - args.push_back(argv[0]); - int iarg = 1; - for (; iarg < argc-1; ++iarg) { - std::string arg{argv[iarg]}; - if (arg == "-o" || arg == "--output-file") { - sparams.ofile = argv[++iarg]; - } - else if (arg == "-ofreq" || arg == "--output-frequency") { - sparams.n_output_frequency = std::stoi(argv[++iarg]); - } - else if (arg == "-ow" || arg == "--output-weight") { - sparams.collect_output_weight = std::stoi(argv[++iarg]); - } - else if (arg == "--verbosity") { - sparams.verbosity = std::stoi(argv[++iarg]); - } else if (arg == "--no-ppl") { - compute_ppl = false; - } else if (arg == "--keep-imatrix") { - sparams.keep_every = std::stoi(argv[++iarg]); - } else if (arg == "--continue-from") { - prev_result_file = argv[++iarg]; - } else if (arg == "--combine") { - combine_files = argv[++iarg]; - } - else if (arg == "--from-chunk") { - from_chunk = std::stoi(argv[++iarg]); - } else { - args.push_back(argv[iarg]); - } - } - if (iarg < argc) { - std::string arg{argv[iarg]}; - if (arg == "--no-ppl") { - compute_ppl = false; - } else { - args.push_back(argv[iarg]); - } - } - gpt_params params; - params.n_batch = 512; - if (!gpt_params_parse(args.size(), args.data(), params)) { + + params.n_ctx = 512; + params.logits_all = true; + params.verbosity = 1; + + if (!gpt_params_parse(argc, argv, params)) { + print_usage(argc, argv, params); return 1; } - params.logits_all = true; params.n_batch = std::min(params.n_batch, params.n_ctx); - print_build_info(); + g_collector.set_params(params); - if (params.seed == LLAMA_DEFAULT_SEED) { - params.seed = time(NULL); - } - - fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); - - std::mt19937 rng(params.seed); - if (params.random_prompt) { - params.prompt = string_random_prompt(rng); - } - - sparams.dataset = params.prompt_file; - g_collector.set_parameters(std::move(sparams)); - - if (!combine_files.empty()) { - std::vector files; - size_t pos = 0; - while (true) { - auto new_pos = combine_files.find(',', pos); - if (new_pos != std::string::npos) { - files.emplace_back(combine_files.substr(pos, new_pos - pos)); - pos = new_pos + 1; - } else { - files.emplace_back(combine_files.substr(pos)); - break; - } - } - if (files.size() < 2) { - fprintf(stderr, "You must provide at least two comma separated files to use --combine\n"); + for (const auto & in_file : params.in_files) { + printf("%s : loading imatrix from '%s'\n", __func__, in_file.c_str()); + if (!g_collector.load_imatrix(in_file.c_str())) { + fprintf(stderr, "%s : failed to load %s\n", __func__, in_file.c_str()); return 1; } - printf("Combining the following %d files\n", int(files.size())); - for (auto& file : files) { - printf(" %s\n", file.c_str()); - if (!g_collector.load_imatrix(file.c_str(), true)) { - fprintf(stderr, "Failed to load %s\n", file.c_str()); - return 1; - } - } + } + + if (params.in_files.size() > 1) { + printf("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str()); g_collector.save_imatrix(); - return 0; - } - - if (!prev_result_file.empty()) { - if (!g_collector.load_imatrix(prev_result_file.c_str(), false)) { - fprintf(stderr, "=============== Failed to load %s\n", prev_result_file.c_str()); - return 1; - } } llama_backend_init(); @@ -652,6 +613,7 @@ int main(int argc, char ** argv) { // init llama_model * model; llama_context * ctx; + std::tie(model, ctx) = llama_init_from_gpt_params(params); if (model == nullptr || ctx == nullptr) { fprintf(stderr, "%s : failed to init\n", __func__); @@ -670,8 +632,7 @@ int main(int argc, char ** argv) { fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str()); } - bool OK = compute_imatrix(ctx, params, compute_ppl, from_chunk); - if (!OK) { + if (!compute_imatrix(ctx, params)) { return 1; } diff --git a/examples/infill/CMakeLists.txt b/examples/infill/CMakeLists.txt index e4e8028da..9b1aa3b63 100644 --- a/examples/infill/CMakeLists.txt +++ b/examples/infill/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET infill) +set(TARGET llama-infill) add_executable(${TARGET} infill.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/infill/README.md b/examples/infill/README.md index 6b076c839..74f42d2fc 100644 --- a/examples/infill/README.md +++ b/examples/infill/README.md @@ -42,5 +42,5 @@ scripts/hf.sh --repo TheBloke/CodeLlama-13B-GGUF --file codellama-13b.Q5_K_S.ggu ``` ```bash -./infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf -c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 --in-prefix "def helloworld():\n print(\"hell" --in-suffix "\n print(\"goodbye world\")\n " +./llama-infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf -c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 --in-prefix "def helloworld():\n print(\"hell" --in-suffix "\n print(\"goodbye world\")\n " ``` diff --git a/examples/infill/infill.cpp b/examples/infill/infill.cpp index 539f78184..3e82e4a81 100644 --- a/examples/infill/infill.cpp +++ b/examples/infill/infill.cpp @@ -107,6 +107,7 @@ int main(int argc, char ** argv) { g_params = ¶ms; if (!gpt_params_parse(argc, argv, params)) { + gpt_params_print_usage(argc, argv, params); return 1; } @@ -139,27 +140,6 @@ int main(int argc, char ** argv) { LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__); params.n_ctx = 8; } - if (params.instruct) { - printf("\n************\n"); - printf("%s: please use the 'main' tool for instruct mode\n", __func__); - printf("************\n\n"); - - return 0; - } - if (params.chatml) { - printf("\n************\n"); - printf("%s: please use the 'main' tool for chatml mode\n", __func__); - printf("************\n\n"); - - return 0; - } - if (!params.antiprompt.empty()) { - printf("\n************\n"); - printf("%s: please use the 'main' tool for antiprompt mode\n", __func__); - printf("************\n\n"); - - return 0; - } if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) { printf("\n************\n"); printf("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__); @@ -167,20 +147,6 @@ int main(int argc, char ** argv) { return 0; } - if (params.random_prompt) { - printf("\n************\n"); - printf("%s: please use the 'main' tool for random prompt mode\n", __func__); - printf("************\n\n"); - - return 0; - } - if (!params.path_prompt_cache.empty()) { - printf("\n************\n"); - printf("%s: infill does not support prompt caching\n", __func__); - printf("************\n\n"); - - return 0; - } if (params.rope_freq_base != 0.0) { LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base); @@ -207,17 +173,13 @@ int main(int argc, char ** argv) { llama_model * model; llama_context * ctx; - llama_context * ctx_guidance = NULL; + g_model = &model; g_ctx = &ctx; // load the model and apply lora adapter, if any LOG("%s: load the model and apply lora adapter, if any\n", __func__); std::tie(model, ctx) = llama_init_from_gpt_params(params); - if (sparams.cfg_scale > 1.f) { - struct llama_context_params lparams = llama_context_params_from_gpt_params(params); - ctx_guidance = llama_new_context_with_model(model, lparams); - } if (model == NULL) { LOG_TEE("%s: error: unable to load model\n", __func__); @@ -261,7 +223,11 @@ int main(int argc, char ** argv) { inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model)); embd_inp = inp_pfx; embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); - embd_inp.push_back(llama_token_middle(model)); + + const llama_token middle_token = llama_token_middle(model); + if (middle_token >= 0) { + embd_inp.push_back(middle_token); + } LOG("prefix: \"%s\"\n", log_tostr(params.input_prefix)); LOG("suffix: \"%s\"\n", log_tostr(params.input_suffix)); @@ -273,25 +239,6 @@ int main(int argc, char ** argv) { LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str()); } - // Tokenize negative prompt - std::vector guidance_inp; - int guidance_offset = 0; - int original_prompt_len = 0; - if (ctx_guidance) { - LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt)); - - guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, true); - LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str()); - - std::vector original_inp = ::llama_tokenize(ctx, params.prompt, true); - LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str()); - - original_prompt_len = original_inp.size(); - guidance_offset = (int)guidance_inp.size() - original_prompt_len; - LOG("original_prompt_len: %s", log_tostr(original_prompt_len)); - LOG("guidance_offset: %s", log_tostr(guidance_offset)); - } - if ((int) embd_inp.size() > n_ctx - 4) { LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4); return 1; @@ -319,15 +266,6 @@ int main(int argc, char ** argv) { LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str()); } - if (ctx_guidance) { - LOG_TEE("\n"); - LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str()); - LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size()); - for (int i = 0; i < (int) guidance_inp.size(); i++) { - LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str()); - } - } - if (params.n_keep > 0) { LOG_TEE("%s: static prompt based on n_keep: '", __func__); for (int i = 0; i < params.n_keep; i++) { @@ -395,12 +333,11 @@ int main(int argc, char ** argv) { is_interacting = params.interactive_first; } - bool input_echo = true; + bool input_echo = true; - int n_past = 0; - int n_remain = params.n_predict; - int n_consumed = 0; - int n_past_guidance = 0; + int n_past = 0; + int n_remain = params.n_predict; + int n_consumed = 0; std::vector input_tokens; g_input_tokens = &input_tokens; std::vector output_tokens; g_output_tokens = &output_tokens; @@ -410,7 +347,6 @@ int main(int argc, char ** argv) { console::set_display(console::prompt); std::vector embd; - std::vector embd_guidance; struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams); @@ -436,7 +372,7 @@ int main(int argc, char ** argv) { // if we run out of context: // - take the n_keep first tokens from the original prompt (via n_past) // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches - if (n_past + (int) embd.size() + std::max(0, guidance_offset) > n_ctx) { + if (n_past + (int) embd.size() > n_ctx) { if (params.n_predict == -2) { LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict); break; @@ -453,11 +389,7 @@ int main(int argc, char ** argv) { n_past -= n_discard; - if (ctx_guidance) { - n_past_guidance -= n_discard; - } - - LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance); + LOG("after swap: n_past = %d\n", n_past); LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str()); @@ -465,45 +397,6 @@ int main(int argc, char ** argv) { // evaluate tokens in batches // embd is typically prepared beforehand to fit within a batch, but not always - - if (ctx_guidance) { - int input_size = 0; - llama_token * input_buf = NULL; - - if (n_past_guidance < (int) guidance_inp.size()) { - // Guidance context should have the same data with these modifications: - // - // * Replace the initial prompt - // * Shift everything by guidance_offset - embd_guidance = guidance_inp; - if (embd.begin() + original_prompt_len < embd.end()) { - embd_guidance.insert( - embd_guidance.end(), - embd.begin() + original_prompt_len, - embd.end() - ); - } - - input_buf = embd_guidance.data(); - input_size = embd_guidance.size(); - - LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str()); - } else { - input_buf = embd.data(); - input_size = embd.size(); - } - - for (int i = 0; i < input_size; i += params.n_batch) { - int n_eval = std::min(input_size - i, params.n_batch); - if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) { - LOG_TEE("%s : failed to eval\n", __func__); - return 1; - } - - n_past_guidance += n_eval; - } - } - for (int i = 0; i < (int) embd.size(); i += params.n_batch) { int n_eval = (int) embd.size() - i; if (n_eval > params.n_batch) { @@ -525,11 +418,9 @@ int main(int argc, char ** argv) { } embd.clear(); - embd_guidance.clear(); if ((int) embd_inp.size() <= n_consumed && !is_interacting) { - - const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance); + const llama_token id = llama_sampling_sample(ctx_sampling, ctx, nullptr); llama_sampling_accept(ctx_sampling, ctx, id, true); @@ -583,7 +474,6 @@ int main(int argc, char ** argv) { // if not currently processing queued inputs; if ((int) embd_inp.size() <= n_consumed) { - // deal with eot token in infill mode if ((llama_sampling_last(ctx_sampling) == llama_token_eot(model) || is_interacting) && params.interactive){ if (is_interacting && !params.interactive_first) { @@ -642,9 +532,13 @@ int main(int argc, char ** argv) { inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model)); embd_inp = inp_pfx; embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); - embd_inp.push_back(llama_token_middle(model)); + + const llama_token middle_token = llama_token_middle(model); + if (middle_token >= 0) { + embd_inp.push_back(middle_token); + } + embd.clear(); - embd_guidance.clear(); n_remain = params.n_predict; n_past = 0; n_consumed = 0; @@ -751,7 +645,6 @@ int main(int argc, char ** argv) { llama_print_timings(ctx); write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens); - if (ctx_guidance) { llama_free(ctx_guidance); } llama_free(ctx); llama_free_model(model); diff --git a/examples/jeopardy/jeopardy.sh b/examples/jeopardy/jeopardy.sh index 9bdbc755c..07bcb3b8d 100755 --- a/examples/jeopardy/jeopardy.sh +++ b/examples/jeopardy/jeopardy.sh @@ -21,7 +21,7 @@ counter=1 echo 'Running' while IFS= read -r question do - exe_cmd="./main -p "\"$prefix$introduction$nl$prefix$question\"" "$opts" -m ""\"$MODEL\""" >> ""\"$output_file\"" + exe_cmd="./llama-cli -p "\"$prefix$introduction$nl$prefix$question\"" "$opts" -m ""\"$MODEL\""" >> ""\"$output_file\"" echo $counter echo "Current Question: $question" eval "$exe_cmd" diff --git a/examples/json-schema-pydantic-example.py b/examples/json-schema-pydantic-example.py index 69ebfd409..cc64e572b 100644 --- a/examples/json-schema-pydantic-example.py +++ b/examples/json-schema-pydantic-example.py @@ -1,5 +1,5 @@ # Usage: -#! ./server -m some-model.gguf & +#! ./llama-server -m some-model.gguf & #! pip install pydantic #! python json-schema-pydantic-example.py diff --git a/examples/json_schema_to_grammar.py b/examples/json_schema_to_grammar.py index 826cd3f72..b588497b9 100755 --- a/examples/json_schema_to_grammar.py +++ b/examples/json_schema_to_grammar.py @@ -6,52 +6,22 @@ import re import sys from typing import Any, Dict, List, Set, Tuple, Union -def _build_repetition(item_rule, min_items, max_items, separator_rule=None, item_rule_is_literal=False): + +def _build_repetition(item_rule, min_items, max_items, separator_rule=None): + + if min_items == 0 and max_items == 1: + return f'{item_rule}?' + if not separator_rule: - if min_items == 0 and max_items == 1: - return f'{item_rule}?' - elif min_items == 1 and max_items is None: + if min_items == 1 and max_items is None: return f'{item_rule}+' - - result = '' - - if min_items > 0: - if item_rule_is_literal and separator_rule is None: - result = '"' + (item_rule[1:-1] * min_items) + '"' + elif min_items == 0 and max_items is None: + return f'{item_rule}*' else: - result = (f' {separator_rule} ' if separator_rule else ' ').join([item_rule] * min_items) + return f'{item_rule}{{{min_items},{max_items if max_items is not None else ""}}}' - def opt_repetitions(up_to_n, prefix_with_sep=False): - ''' - - n=4, no sep: '(a (a (a (a)?)?)?)?' - - n=4, sep=',', prefix: '("," a ("," a ("," a ("," a)?)?)?)?' - - n=4, sep=',', no prefix: '(a ("," a ("," a ("," a)?)?)?)?' - ''' - - content = f'{separator_rule} {item_rule}' if prefix_with_sep and separator_rule else item_rule - if up_to_n == 0: - return '' - elif up_to_n == 1: - return f'({content})?' - elif separator_rule and not prefix_with_sep: - return f'({content} {opt_repetitions(up_to_n - 1, prefix_with_sep=True)})?' - else: - return (f'({content} ' * up_to_n).rstrip() + (')?' * up_to_n) - - if min_items > 0 and max_items != min_items: - result += ' ' - - if max_items is not None: - result += opt_repetitions(max_items - min_items, prefix_with_sep=min_items > 0) - else: - item_operator = f'({separator_rule + " " if separator_rule else ""}{item_rule})' - - if min_items == 0 and separator_rule: - result = f'({item_rule} {item_operator}*)?' - else: - result += f'{item_operator}*' - - return result + result = item_rule + ' ' + _build_repetition(f'({separator_rule} {item_rule})', min_items - 1 if min_items > 0 else 0, max_items - 1 if max_items is not None else None) + return f'({result})?' if min_items == 0 else result class BuiltinRule: @@ -59,31 +29,28 @@ class BuiltinRule: self.content = content self.deps = deps or [] -_up_to_15_digits = _build_repetition('[0-9]', 0, 15) - -# whitespace is constrained to a single space char to prevent model "running away" in -# whitespace. Also maybe improves generation quality? -SPACE_RULE = '" "?' +# Constraining spaces to prevent model "running away". +SPACE_RULE = '| " " | "\\n" [ \\t]{0,20}' PRIMITIVE_RULES = { 'boolean' : BuiltinRule('("true" | "false") space', []), - 'decimal-part' : BuiltinRule('[0-9] ' + _up_to_15_digits, []), - 'integral-part': BuiltinRule('[0-9] | [1-9] ' + _up_to_15_digits, []), + 'decimal-part' : BuiltinRule('[0-9]{1,16}', []), + 'integral-part': BuiltinRule('[0] | [1-9] [0-9]{0,15}', []), 'number' : BuiltinRule('("-"? integral-part) ("." decimal-part)? ([eE] [-+]? integral-part)? space', ['integral-part', 'decimal-part']), 'integer' : BuiltinRule('("-"? integral-part) space', ['integral-part']), 'value' : BuiltinRule('object | array | string | number | boolean | null', ['object', 'array', 'string', 'number', 'boolean', 'null']), 'object' : BuiltinRule('"{" space ( string ":" space value ("," space string ":" space value)* )? "}" space', ['string', 'value']), 'array' : BuiltinRule('"[" space ( value ("," space value)* )? "]" space', ['value']), - 'uuid' : BuiltinRule(r'"\"" ' + ' "-" '.join('[0-9a-fA-F]' * n for n in [8, 4, 4, 4, 12]) + r' "\"" space', []), - 'char' : BuiltinRule(r'[^"\\] | "\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])', []), + 'uuid' : BuiltinRule(r'"\"" [0-9a-fA-F]{8} "-" [0-9a-fA-F]{4} "-" [0-9a-fA-F]{4} "-" [0-9a-fA-F]{4} "-" [0-9a-fA-F]{12} "\"" space', []), + 'char' : BuiltinRule(r'[^"\\\x7F\x00-\x1F] | [\\] (["\\bfnrt] | "u" [0-9a-fA-F]{4})', []), 'string' : BuiltinRule(r'"\"" char* "\"" space', ['char']), 'null' : BuiltinRule('"null" space', []), } # TODO: support "uri", "email" string formats STRING_FORMAT_RULES = { - 'date' : BuiltinRule('[0-9] [0-9] [0-9] [0-9] "-" ( "0" [1-9] | "1" [0-2] ) "-" ( \"0\" [1-9] | [1-2] [0-9] | "3" [0-1] )', []), - 'time' : BuiltinRule('([01] [0-9] | "2" [0-3]) ":" [0-5] [0-9] ":" [0-5] [0-9] ( "." [0-9] [0-9] [0-9] )? ( "Z" | ( "+" | "-" ) ( [01] [0-9] | "2" [0-3] ) ":" [0-5] [0-9] )', []), + 'date' : BuiltinRule('[0-9]{4} "-" ( "0" [1-9] | "1" [0-2] ) "-" ( \"0\" [1-9] | [1-2] [0-9] | "3" [0-1] )', []), + 'time' : BuiltinRule('([01] [0-9] | "2" [0-3]) ":" [0-5] [0-9] ":" [0-5] [0-9] ( "." [0-9]{3} )? ( "Z" | ( "+" | "-" ) ( [01] [0-9] | "2" [0-3] ) ":" [0-5] [0-9] )', []), 'date-time' : BuiltinRule('date "T" time', ['date', 'time']), 'date-string' : BuiltinRule('"\\"" date "\\"" space', ['date']), 'time-string' : BuiltinRule('"\\"" time "\\"" space', ['time']), @@ -333,7 +300,7 @@ class SchemaConverter: sub_rule_ids[sub] = id sub = id - seq[-1] = (_build_repetition(f'"{sub}"' if sub_is_literal else sub, min_times, max_times, item_rule_is_literal=sub_is_literal), False) + seq[-1] = (_build_repetition(f'"{sub}"' if sub_is_literal else sub, min_times, max_times), False) else: literal = '' while i < length: @@ -556,7 +523,7 @@ class SchemaConverter: def main(args_in = None): parser = argparse.ArgumentParser( description=''' - Generates a grammar (suitable for use in ./main) that produces JSON conforming to a + Generates a grammar (suitable for use in ./llama-cli) that produces JSON conforming to a given JSON schema. Only a subset of JSON schema features are supported; more may be added in the future. ''', diff --git a/examples/llama-bench/README.md b/examples/llama-bench/README.md index 857840564..52b0e74d3 100644 --- a/examples/llama-bench/README.md +++ b/examples/llama-bench/README.md @@ -1,4 +1,4 @@ -# llama.cpp/example/llama-bench +# llama.cpp/examples/llama-bench Performance testing tool for llama.cpp. @@ -162,7 +162,7 @@ $ ./llama-bench -o csv ``` ```csv -build_commit,build_number,cuda,opencl,metal,gpu_blas,blas,cpu_info,gpu_info,model_filename,model_type,model_size,model_n_params,n_batch,n_threads,f16_kv,n_gpu_layers,main_gpu,mul_mat_q,tensor_split,n_prompt,n_gen,test_time,avg_ns,stddev_ns,avg_ts,stddev_ts +build_commit,build_number,cuda,metal,gpu_blas,blas,cpu_info,gpu_info,model_filename,model_type,model_size,model_n_params,n_batch,n_threads,f16_kv,n_gpu_layers,main_gpu,mul_mat_q,tensor_split,n_prompt,n_gen,test_time,avg_ns,stddev_ns,avg_ts,stddev_ts "3469684","1275","1","0","0","1","1","13th Gen Intel(R) Core(TM) i9-13900K","NVIDIA GeForce RTX 3090 Ti","models/7B/ggml-model-q4_0.gguf","llama 7B mostly Q4_0","3825065984","6738415616","512","16","1","99","0","1","0.00","512","0","2023-09-23T12:09:01Z","212155977","732372","2413.341687","8.305961" "3469684","1275","1","0","0","1","1","13th Gen Intel(R) Core(TM) i9-13900K","NVIDIA GeForce RTX 3090 Ti","models/7B/ggml-model-q4_0.gguf","llama 7B mostly Q4_0","3825065984","6738415616","512","16","1","99","0","1","0.00","0","128","2023-09-23T12:09:02Z","969320879","2728399","132.052051","0.371342" ``` @@ -179,7 +179,6 @@ $ ./llama-bench -o json "build_commit": "3469684", "build_number": 1275, "cuda": true, - "opencl": false, "metal": false, "gpu_blas": true, "blas": true, @@ -210,7 +209,6 @@ $ ./llama-bench -o json "build_commit": "3469684", "build_number": 1275, "cuda": true, - "opencl": false, "metal": false, "gpu_blas": true, "blas": true, @@ -253,7 +251,6 @@ CREATE TABLE IF NOT EXISTS test ( build_commit TEXT, build_number INTEGER, cuda INTEGER, - opencl INTEGER, metal INTEGER, gpu_blas INTEGER, blas INTEGER, @@ -279,6 +276,6 @@ CREATE TABLE IF NOT EXISTS test ( stddev_ts REAL ); -INSERT INTO test (build_commit, build_number, cuda, opencl, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '512', '0', '2023-09-23T12:10:30Z', '212693772', '743623', '2407.240204', '8.409634'); -INSERT INTO test (build_commit, build_number, cuda, opencl, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '0', '128', '2023-09-23T12:10:31Z', '977925003', '4037361', '130.891159', '0.537692'); +INSERT INTO test (build_commit, build_number, cuda, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '512', '0', '2023-09-23T12:10:30Z', '212693772', '743623', '2407.240204', '8.409634'); +INSERT INTO test (build_commit, build_number, cuda, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '0', '128', '2023-09-23T12:10:31Z', '977925003', '4037361', '130.891159', '0.537692'); ``` diff --git a/examples/llama-bench/llama-bench.cpp b/examples/llama-bench/llama-bench.cpp index c00890447..d641a9f12 100644 --- a/examples/llama-bench/llama-bench.cpp +++ b/examples/llama-bench/llama-bench.cpp @@ -41,20 +41,6 @@ static std::string join(const std::vector & values, const std::string & delim return str.str(); } -template -static std::vector split(const std::string & str, char delim) { - std::vector values; - std::istringstream str_stream(str); - std::string token; - while (std::getline(str_stream, token, delim)) { - T value; - std::istringstream token_stream(token); - token_stream >> value; - values.push_back(value); - } - return values; -} - template static std::vector transform_to_str(const std::vector & values, F f) { std::vector str_values; @@ -140,10 +126,11 @@ static std::string get_gpu_info() { } // command line params -enum output_formats {CSV, JSON, MARKDOWN, SQL}; +enum output_formats {NONE, CSV, JSON, MARKDOWN, SQL}; static const char * output_format_str(output_formats format) { switch (format) { + case NONE: return "none"; case CSV: return "csv"; case JSON: return "json"; case MARKDOWN: return "md"; @@ -152,6 +139,23 @@ static const char * output_format_str(output_formats format) { } } +static bool output_format_from_str(const std::string & s, output_formats & format) { + if (s == "none") { + format = NONE; + } else if (s == "csv") { + format = CSV; + } else if (s == "json") { + format = JSON; + } else if (s == "md") { + format = MARKDOWN; + } else if (s == "sql") { + format = SQL; + } else { + return false; + } + return true; +} + static const char * split_mode_str(llama_split_mode mode) { switch (mode) { case LLAMA_SPLIT_MODE_NONE: return "none"; @@ -190,31 +194,33 @@ struct cmd_params { int reps; bool verbose; output_formats output_format; + output_formats output_format_stderr; }; static const cmd_params cmd_params_defaults = { - /* model */ {"models/7B/ggml-model-q4_0.gguf"}, - /* n_prompt */ {512}, - /* n_gen */ {128}, - /* n_pg */ {}, - /* n_batch */ {2048}, - /* n_ubatch */ {512}, - /* type_k */ {GGML_TYPE_F16}, - /* type_v */ {GGML_TYPE_F16}, - /* n_threads */ {cpu_get_num_math()}, - /* n_gpu_layers */ {99}, - /* rpc_servers */ {""}, - /* split_mode */ {LLAMA_SPLIT_MODE_LAYER}, - /* main_gpu */ {0}, - /* no_kv_offload */ {false}, - /* flash_attn */ {false}, - /* tensor_split */ {std::vector(llama_max_devices(), 0.0f)}, - /* use_mmap */ {true}, - /* embeddings */ {false}, - /* numa */ GGML_NUMA_STRATEGY_DISABLED, - /* reps */ 5, - /* verbose */ false, - /* output_format */ MARKDOWN + /* model */ {"models/7B/ggml-model-q4_0.gguf"}, + /* n_prompt */ {512}, + /* n_gen */ {128}, + /* n_pg */ {}, + /* n_batch */ {2048}, + /* n_ubatch */ {512}, + /* type_k */ {GGML_TYPE_F16}, + /* type_v */ {GGML_TYPE_F16}, + /* n_threads */ {cpu_get_num_math()}, + /* n_gpu_layers */ {99}, + /* rpc_servers */ {""}, + /* split_mode */ {LLAMA_SPLIT_MODE_LAYER}, + /* main_gpu */ {0}, + /* no_kv_offload */ {false}, + /* flash_attn */ {false}, + /* tensor_split */ {std::vector(llama_max_devices(), 0.0f)}, + /* use_mmap */ {true}, + /* embeddings */ {false}, + /* numa */ GGML_NUMA_STRATEGY_DISABLED, + /* reps */ 5, + /* verbose */ false, + /* output_format */ MARKDOWN, + /* output_format_stderr */ NONE, }; static void print_usage(int /* argc */, char ** argv) { @@ -243,6 +249,7 @@ static void print_usage(int /* argc */, char ** argv) { printf(" -ts, --tensor-split (default: 0)\n"); printf(" -r, --repetitions (default: %d)\n", cmd_params_defaults.reps); printf(" -o, --output (default: %s)\n", output_format_str(cmd_params_defaults.output_format)); + printf(" -oe, --output-err (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr)); printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0"); printf("\n"); printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n"); @@ -284,7 +291,9 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { params.verbose = cmd_params_defaults.verbose; params.output_format = cmd_params_defaults.output_format; + params.output_format_stderr = cmd_params_defaults.output_format_stderr; params.reps = cmd_params_defaults.reps; + params.numa = cmd_params_defaults.numa; for (int i = 1; i < argc; i++) { arg = argv[i]; @@ -300,28 +309,28 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { invalid_param = true; break; } - auto p = split(argv[i], split_delim); + auto p = string_split(argv[i], split_delim); params.model.insert(params.model.end(), p.begin(), p.end()); } else if (arg == "-p" || arg == "--n-prompt") { if (++i >= argc) { invalid_param = true; break; } - auto p = split(argv[i], split_delim); + auto p = string_split(argv[i], split_delim); params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end()); } else if (arg == "-n" || arg == "--n-gen") { if (++i >= argc) { invalid_param = true; break; } - auto p = split(argv[i], split_delim); + auto p = string_split(argv[i], split_delim); params.n_gen.insert(params.n_gen.end(), p.begin(), p.end()); } else if (arg == "-pg") { if (++i >= argc) { invalid_param = true; break; } - auto p = split(argv[i], ','); + auto p = string_split(argv[i], ','); if (p.size() != 2) { invalid_param = true; break; @@ -332,21 +341,21 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { invalid_param = true; break; } - auto p = split(argv[i], split_delim); + auto p = string_split(argv[i], split_delim); params.n_batch.insert(params.n_batch.end(), p.begin(), p.end()); } else if (arg == "-ub" || arg == "--ubatch-size") { if (++i >= argc) { invalid_param = true; break; } - auto p = split(argv[i], split_delim); + auto p = string_split(argv[i], split_delim); params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end()); } else if (arg == "-ctk" || arg == "--cache-type-k") { if (++i >= argc) { invalid_param = true; break; } - auto p = split(argv[i], split_delim); + auto p = string_split(argv[i], split_delim); std::vector types; for (const auto & t : p) { ggml_type gt = ggml_type_from_name(t); @@ -362,7 +371,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { invalid_param = true; break; } - auto p = split(argv[i], split_delim); + auto p = string_split(argv[i], split_delim); std::vector types; for (const auto & t : p) { ggml_type gt = ggml_type_from_name(t); @@ -378,14 +387,14 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { invalid_param = true; break; } - auto p = split(argv[i], split_delim); + auto p = string_split(argv[i], split_delim); params.n_threads.insert(params.n_threads.end(), p.begin(), p.end()); } else if (arg == "-ngl" || arg == "--n-gpu-layers") { if (++i >= argc) { invalid_param = true; break; } - auto p = split(argv[i], split_delim); + auto p = string_split(argv[i], split_delim); params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end()); } else if (arg == "-rpc" || arg == "--rpc") { if (++i >= argc) { @@ -398,7 +407,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { invalid_param = true; break; } - auto p = split(argv[i], split_delim); + auto p = string_split(argv[i], split_delim); std::vector modes; for (const auto & m : p) { llama_split_mode mode; @@ -420,13 +429,13 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { invalid_param = true; break; } - params.main_gpu = split(argv[i], split_delim); + params.main_gpu = string_split(argv[i], split_delim); } else if (arg == "-nkvo" || arg == "--no-kv-offload") { if (++i >= argc) { invalid_param = true; break; } - auto p = split(argv[i], split_delim); + auto p = string_split(argv[i], split_delim); params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end()); } else if (arg == "--numa") { if (++i >= argc) { @@ -444,28 +453,28 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { invalid_param = true; break; } - auto p = split(argv[i], split_delim); + auto p = string_split(argv[i], split_delim); params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end()); } else if (arg == "-mmp" || arg == "--mmap") { if (++i >= argc) { invalid_param = true; break; } - auto p = split(argv[i], split_delim); + auto p = string_split(argv[i], split_delim); params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end()); } else if (arg == "-embd" || arg == "--embeddings") { if (++i >= argc) { invalid_param = true; break; } - auto p = split(argv[i], split_delim); + auto p = string_split(argv[i], split_delim); params.embeddings.insert(params.embeddings.end(), p.begin(), p.end()); } else if (arg == "-ts" || arg == "--tensor-split") { if (++i >= argc) { invalid_param = true; break; } - for (auto ts : split(argv[i], split_delim)) { + for (auto ts : string_split(argv[i], split_delim)) { // split string by ; and / const std::regex regex{R"([;/]+)"}; std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1}; @@ -493,18 +502,13 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { invalid_param = true; break; } - if (argv[i] == std::string("csv")) { - params.output_format = CSV; - } else if (argv[i] == std::string("json")) { - params.output_format = JSON; - } else if (argv[i] == std::string("md")) { - params.output_format = MARKDOWN; - } else if (argv[i] == std::string("sql")) { - params.output_format = SQL; - } else { + invalid_param = !output_format_from_str(argv[i], params.output_format); + } else if (arg == "-oe" || arg == "--output-err") { + if (++i >= argc) { invalid_param = true; break; } + invalid_param = !output_format_from_str(argv[i], params.output_format_stderr); } else if (arg == "-v" || arg == "--verbose") { params.verbose = true; } else { @@ -706,12 +710,10 @@ struct test { static const std::string build_commit; static const int build_number; static const bool cuda; - static const bool opencl; static const bool vulkan; static const bool kompute; static const bool metal; static const bool sycl; - static const bool rpc; static const bool gpu_blas; static const bool blas; static const std::string cpu_info; @@ -723,6 +725,7 @@ struct test { int n_batch; int n_ubatch; int n_threads; + bool has_rpc; ggml_type type_k; ggml_type type_v; int n_gpu_layers; @@ -748,6 +751,7 @@ struct test { n_batch = inst.n_batch; n_ubatch = inst.n_ubatch; n_threads = inst.n_threads; + has_rpc = !inst.rpc_servers.empty(); type_k = inst.type_k; type_v = inst.type_v; n_gpu_layers = inst.n_gpu_layers; @@ -795,9 +799,6 @@ struct test { if (cuda) { return GGML_CUDA_NAME; } - if (opencl) { - return "OpenCL"; - } if (vulkan) { return "Vulkan"; } @@ -810,9 +811,6 @@ struct test { if (sycl) { return GGML_SYCL_NAME; } - if (rpc) { - return "RPC"; - } if (gpu_blas) { return "GPU BLAS"; } @@ -826,7 +824,7 @@ struct test { static const std::vector & get_fields() { static const std::vector fields = { "build_commit", "build_number", - "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas", + "cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas", "cpu_info", "gpu_info", "model_filename", "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", @@ -852,7 +850,7 @@ struct test { field == "avg_ns" || field == "stddev_ns") { return INT; } - if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" || + if (field == "cuda" || field == "vulkan" || field == "kompute" || field == "metal" || field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" || field == "flash_attn" || field == "use_mmap" || field == "embeddings") { return BOOL; @@ -881,8 +879,8 @@ struct test { } std::vector values = { build_commit, std::to_string(build_number), - std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan), - std::to_string(metal), std::to_string(sycl), std::to_string(rpc), std::to_string(gpu_blas), std::to_string(blas), + std::to_string(cuda), std::to_string(vulkan), std::to_string(vulkan), + std::to_string(metal), std::to_string(sycl), std::to_string(has_rpc), std::to_string(gpu_blas), std::to_string(blas), cpu_info, gpu_info, model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params), std::to_string(n_batch), std::to_string(n_ubatch), @@ -910,14 +908,12 @@ struct test { const std::string test::build_commit = LLAMA_COMMIT; const int test::build_number = LLAMA_BUILD_NUMBER; const bool test::cuda = !!ggml_cpu_has_cuda(); -const bool test::opencl = !!ggml_cpu_has_clblast(); const bool test::vulkan = !!ggml_cpu_has_vulkan(); const bool test::kompute = !!ggml_cpu_has_kompute(); const bool test::metal = !!ggml_cpu_has_metal(); const bool test::gpu_blas = !!ggml_cpu_has_gpublas(); const bool test::blas = !!ggml_cpu_has_blas(); const bool test::sycl = !!ggml_cpu_has_sycl(); -const bool test::rpc = !!ggml_cpu_has_rpc(); const std::string test::cpu_info = get_cpu_info(); const std::string test::gpu_info = get_gpu_info(); @@ -1035,6 +1031,27 @@ struct markdown_printer : public printer { if (field == "n_gpu_layers") { return 3; } + if (field == "n_threads") { + return 7; + } + if (field == "n_batch") { + return 7; + } + if (field == "n_ubatch") { + return 8; + } + if (field == "type_k" || field == "type_v") { + return 6; + } + if (field == "split_mode") { + return 5; + } + if (field == "flash_attn") { + return 2; + } + if (field == "use_mmap") { + return 4; + } if (field == "test") { return 13; } @@ -1162,6 +1179,9 @@ struct markdown_printer : public printer { value = buf; } else if (field == "backend") { value = test::get_backend(); + if (t.has_rpc) { + value += "+RPC"; + } } else if (field == "test") { if (t.n_prompt > 0 && t.n_gen == 0) { snprintf(buf, sizeof(buf), "pp%d", t.n_prompt); @@ -1278,6 +1298,22 @@ static void llama_null_log_callback(enum ggml_log_level level, const char * text (void) user_data; } +static std::unique_ptr create_printer(output_formats format) { + switch (format) { + case NONE: + return nullptr; + case CSV: + return std::unique_ptr(new csv_printer()); + case JSON: + return std::unique_ptr(new json_printer()); + case MARKDOWN: + return std::unique_ptr(new markdown_printer()); + case SQL: + return std::unique_ptr(new sql_printer()); + } + GGML_ASSERT(false); +} + int main(int argc, char ** argv) { // try to set locale for unicode characters in markdown setlocale(LC_CTYPE, ".UTF-8"); @@ -1304,26 +1340,18 @@ int main(int argc, char ** argv) { llama_numa_init(params.numa); // initialize printer - std::unique_ptr p; - switch (params.output_format) { - case CSV: - p.reset(new csv_printer()); - break; - case JSON: - p.reset(new json_printer()); - break; - case MARKDOWN: - p.reset(new markdown_printer()); - break; - case SQL: - p.reset(new sql_printer()); - break; - default: - assert(false); - exit(1); + std::unique_ptr p = create_printer(params.output_format); + std::unique_ptr p_err = create_printer(params.output_format_stderr); + + if (p) { + p->fout = stdout; + p->print_header(params); + } + + if (p_err) { + p_err->fout = stderr; + p_err->print_header(params); } - p->fout = stdout; - p->print_header(params); std::vector params_instances = get_cmd_params_instances(params); @@ -1381,7 +1409,15 @@ int main(int argc, char ** argv) { t.samples_ns.push_back(t_ns); } - p->print_test(t); + if (p) { + p->print_test(t); + fflush(p->fout); + } + + if (p_err) { + p_err->print_test(t); + fflush(p_err->fout); + } llama_print_timings(ctx); @@ -1390,7 +1426,13 @@ int main(int argc, char ** argv) { llama_free_model(lmodel); - p->print_footer(); + if (p) { + p->print_footer(); + } + + if (p_err) { + p_err->print_footer(); + } llama_backend_free(); diff --git a/examples/llama.swiftui/llama.swiftui/Models/LlamaState.swift b/examples/llama.swiftui/llama.swiftui/Models/LlamaState.swift index 5bde18917..2c1e3f61b 100644 --- a/examples/llama.swiftui/llama.swiftui/Models/LlamaState.swift +++ b/examples/llama.swiftui/llama.swiftui/Models/LlamaState.swift @@ -131,22 +131,29 @@ class LlamaState: ObservableObject { messageLog += "\(text)" - while await llamaContext.n_cur < llamaContext.n_len { - let result = await llamaContext.completion_loop() - messageLog += "\(result)" + Task.detached { + while await llamaContext.n_cur < llamaContext.n_len { + let result = await llamaContext.completion_loop() + await MainActor.run { + self.messageLog += "\(result)" + } + } + + let t_end = DispatchTime.now().uptimeNanoseconds + let t_generation = Double(t_end - t_heat_end) / self.NS_PER_S + let tokens_per_second = Double(await llamaContext.n_len) / t_generation + + await llamaContext.clear() + + await MainActor.run { + self.messageLog += """ + \n + Done + Heat up took \(t_heat)s + Generated \(tokens_per_second) t/s\n + """ + } } - - let t_end = DispatchTime.now().uptimeNanoseconds - let t_generation = Double(t_end - t_heat_end) / NS_PER_S - let tokens_per_second = Double(await llamaContext.n_len) / t_generation - - await llamaContext.clear() - messageLog += """ - \n - Done - Heat up took \(t_heat)s - Generated \(tokens_per_second) t/s\n - """ } func bench() async { diff --git a/examples/llama2-13b.sh b/examples/llama2-13b.sh deleted file mode 100755 index 92b3f6dd8..000000000 --- a/examples/llama2-13b.sh +++ /dev/null @@ -1,18 +0,0 @@ -#!/bin/bash - -# -# Temporary script - will be removed in the future -# - -cd `dirname $0` -cd .. - -./main -m models/available/Llama2/13B/llama-2-13b.ggmlv3.q4_0.bin \ - --color \ - --ctx_size 2048 \ - -n -1 \ - -ins -b 256 \ - --top_k 10000 \ - --temp 0.2 \ - --repeat_penalty 1.1 \ - -t 8 diff --git a/examples/llama2.sh b/examples/llama2.sh deleted file mode 100755 index 221b37553..000000000 --- a/examples/llama2.sh +++ /dev/null @@ -1,18 +0,0 @@ -#!/bin/bash - -# -# Temporary script - will be removed in the future -# - -cd `dirname $0` -cd .. - -./main -m models/available/Llama2/7B/llama-2-7b.ggmlv3.q4_0.bin \ - --color \ - --ctx_size 2048 \ - -n -1 \ - -ins -b 256 \ - --top_k 10000 \ - --temp 0.2 \ - --repeat_penalty 1.1 \ - -t 8 diff --git a/examples/llava/CMakeLists.txt b/examples/llava/CMakeLists.txt index 9d5a9321c..74eee5e6b 100644 --- a/examples/llava/CMakeLists.txt +++ b/examples/llava/CMakeLists.txt @@ -30,13 +30,14 @@ if(TARGET BUILD_INFO) add_dependencies(llava BUILD_INFO) endif() -set(TARGET llava-cli) -add_executable(llava-cli llava-cli.cpp) -install(TARGETS llava-cli RUNTIME) -target_link_libraries(llava-cli PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT}) -target_compile_features(llava PRIVATE cxx_std_11) +set(TARGET llama-llava-cli) +add_executable(${TARGET} llava-cli.cpp) +set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-llava-cli) +install(TARGETS ${TARGET} RUNTIME) +target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT}) +target_compile_features(${TARGET} PRIVATE cxx_std_11) add_library(minicpmv_wrapper OBJECT minicpmv_wrapper.cpp ) -target_link_libraries(minicpmv_wrapper PRIVATE llava ${CMAKE_THREAD_LIBS_INIT}) \ No newline at end of file +target_link_libraries(minicpmv_wrapper PRIVATE llava ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/llava/MobileVLM-README.md b/examples/llava/MobileVLM-README.md index 74f021dec..05a8207e6 100644 --- a/examples/llava/MobileVLM-README.md +++ b/examples/llava/MobileVLM-README.md @@ -9,12 +9,12 @@ The implementation is based on llava, and is compatible with llava and mobileVLM Notice: The overall process of model inference for both **MobileVLM** and **MobileVLM_V2** models is the same, but the process of model conversion is a little different. Therefore, using **MobileVLM-1.7B** as an example, the different conversion step will be shown. ## Usage -Build with cmake or run `make llava-cli` to build it. +Build with cmake or run `make llama-llava-cli` to build it. -After building, run: `./llava-cli` to see the usage. For example: +After building, run: `./llama-llava-cli` to see the usage. For example: ```sh -./llava-cli -m MobileVLM-1.7B/ggml-model-q4_k.gguf \ +./llama-llava-cli -m MobileVLM-1.7B/ggml-model-q4_k.gguf \ --mmproj MobileVLM-1.7B/mmproj-model-f16.gguf \ --image path/to/an/image.jpg \ -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: \nWho is the author of this book? Answer the question using a single word or phrase. ASSISTANT:" @@ -62,7 +62,7 @@ python ./examples/convert-legacy-llama.py path/to/MobileVLM-1.7B 5. Use `quantize` to convert LLaMA part's DataType from `fp16` to `q4_k` ```sh -./quantize path/to/MobileVLM-1.7B/ggml-model-f16.gguf path/to/MobileVLM-1.7B/ggml-model-q4_k.gguf q4_k_s +./llama-quantize path/to/MobileVLM-1.7B/ggml-model-f16.gguf path/to/MobileVLM-1.7B/ggml-model-q4_k.gguf q4_k_s ``` Now both the LLaMA part and the image encoder is in the `MobileVLM-1.7B` directory. @@ -82,7 +82,7 @@ refer to `android/adb_run.sh`, modify resources' `name` and `path` ### case 1 **input** ```sh -/data/local/tmp/llava-cli \ +/data/local/tmp/llama-llava-cli \ -m /data/local/tmp/ggml-model-q4_k.gguf \ --mmproj /data/local/tmp/mmproj-model-f16.gguf \ -t 4 \ @@ -102,7 +102,7 @@ llama_print_timings: total time = 34731.93 ms ### case 2 **input** ```sh -/data/local/tmp/llava-cli \ +/data/local/tmp/llama-llava-cli \ -m /data/local/tmp/ggml-model-q4_k.gguf \ --mmproj /data/local/tmp/mmproj-model-f16.gguf \ -t 4 \ @@ -126,7 +126,7 @@ llama_print_timings: total time = 34570.79 ms #### llava-cli release-b2005 **input** ```sh -/data/local/tmp/llava-cli \ +/data/local/tmp/llama-llava-cli \ -m /data/local/tmp/ggml-model-q4_k.gguf \ --mmproj /data/local/tmp/mmproj-model-f16.gguf \ -t 4 \ @@ -200,7 +200,7 @@ make LLAMA_CUDA=1 CUDA_DOCKER_ARCH=sm_87 LLAMA_CUDA_F16=1 -j 32 ### case 1 **input** ```sh -./llava-cli \ +./llama-llava-cli \ -m /data/local/tmp/ggml-model-q4_k.gguf \ --mmproj /data/local/tmp/mmproj-model-f16.gguf \ --image /data/local/tmp/demo.jpeg \ @@ -224,7 +224,7 @@ llama_print_timings: total time = 1352.63 ms / 252 tokens ### case 2 **input** ```sh -./llava-cli \ +./llama-llava-cli \ -m /data/local/tmp/ggml-model-q4_k.gguf \ --mmproj /data/local/tmp/mmproj-model-f16.gguf \ -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: \nWhat is in the image? ASSISTANT:" \ diff --git a/examples/llava/README.md b/examples/llava/README.md index 8d1ae5270..f4554de67 100644 --- a/examples/llava/README.md +++ b/examples/llava/README.md @@ -11,12 +11,12 @@ For llava-1.6 a variety of prepared gguf models are available as well [7b-34b](h After API is confirmed, more models will be supported / uploaded. ## Usage -Build with cmake or run `make llava-cli` to build it. +Build with cmake or run `make llama-llava-cli` to build it. -After building, run: `./llava-cli` to see the usage. For example: +After building, run: `./llama-llava-cli` to see the usage. For example: ```sh -./llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg +./llama-llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg ``` **note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so. @@ -95,9 +95,9 @@ python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projecto python ./examples/convert-legacy-llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown ``` -7) And finally we can run the llava-cli using the 1.6 model version: +7) And finally we can run the llava cli using the 1.6 model version: ```console -./llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096 +./llama-llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096 ``` **note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096) diff --git a/examples/llava/android/adb_run.sh b/examples/llava/android/adb_run.sh index f73623ae3..45ccf8d70 100755 --- a/examples/llava/android/adb_run.sh +++ b/examples/llava/android/adb_run.sh @@ -10,7 +10,7 @@ prompt="A chat between a curious user and an artificial intelligence assistant. # prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: \nWhat is in the image? ASSISTANT:" program_dir="build_64/bin" -binName="llava-cli" +binName="llama-llava-cli" n_threads=4 diff --git a/examples/llava/llava-cli.cpp b/examples/llava/llava-cli.cpp index c974900f2..8c7dd2ae3 100644 --- a/examples/llava/llava-cli.cpp +++ b/examples/llava/llava-cli.cpp @@ -112,9 +112,12 @@ struct llava_context { struct llama_model * model = NULL; }; -static void show_additional_info(int /*argc*/, char ** argv) { - LOG_TEE("\n example usage: %s -m --mmproj --image --image [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]); - LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n"); +static void print_usage(int argc, char ** argv, const gpt_params & params) { + gpt_params_print_usage(argc, argv, params); + + LOG_TEE("\n example usage:\n"); + LOG_TEE("\n %s -m --mmproj --image --image [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]); + LOG_TEE("\n note: a lower temperature value like 0.1 is recommended for better quality.\n"); } static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_params * params, const std::string & fname) { @@ -278,7 +281,7 @@ int main(int argc, char ** argv) { gpt_params params; if (!gpt_params_parse(argc, argv, params)) { - show_additional_info(argc, argv); + print_usage(argc, argv, params); return 1; } @@ -290,8 +293,7 @@ int main(int argc, char ** argv) { #endif // LOG_DISABLE_LOGS if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) { - gpt_params_print_usage(argc, argv, params); - show_additional_info(argc, argv); + print_usage(argc, argv, {}); return 1; } auto model = llava_init(¶ms); diff --git a/examples/lookahead/CMakeLists.txt b/examples/lookahead/CMakeLists.txt index 8827e3f11..f0ae5cd89 100644 --- a/examples/lookahead/CMakeLists.txt +++ b/examples/lookahead/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET lookahead) +set(TARGET llama-lookahead) add_executable(${TARGET} lookahead.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/lookahead/lookahead.cpp b/examples/lookahead/lookahead.cpp index 54f060a85..fb20ad93f 100644 --- a/examples/lookahead/lookahead.cpp +++ b/examples/lookahead/lookahead.cpp @@ -37,7 +37,8 @@ struct ngram_container { int main(int argc, char ** argv) { gpt_params params; - if (gpt_params_parse(argc, argv, params) == false) { + if (!gpt_params_parse(argc, argv, params)) { + gpt_params_print_usage(argc, argv, params); return 1; } diff --git a/examples/lookup/CMakeLists.txt b/examples/lookup/CMakeLists.txt index b91633f63..ef19fe25e 100644 --- a/examples/lookup/CMakeLists.txt +++ b/examples/lookup/CMakeLists.txt @@ -1,22 +1,22 @@ -set(TARGET lookup) +set(TARGET llama-lookup) add_executable(${TARGET} lookup.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_11) -set(TARGET lookup-create) +set(TARGET llama-lookup-create) add_executable(${TARGET} lookup-create.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_11) -set(TARGET lookup-merge) +set(TARGET llama-lookup-merge) add_executable(${TARGET} lookup-merge.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(${TARGET} PRIVATE cxx_std_11) -set(TARGET lookup-stats) +set(TARGET llama-lookup-stats) add_executable(${TARGET} lookup-stats.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/lookup/lookup-create.cpp b/examples/lookup/lookup-create.cpp index 1c230c966..d713f6f21 100644 --- a/examples/lookup/lookup-create.cpp +++ b/examples/lookup/lookup-create.cpp @@ -14,8 +14,10 @@ int main(int argc, char ** argv){ gpt_params params; if (!gpt_params_parse(argc, argv, params)) { + gpt_params_print_usage(argc, argv, params); return 1; } + // init llama.cpp llama_backend_init(); llama_numa_init(params.numa); diff --git a/examples/lookup/lookup-merge.cpp b/examples/lookup/lookup-merge.cpp index 07c93eb8d..81e2b0436 100644 --- a/examples/lookup/lookup-merge.cpp +++ b/examples/lookup/lookup-merge.cpp @@ -11,14 +11,14 @@ #include #include -static void print_usage() { +static void print_usage(char* argv0) { fprintf(stderr, "Merges multiple lookup cache files into a single one.\n"); - fprintf(stderr, "Usage: lookup-merge [--help] lookup_part_1.bin lookup_part_2.bin ... lookup_merged.bin\n"); + fprintf(stderr, "Usage: %s [--help] lookup_part_1.bin lookup_part_2.bin ... lookup_merged.bin\n", argv0); } int main(int argc, char ** argv){ if (argc < 3) { - print_usage(); + print_usage(argv[0]); exit(1); } @@ -27,7 +27,7 @@ int main(int argc, char ** argv){ for (int i = 0; i < argc-1; ++i) { args[i] = argv[i+1]; if (args[i] == "-h" || args[i] == "--help") { - print_usage(); + print_usage(argv[0]); exit(0); } } diff --git a/examples/lookup/lookup-stats.cpp b/examples/lookup/lookup-stats.cpp index 87ecc0a4f..0b171c872 100644 --- a/examples/lookup/lookup-stats.cpp +++ b/examples/lookup/lookup-stats.cpp @@ -16,6 +16,7 @@ int main(int argc, char ** argv){ gpt_params params; if (!gpt_params_parse(argc, argv, params)) { + gpt_params_print_usage(argc, argv, params); return 1; } diff --git a/examples/lookup/lookup.cpp b/examples/lookup/lookup.cpp index 83dbee91a..80ecd925d 100644 --- a/examples/lookup/lookup.cpp +++ b/examples/lookup/lookup.cpp @@ -15,6 +15,7 @@ int main(int argc, char ** argv){ gpt_params params; if (!gpt_params_parse(argc, argv, params)) { + gpt_params_print_usage(argc, argv, params); return 1; } diff --git a/examples/main-cmake-pkg/CMakeLists.txt b/examples/main-cmake-pkg/CMakeLists.txt index deb77d588..a97ded365 100644 --- a/examples/main-cmake-pkg/CMakeLists.txt +++ b/examples/main-cmake-pkg/CMakeLists.txt @@ -1,12 +1,12 @@ cmake_minimum_required(VERSION 3.12) -project("main-cmake-pkg" C CXX) -set(TARGET main-cmake-pkg) +project("llama-cli-cmake-pkg" C CXX) +set(TARGET llama-cli-cmake-pkg) find_package(Llama 0.0.1 REQUIRED) # Bake common functionality in with target. Because applications # using the relocatable Llama package should be outside of the -# source tree, main-cmake-pkg pretends the dependencies are built-in. +# source tree, llama-cli-cmake-pkg pretends the dependencies are built-in. set(_common_path "${CMAKE_CURRENT_LIST_DIR}/../../common") add_library(common OBJECT) file(GLOB _common_files @@ -15,7 +15,7 @@ file(GLOB _common_files ) target_sources(common PRIVATE ${_common_files}) -# If the common project was part of "main-cmake-pkg" the transient +# If the common project was part of "llama-cli-cmake-pkg" the transient # defines would automatically be attached. Because the common func- # tionality is separate, but dependent upon the defines, it must be # explicitly extracted from the "llama" target. diff --git a/examples/main-cmake-pkg/README.md b/examples/main-cmake-pkg/README.md index edf20d8db..08d83dd08 100644 --- a/examples/main-cmake-pkg/README.md +++ b/examples/main-cmake-pkg/README.md @@ -1,6 +1,6 @@ # llama.cpp/example/main-cmake-pkg -This program builds the [main](../main) application using a relocatable CMake package. It serves as an example of using the `find_package()` CMake command to conveniently include [llama.cpp](https://github.com/ggerganov/llama.cpp) in projects which live outside of the source tree. +This program builds [llama-cli](../main) using a relocatable CMake package. It serves as an example of using the `find_package()` CMake command to conveniently include [llama.cpp](https://github.com/ggerganov/llama.cpp) in projects which live outside of the source tree. ## Building @@ -8,26 +8,24 @@ Because this example is "outside of the source tree", it is important to first b ### Considerations -When hardware acceleration libraries are used (e.g. CUDA, Metal, CLBlast, etc.), CMake must be able to locate the associated CMake package. In the example below, when building _main-cmake-pkg_ notice the `CMAKE_PREFIX_PATH` includes the Llama CMake package location _in addition to_ the CLBlast package—which was used when compiling _llama.cpp_. +When hardware acceleration libraries are used (e.g. CUDA, Metal, etc.), CMake must be able to locate the associated CMake package. ### Build llama.cpp and install to C:\LlamaCPP directory -In this case, CLBlast was already installed so the CMake package is referenced in `CMAKE_PREFIX_PATH`. - ```cmd git clone https://github.com/ggerganov/llama.cpp cd llama.cpp -cmake -B build -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=C:/CLBlast/lib/cmake/CLBlast -G "Visual Studio 17 2022" -A x64 +cmake -B build -DBUILD_SHARED_LIBS=OFF -G "Visual Studio 17 2022" -A x64 cmake --build build --config Release cmake --install build --prefix C:/LlamaCPP ``` -### Build main-cmake-pkg +### Build llama-cli-cmake-pkg ```cmd cd ..\examples\main-cmake-pkg -cmake -B build -DBUILD_SHARED_LIBS=OFF -DCMAKE_PREFIX_PATH="C:/CLBlast/lib/cmake/CLBlast;C:/LlamaCPP/lib/cmake/Llama" -G "Visual Studio 17 2022" -A x64 +cmake -B build -DBUILD_SHARED_LIBS=OFF -DCMAKE_PREFIX_PATH="C:/LlamaCPP/lib/cmake/Llama" -G "Visual Studio 17 2022" -A x64 cmake --build build --config Release cmake --install build --prefix C:/MyLlamaApp ``` diff --git a/examples/main/CMakeLists.txt b/examples/main/CMakeLists.txt index d532980b7..5f6efaa9a 100644 --- a/examples/main/CMakeLists.txt +++ b/examples/main/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET main) +set(TARGET llama-cli) add_executable(${TARGET} main.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/main/README.md b/examples/main/README.md index ee930f4e7..61e4a42f7 100644 --- a/examples/main/README.md +++ b/examples/main/README.md @@ -1,4 +1,4 @@ -# llama.cpp/example/main +# llama.cpp/examples/main This example program allows you to use various LLaMA language models in an easy and efficient way. It is specifically designed to work with the [llama.cpp](https://github.com/ggerganov/llama.cpp) project, which provides a plain C/C++ implementation with optional 4-bit quantization support for faster, lower memory inference, and is optimized for desktop CPUs. This program can be used to perform various inference tasks with LLaMA models, including generating text based on user-provided prompts and chat-like interactions with reverse prompts. @@ -20,13 +20,13 @@ To get started right away, run the following command, making sure to use the cor #### Unix-based systems (Linux, macOS, etc.): ```bash -./main -m models/7B/ggml-model.bin --prompt "Once upon a time" +./llama-cli -m models/7B/ggml-model.bin --prompt "Once upon a time" ``` #### Windows: ```powershell -main.exe -m models\7B\ggml-model.bin --prompt "Once upon a time" +llama-cli.exe -m models\7B\ggml-model.bin --prompt "Once upon a time" ``` For an interactive experience, try this command: @@ -34,7 +34,7 @@ For an interactive experience, try this command: #### Unix-based systems (Linux, macOS, etc.): ```bash -./main -m models/7B/ggml-model.bin -n -1 --color -r "User:" --in-prefix " " -i -p \ +./llama-cli -m models/7B/ggml-model.bin -n -1 --color -r "User:" --in-prefix " " -i -p \ 'User: Hi AI: Hello. I am an AI chatbot. Would you like to talk? User: Sure! @@ -45,7 +45,7 @@ User:' #### Windows: ```powershell -main.exe -m models\7B\ggml-model.bin -n -1 --color -r "User:" --in-prefix " " -i -e -p "User: Hi\nAI: Hello. I am an AI chatbot. Would you like to talk?\nUser: Sure!\nAI: What would you like to talk about?\nUser:" +llama-cli.exe -m models\7B\ggml-model.bin -n -1 --color -r "User:" --in-prefix " " -i -e -p "User: Hi\nAI: Hello. I am an AI chatbot. Would you like to talk?\nUser: Sure!\nAI: What would you like to talk about?\nUser:" ``` The following command generates "infinite" text from a starting prompt (you can use `Ctrl-C` to stop it): @@ -53,38 +53,36 @@ The following command generates "infinite" text from a starting prompt (you can #### Unix-based systems (Linux, macOS, etc.): ```bash -./main -m models/7B/ggml-model.bin --ignore-eos -n -1 --random-prompt +./llama-cli -m models/7B/ggml-model.bin --ignore-eos -n -1 ``` #### Windows: ```powershell -main.exe -m models\7B\ggml-model.bin --ignore-eos -n -1 --random-prompt +llama-cli.exe -m models\7B\ggml-model.bin --ignore-eos -n -1 ``` ## Common Options -In this section, we cover the most commonly used options for running the `main` program with the LLaMA models: +In this section, we cover the most commonly used options for running the `llama-cli` program with the LLaMA models: - `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`; inferred from `--model-url` if set). - `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (e.g https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q4_0.gguf). - `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses. -- `-ins, --instruct`: Run the program in instruction mode, which is particularly useful when working with Alpaca models. - `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text. - `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. ## Input Prompts -The `main` program provides several ways to interact with the LLaMA models using input prompts: +The `llama-cli` program provides several ways to interact with the LLaMA models using input prompts: - `--prompt PROMPT`: Provide a prompt directly as a command-line option. - `--file FNAME`: Provide a file containing a prompt or multiple prompts. - `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.) -- `--random-prompt`: Start with a randomized prompt. ## Interaction -The `main` program offers a seamless way to interact with LLaMA models, allowing users to engage in real-time conversations or provide instructions for specific tasks. The interactive mode can be triggered using various options, including `--interactive`, `--interactive-first`, and `--instruct`. +The `llama-cli` program offers a seamless way to interact with LLaMA models, allowing users to engage in real-time conversations or provide instructions for specific tasks. The interactive mode can be triggered using various options, including `--interactive` and `--interactive-first`. In interactive mode, users can participate in text generation by injecting their input during the process. Users can press `Ctrl+C` at any time to interject and type their input, followed by pressing `Return` to submit it to the LLaMA model. To submit additional lines without finalizing input, users can end the current line with a backslash (`\`) and continue typing. @@ -92,7 +90,6 @@ In interactive mode, users can participate in text generation by injecting their - `-i, --interactive`: Run the program in interactive mode, allowing users to engage in real-time conversations or provide specific instructions to the model. - `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation. -- `-ins, --instruct`: Run the program in instruction mode, which is specifically designed to work with Alpaca models that excel in completing tasks based on user instructions. - `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text. By understanding and utilizing these interaction options, you can create engaging and dynamic experiences with the LLaMA models, tailoring the text generation process to your specific needs. @@ -110,7 +107,7 @@ To overcome this limitation, you can use the `--in-prefix` flag to add a space o The `--in-prefix` flag is used to add a prefix to your input, primarily, this is used to insert a space after the reverse prompt. Here's an example of how to use the `--in-prefix` flag in conjunction with the `--reverse-prompt` flag: ```sh -./main -r "User:" --in-prefix " " +./llama-cli -r "User:" --in-prefix " " ``` ### In-Suffix @@ -118,19 +115,9 @@ The `--in-prefix` flag is used to add a prefix to your input, primarily, this is The `--in-suffix` flag is used to add a suffix after your input. This is useful for adding an "Assistant:" prompt after the user's input. It's added after the new-line character (`\n`) that's automatically added to the end of the user's input. Here's an example of how to use the `--in-suffix` flag in conjunction with the `--reverse-prompt` flag: ```sh -./main -r "User:" --in-prefix " " --in-suffix "Assistant:" +./llama-cli -r "User:" --in-prefix " " --in-suffix "Assistant:" ``` -### Instruction Mode - -Instruction mode is particularly useful when working with Alpaca models, which are designed to follow user instructions for specific tasks: - -- `-ins, --instruct`: Enable instruction mode to leverage the capabilities of Alpaca models in completing tasks based on user-provided instructions. - -Technical detail: the user's input is internally prefixed with the reverse prompt (or `### Instruction:` as the default), and followed by `### Response:` (except if you just press Return without any input, to keep generating a longer response). - -By understanding and utilizing these interaction options, you can create engaging and dynamic experiences with the LLaMA models, tailoring the text generation process to your specific needs. - ## Context Management During text generation, LLaMA models have a limited context size, which means they can only consider a certain number of tokens from the input and generated text. When the context fills up, the model resets internally, potentially losing some information from the beginning of the conversation or instructions. Context management options help maintain continuity and coherence in these situations. diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 44949ba86..b97b7b793 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -122,8 +122,10 @@ int main(int argc, char ** argv) { g_params = ¶ms; if (!gpt_params_parse(argc, argv, params)) { + gpt_params_print_usage(argc, argv, params); return 1; } + llama_sampling_params & sparams = params.sparams; #ifndef LOG_DISABLE_LOGS @@ -180,9 +182,6 @@ int main(int argc, char ** argv) { LOG_TEE("%s: seed = %u\n", __func__, params.seed); std::mt19937 rng(params.seed); - if (params.random_prompt) { - params.prompt = string_random_prompt(rng); - } LOG("%s: llama backend init\n", __func__); llama_backend_init(); @@ -250,11 +249,8 @@ int main(int argc, char ** argv) { std::vector embd_inp; - if (params.interactive_first || params.instruct || params.chatml || !params.prompt.empty() || session_tokens.empty()) { + if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) { LOG("tokenize the prompt\n"); - if (params.chatml) { - params.prompt = "<|im_start|>system\n" + params.prompt + "<|im_end|>"; - } embd_inp = ::llama_tokenize(ctx, params.prompt, true, true); } else { LOG("use session tokens\n"); @@ -332,37 +328,13 @@ int main(int argc, char ** argv) { } // number of tokens to keep when resetting context - if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct || params.chatml) { + if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) { params.n_keep = (int)embd_inp.size(); } else { params.n_keep += add_bos; // always keep the BOS token } - // prefix & suffix for instruct mode - const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true, true); - const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false, true); - - LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str()); - LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str()); - - // chatml prefix & suffix - const auto cml_pfx = ::llama_tokenize(ctx, "\n<|im_start|>user\n", true, true); - const auto cml_sfx = ::llama_tokenize(ctx, "<|im_end|>\n<|im_start|>assistant\n", false, true); - - LOG("cml_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_pfx).c_str()); - LOG("cml_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, cml_sfx).c_str()); - - // in instruct mode, we inject a prefix and a suffix to each input by the user - if (params.instruct) { - params.interactive_first = true; - params.antiprompt.emplace_back("### Instruction:\n\n"); - } - // similar for chatml mode - else if (params.chatml) { - params.interactive_first = true; - params.antiprompt.emplace_back("<|im_start|>user\n"); - } - else if (params.conversation) { + if (params.conversation) { params.interactive_first = true; } @@ -823,15 +795,13 @@ int main(int argc, char ** argv) { is_interacting = true; printf("\n"); - } else if (params.instruct || params.chatml) { - is_interacting = true; } } if (n_past > 0 && is_interacting) { LOG("waiting for user input\n"); - if (params.conversation || params.instruct || params.chatml) { + if (params.conversation) { printf("\n> "); } @@ -874,24 +844,12 @@ int main(int argc, char ** argv) { const size_t original_size = embd_inp.size(); - // instruct mode: insert instruction prefix - if (params.instruct && !is_antiprompt) { - LOG("inserting instruction prefix\n"); - n_consumed = embd_inp.size(); - embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end()); - } - // chatml mode: insert user chat prefix - if (params.chatml && !is_antiprompt) { - LOG("inserting chatml prefix\n"); - n_consumed = embd_inp.size(); - embd_inp.insert(embd_inp.end(), cml_pfx.begin(), cml_pfx.end()); - } if (params.escape) { string_process_escapes(buffer); } const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true); - const auto line_inp = ::llama_tokenize(ctx, buffer, false, params.interactive_specials); + const auto line_inp = ::llama_tokenize(ctx, buffer, false, false); const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true); LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str()); @@ -900,17 +858,6 @@ int main(int argc, char ** argv) { embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end()); embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end()); - // instruct mode: insert response suffix - if (params.instruct) { - LOG("inserting instruction suffix\n"); - embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); - } - // chatml mode: insert assistant chat suffix - if (params.chatml) { - LOG("inserting chatml suffix\n"); - embd_inp.insert(embd_inp.end(), cml_sfx.begin(), cml_sfx.end()); - } - for (size_t i = original_size; i < embd_inp.size(); ++i) { const llama_token token = embd_inp[i]; output_tokens.push_back(token); @@ -935,7 +882,7 @@ int main(int argc, char ** argv) { } // end of generation - if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.instruct || params.interactive || params.chatml)) { + if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.interactive)) { LOG_TEE(" [end of text]\n"); break; } diff --git a/examples/parallel/CMakeLists.txt b/examples/parallel/CMakeLists.txt index 319535a6e..c13557bac 100644 --- a/examples/parallel/CMakeLists.txt +++ b/examples/parallel/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET parallel) +set(TARGET llama-parallel) add_executable(${TARGET} parallel.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/parallel/parallel.cpp b/examples/parallel/parallel.cpp index c731abb72..7faeaec97 100644 --- a/examples/parallel/parallel.cpp +++ b/examples/parallel/parallel.cpp @@ -100,7 +100,8 @@ int main(int argc, char ** argv) { gpt_params params; - if (gpt_params_parse(argc, argv, params) == false) { + if (!gpt_params_parse(argc, argv, params)) { + gpt_params_print_usage(argc, argv, params); return 1; } diff --git a/examples/passkey/CMakeLists.txt b/examples/passkey/CMakeLists.txt index 3161bf3ef..dc467a5d3 100644 --- a/examples/passkey/CMakeLists.txt +++ b/examples/passkey/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET passkey) +set(TARGET llama-passkey) add_executable(${TARGET} passkey.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/passkey/README.md b/examples/passkey/README.md index 4a22bb559..a48a6283a 100644 --- a/examples/passkey/README.md +++ b/examples/passkey/README.md @@ -8,5 +8,5 @@ See the following PRs for more info: ### Usage ```bash -make -j && ./passkey ./models/llama-7b-v2/ggml-model-f16.gguf 250 +make -j && ./llama-passkey -m ./models/llama-7b-v2/ggml-model-f16.gguf --junk 250 ``` diff --git a/examples/passkey/passkey.cpp b/examples/passkey/passkey.cpp index f2ef9ca10..d03215cd1 100644 --- a/examples/passkey/passkey.cpp +++ b/examples/passkey/passkey.cpp @@ -6,46 +6,32 @@ #include #include +static void print_usage(int argc, char ** argv, const gpt_params & params) { + gpt_params_print_usage(argc, argv, params); + + LOG_TEE("\nexample usage:\n"); + LOG_TEE("\n %s -m model.gguf --junk 250 --pos 90 --keep 32 --grp-attn-n 2 [--seed 1234]\n", argv[0]); + LOG_TEE("\n"); +} + int main(int argc, char ** argv) { gpt_params params; - if (argc == 1 || argv[1][0] == '-') { - printf("usage: %s MODEL_PATH N_JUNK N_GRP I_POS SEED\n" , argv[0]); - return 1 ; + params.n_junk = 250; + params.n_keep = 32; + params.i_pos = -1; + + if (!gpt_params_parse(argc, argv, params)) { + print_usage(argc, argv, params); + return 1; } - int seed = -1; + srand(params.seed == LLAMA_DEFAULT_SEED ? time(NULL) : params.seed); - int n_junk = 250; // number of times to repeat the junk text - int n_keep = 32; // number of tokens in the prompt prefix - int n_grp = 1; // if more than 1 - perform LongLM SelfExtend - int i_pos = -1; // position of the passkey in the junk text - - if (argc >= 2) { - params.model = argv[1]; - } - - if (argc >= 3) { - n_junk = std::stoi(argv[2]); - } - - if (argc >= 4) { - n_grp = std::stoi(argv[3]); - } - - if (argc >= 5) { - i_pos = std::stoi(argv[4]); - } - - if (argc >= 6) { - seed = std::stoi(argv[5]); - } - - if (seed == -1) { - seed = time(NULL); - } - - srand(seed); + int n_junk = params.n_junk; + int n_keep = params.n_keep; + int n_grp = params.grp_attn_n; + int i_pos = params.i_pos; if (i_pos == -1) { i_pos = rand() % n_junk; @@ -76,9 +62,7 @@ int main(int argc, char ** argv) { // initialize the model - llama_model_params model_params = llama_model_default_params(); - - model_params.n_gpu_layers = 99; // offload all layers to the GPU + llama_model_params model_params = llama_model_params_from_gpt_params(params); llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params); @@ -89,13 +73,9 @@ int main(int argc, char ** argv) { // initialize the context - llama_context_params ctx_params = llama_context_default_params(); + llama_context_params ctx_params = llama_context_params_from_gpt_params(params); - ctx_params.seed = seed; - ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep; - ctx_params.n_batch = 512; - ctx_params.n_threads = params.n_threads; - ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; + ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep; GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp"); @@ -135,7 +115,7 @@ int main(int argc, char ** argv) { LOG_TEE("prompt tokens: %d\n", n_tokens_all); //LOG_TEE("prompt: %s\n", params.prompt.c_str()); - llama_batch batch = llama_batch_init(512, 0, 1); + llama_batch batch = llama_batch_init(params.n_batch, 0, 1); int n_past = 0; diff --git a/examples/perplexity/CMakeLists.txt b/examples/perplexity/CMakeLists.txt index 3c76d3221..be0f2fd02 100644 --- a/examples/perplexity/CMakeLists.txt +++ b/examples/perplexity/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET perplexity) +set(TARGET llama-perplexity) add_executable(${TARGET} perplexity.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index 30e5e282e..efde8dfdf 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -476,7 +476,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par } // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip - // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` + // Run `./llama-perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval @@ -1032,7 +1032,7 @@ struct winogrande_entry { std::vector seq_tokens[2]; }; -static std::vector load_winogrande_from_csv(const std::string& prompt) { +static std::vector load_winogrande_from_csv(const std::string & prompt) { std::vector result; std::istringstream in(prompt); std::string line; @@ -1964,12 +1964,14 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) { int main(int argc, char ** argv) { gpt_params params; + params.n_ctx = 512; + params.logits_all = true; + if (!gpt_params_parse(argc, argv, params)) { + gpt_params_print_usage(argc, argv, params); return 1; } - params.logits_all = true; - const int32_t n_ctx = params.n_ctx; if (n_ctx <= 0) { @@ -2006,9 +2008,6 @@ int main(int argc, char ** argv) { fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); std::mt19937 rng(params.seed); - if (params.random_prompt) { - params.prompt = string_random_prompt(rng); - } llama_backend_init(); llama_numa_init(params.numa); @@ -2027,6 +2026,7 @@ int main(int argc, char ** argv) { } const int n_ctx_train = llama_n_ctx_train(model); + if (params.n_ctx > n_ctx_train) { fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, params.n_ctx); diff --git a/examples/pydantic_models_to_grammar.py b/examples/pydantic_models_to_grammar.py index 9acc7cc6d..f029c73a2 100644 --- a/examples/pydantic_models_to_grammar.py +++ b/examples/pydantic_models_to_grammar.py @@ -624,7 +624,7 @@ string ::= "\"" ( "\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) )* "\"" ws ws ::= ([ \t\n] ws)? -float ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws +float ::= ("-"? ([0] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws integer ::= [0-9]+""" diff --git a/examples/quantize-stats/CMakeLists.txt b/examples/quantize-stats/CMakeLists.txt index e31cf5e38..bb986a716 100644 --- a/examples/quantize-stats/CMakeLists.txt +++ b/examples/quantize-stats/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET quantize-stats) +set(TARGET llama-quantize-stats) add_executable(${TARGET} quantize-stats.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE llama build_info ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/quantize/CMakeLists.txt b/examples/quantize/CMakeLists.txt index 6b977fde8..3ee4eb971 100644 --- a/examples/quantize/CMakeLists.txt +++ b/examples/quantize/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET quantize) +set(TARGET llama-quantize) add_executable(${TARGET} quantize.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index 28584e14b..76e2052d5 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -16,41 +16,41 @@ struct quant_option { }; static const std::vector QUANT_OPTIONS = { - { "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 3.56G, +0.2166 ppl @ LLaMA-v1-7B", }, - { "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", }, - { "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", }, - { "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", }, + { "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 4.34G, +0.4685 ppl @ Llama-3-8B", }, + { "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 4.78G, +0.4511 ppl @ Llama-3-8B", }, + { "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 5.21G, +0.1316 ppl @ Llama-3-8B", }, + { "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 5.65G, +0.1062 ppl @ Llama-3-8B", }, { "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", }, { "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", }, { "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", }, { "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", }, { "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", }, { "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", }, - { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", }, - { "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", }, + { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.96G, +3.5199 ppl @ Llama-3-8B", }, + { "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.96G, +3.1836 ppl @ Llama-3-8B", }, { "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", }, { "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", }, { "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", }, - { "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" }, - { "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization" , }, - { "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", }, - { "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", }, - { "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", }, + { "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" }, + { "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization", }, + { "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 3.41G, +1.6321 ppl @ Llama-3-8B", }, + { "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.74G, +0.6569 ppl @ Llama-3-8B", }, + { "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 4.03G, +0.5562 ppl @ Llama-3-8B", }, { "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", }, { "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", }, - { "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", }, - { "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", }, - { "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", }, - { "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", }, - { "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", }, - { "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", }, - { "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", }, - { "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", }, - { "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, -0.0020 ppl @ Mistral-7B", }, - { "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", }, - { "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", }, + { "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", }, + { "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 4.37G, +0.2689 ppl @ Llama-3-8B", }, + { "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 4.58G, +0.1754 ppl @ Llama-3-8B", }, + { "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", }, + { "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 5.21G, +0.1049 ppl @ Llama-3-8B", }, + { "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 5.33G, +0.0569 ppl @ Llama-3-8B", }, + { "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 6.14G, +0.0217 ppl @ Llama-3-8B", }, + { "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 7.96G, +0.0026 ppl @ Llama-3-8B", }, + { "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, +0.0020 ppl @ Mistral-7B", }, + { "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", }, + { "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", }, // Note: Ensure COPY comes after F32 to avoid ftype 0 from matching. - { "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", }, + { "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", }, }; static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file"; diff --git a/examples/quantize/tests.sh b/examples/quantize/tests.sh index a3ca74c68..24bc970e8 100644 --- a/examples/quantize/tests.sh +++ b/examples/quantize/tests.sh @@ -18,9 +18,9 @@ fi set -x -SPLIT=$1/gguf-split -QUANTIZE=$1/quantize -MAIN=$1/main +SPLIT=$1/llama-gguf-split +QUANTIZE=$1/llama-quantize +MAIN=$1/llama-cli WORK_PATH=$TMP_DIR/quantize ROOT_DIR=$(realpath $(dirname $0)/../../) @@ -47,7 +47,7 @@ echo PASS echo # 3a. Test the requanted model is loading properly -$MAIN --model $WORK_PATH/ggml-model-requant-00001-of-00006.gguf --random-prompt --n-predict 32 +$MAIN --model $WORK_PATH/ggml-model-requant-00001-of-00006.gguf --n-predict 32 echo PASS echo @@ -57,7 +57,7 @@ echo PASS echo # 4b. Test the requanted model is loading properly -$MAIN --model $WORK_PATH/ggml-model-requant-merge.gguf --random-prompt --n-predict 32 +$MAIN --model $WORK_PATH/ggml-model-requant-merge.gguf --n-predict 32 echo PASS echo diff --git a/examples/reason-act.sh b/examples/reason-act.sh index 046c48db5..06d592799 100755 --- a/examples/reason-act.sh +++ b/examples/reason-act.sh @@ -8,7 +8,7 @@ if [ "$1" == "-m" ]; then MODEL="-m $2 " fi -./main $MODEL --color \ +./llama-cli $MODEL --color \ -f ./prompts/reason-act.txt \ -i --interactive-first \ --top_k 10000 --temp 0.2 --repeat_penalty 1 -t 7 -c 2048 \ diff --git a/examples/retrieval/CMakeLists.txt b/examples/retrieval/CMakeLists.txt index eaabae08d..66610f311 100644 --- a/examples/retrieval/CMakeLists.txt +++ b/examples/retrieval/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET retrieval) +set(TARGET llama-retrieval) add_executable(${TARGET} retrieval.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/retrieval/README.md b/examples/retrieval/README.md index 2b2595c46..bc5f22e2f 100644 --- a/examples/retrieval/README.md +++ b/examples/retrieval/README.md @@ -15,7 +15,7 @@ https://github.com/ggerganov/llama.cpp/pull/6193 `retrieval` example can be tested as follows: ```bash -make -j && ./retrieval --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator . +make -j && ./llama-retrieval --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator . ``` This chunks and embeds all given files and starts a loop requesting query inputs: diff --git a/examples/retrieval/retrieval.cpp b/examples/retrieval/retrieval.cpp index 4e7530706..eb89d16da 100644 --- a/examples/retrieval/retrieval.cpp +++ b/examples/retrieval/retrieval.cpp @@ -4,72 +4,12 @@ #include #include -struct retrieval_params { - std::vector context_files; // context files to embed - int32_t chunk_size = 64; // chunk size for context embedding - std::string chunk_separator = "\n"; // chunk separator for context embedding -}; +static void print_usage(int argc, char ** argv, const gpt_params & params) { + gpt_params_print_usage(argc, argv, params); -static void retrieval_params_print_usage(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & params) { - gpt_params_print_usage(argc, argv, gpt_params); - printf("retrieval options:\n"); - printf(" --context-file FNAME file containing context to embed.\n"); - printf(" specify multiple files by providing --context-file option multiple times.\n"); - printf(" --chunk-size N minimum length of embedded text chunk (default:%d)\n", params.chunk_size); - printf(" --chunk-separator STRING\n"); - printf(" string to separate chunks (default: \"\\n\")\n"); - printf("\n"); -} - -static void retrieval_params_parse(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & retrieval_params) { - int i = 1; - std::string arg; - while (i < argc) { - arg = argv[i]; - bool invalid_gpt_param = false; - if(gpt_params_find_arg(argc, argv, argv[i], gpt_params, i, invalid_gpt_param)) { - if (invalid_gpt_param) { - fprintf(stderr, "error: invalid argument: %s\n", arg.c_str()); - retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params); - exit(1); - } - // option was parsed by gpt_params_find_arg - } else if (arg == "--context-file") { - if (++i >= argc) { - fprintf(stderr, "error: missing argument for --context-file\n"); - retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params); - exit(1); - } - std::ifstream file(argv[i]); - if (!file) { - fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); - retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params); - exit(1); - } - // store the external file name in params - retrieval_params.context_files.push_back(argv[i]); - } else if (arg == "--chunk-size") { - if (++i >= argc) { - fprintf(stderr, "error: missing argument for --chunk-size\n"); - retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params); - exit(1); - } - retrieval_params.chunk_size = std::stoi(argv[i]); - } else if (arg == "--chunk-separator") { - if (++i >= argc) { - fprintf(stderr, "error: missing argument for --chunk-separator\n"); - retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params); - exit(1); - } - retrieval_params.chunk_separator = argv[i]; - } else { - // unknown argument - fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); - retrieval_params_print_usage(argc, argv, gpt_params, retrieval_params); - exit(1); - } - i++; - } + LOG_TEE("\nexample usage:\n"); + LOG_TEE("\n %s --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator .\n", argv[0]); + LOG_TEE("\n"); } struct chunk { @@ -133,9 +73,10 @@ static std::vector chunk_file(const std::string & filename, int chunk_siz return chunks; } -static void batch_add_seq(llama_batch & batch, const std::vector & tokens, int seq_id) { - for (size_t i = 0; i < tokens.size(); i++) { - llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1); +static void batch_add_seq(llama_batch & batch, const std::vector & tokens, llama_seq_id seq_id) { + size_t n_tokens = tokens.size(); + for (size_t i = 0; i < n_tokens; i++) { + llama_batch_add(batch, tokens[i], i, { seq_id }, true); } } @@ -171,33 +112,35 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu int main(int argc, char ** argv) { gpt_params params; - retrieval_params retrieval_params; - retrieval_params_parse(argc, argv, params, retrieval_params); + if (!gpt_params_parse(argc, argv, params)) { + print_usage(argc, argv, params); + return 1; + } // For BERT models, batch size must be equal to ubatch size params.n_ubatch = params.n_batch; + params.embedding = true; - if (retrieval_params.chunk_size <= 0) { + if (params.chunk_size <= 0) { fprintf(stderr, "chunk_size must be positive\n"); return 1; } - if (retrieval_params.context_files.empty()) { + if (params.context_files.empty()) { fprintf(stderr, "context_files must be specified\n"); return 1; } - params.embedding = true; print_build_info(); printf("processing files:\n"); - for (auto & context_file : retrieval_params.context_files) { + for (auto & context_file : params.context_files) { printf("%s\n", context_file.c_str()); } std::vector chunks; - for (auto & context_file : retrieval_params.context_files) { - std::vector file_chunk = chunk_file(context_file, retrieval_params.chunk_size, retrieval_params.chunk_separator); + for (auto & context_file : params.context_files) { + std::vector file_chunk = chunk_file(context_file, params.chunk_size, params.chunk_separator); chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end()); } printf("Number of chunks: %ld\n", chunks.size()); @@ -218,6 +161,12 @@ int main(int argc, char ** argv) { const int n_ctx_train = llama_n_ctx_train(model); const int n_ctx = llama_n_ctx(ctx); + const enum llama_pooling_type pooling_type = llama_pooling_type(ctx); + if (pooling_type == LLAMA_POOLING_TYPE_NONE) { + fprintf(stderr, "%s: error: pooling type NONE not supported\n", __func__); + return 1; + } + if (n_ctx > n_ctx_train) { fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx); @@ -242,7 +191,7 @@ int main(int argc, char ** argv) { return 1; } // add eos if not present - if (inp.empty() || inp.back() != llama_token_eos(model)) { + if (llama_token_eos(model) >= 0 && (inp.empty() || inp.back() != llama_token_eos(model))) { inp.push_back(llama_token_eos(model)); } chunk.tokens = inp; diff --git a/examples/rpc/README.md b/examples/rpc/README.md index eeec71a8e..86544e3fe 100644 --- a/examples/rpc/README.md +++ b/examples/rpc/README.md @@ -70,5 +70,5 @@ cmake --build . --config Release Finally, use the `--rpc` option to specify the host and port of each `rpc-server`: ```bash -$ bin/main -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name is" --repeat-penalty 1.0 -n 64 --rpc 192.168.88.10:50052,192.168.88.11:50052 -ngl 99 +$ bin/llama-cli -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name is" --repeat-penalty 1.0 -n 64 --rpc 192.168.88.10:50052,192.168.88.11:50052 -ngl 99 ``` diff --git a/examples/rpc/rpc-server.cpp b/examples/rpc/rpc-server.cpp index 62d828250..7c15d2aa4 100644 --- a/examples/rpc/rpc-server.cpp +++ b/examples/rpc/rpc-server.cpp @@ -6,10 +6,6 @@ #include "ggml-metal.h" #endif -#ifdef GGML_USE_SYCL -#include "ggml-sycl.h" -#endif - #include "ggml-rpc.h" #ifdef _WIN32 # include @@ -83,12 +79,6 @@ static ggml_backend_t create_backend() { if (!backend) { fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__); } -#elif GGML_USE_SYCL - fprintf(stderr, "%s: using SYCL backend\n", __func__); - backend = ggml_backend_sycl_init(0); // init device 0 - if (!backend) { - fprintf(stderr, "%s: ggml_backend_sycl_init() failed\n", __func__); - } #endif // if there aren't GPU Backends fallback to CPU backend diff --git a/examples/save-load-state/CMakeLists.txt b/examples/save-load-state/CMakeLists.txt index cc6ed8554..0fb5e359b 100644 --- a/examples/save-load-state/CMakeLists.txt +++ b/examples/save-load-state/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET save-load-state) +set(TARGET llama-save-load-state) add_executable(${TARGET} save-load-state.cpp) install(TARGETS ${TARGET} RUNTIME) target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) diff --git a/examples/save-load-state/save-load-state.cpp b/examples/save-load-state/save-load-state.cpp index c3b766882..00c2277ac 100644 --- a/examples/save-load-state/save-load-state.cpp +++ b/examples/save-load-state/save-load-state.cpp @@ -11,6 +11,7 @@ int main(int argc, char ** argv) { params.prompt = "The quick brown fox"; if (!gpt_params_parse(argc, argv, params)) { + gpt_params_print_usage(argc, argv, params); return 1; } diff --git a/examples/server-llama2-13B.sh b/examples/server-llama2-13B.sh index 17fedc2b1..4ce79b7fa 100755 --- a/examples/server-llama2-13B.sh +++ b/examples/server-llama2-13B.sh @@ -16,7 +16,7 @@ GEN_OPTIONS="${GEN_OPTIONS:---ctx_size 4096 --batch-size 1024}" # shellcheck disable=SC2086 # Intended splitting of GEN_OPTIONS -./server $GEN_OPTIONS \ +./llama-server $GEN_OPTIONS \ --model "$MODEL" \ --threads "$N_THREAD" \ --rope-freq-scale 1.0 \ diff --git a/examples/server/CMakeLists.txt b/examples/server/CMakeLists.txt index dab709619..8365f9510 100644 --- a/examples/server/CMakeLists.txt +++ b/examples/server/CMakeLists.txt @@ -1,4 +1,4 @@ -set(TARGET server) +set(TARGET llama-server) option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON) option(LLAMA_SERVER_SSL "Build SSL support for the server" OFF) include_directories(${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR}) diff --git a/examples/server/README.md b/examples/server/README.md index 0c3db8c84..e7fb0bf64 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -80,26 +80,26 @@ The project is under active development, and we are [looking for feedback and co ## Build -`server` is built alongside everything else from the root of the project +`llama-server` is built alongside everything else from the root of the project - Using `make`: ```bash - make server + make llama-server ``` - Using `CMake`: ```bash cmake -B build - cmake --build build --config Release -t server + cmake --build build --config Release -t llama-server ``` - Binary is at `./build/bin/server` + Binary is at `./build/bin/llama-server` ## Build with SSL -`server` can also be built with SSL support using OpenSSL 3 +`llama-server` can also be built with SSL support using OpenSSL 3 - Using `make`: @@ -107,14 +107,14 @@ The project is under active development, and we are [looking for feedback and co # NOTE: For non-system openssl, use the following: # CXXFLAGS="-I /path/to/openssl/include" # LDFLAGS="-L /path/to/openssl/lib" - make LLAMA_SERVER_SSL=true server + make LLAMA_SERVER_SSL=true llama-server ``` - Using `CMake`: ```bash cmake -B build -DLLAMA_SERVER_SSL=ON - cmake --build build --config Release -t server + cmake --build build --config Release -t llama-server ``` ## Quick Start @@ -124,13 +124,13 @@ To get started right away, run the following command, making sure to use the cor ### Unix-based systems (Linux, macOS, etc.) ```bash -./server -m models/7B/ggml-model.gguf -c 2048 +./llama-server -m models/7B/ggml-model.gguf -c 2048 ``` ### Windows ```powershell -server.exe -m models\7B\ggml-model.gguf -c 2048 +llama-server.exe -m models\7B\ggml-model.gguf -c 2048 ``` The above command will start a server that by default listens on `127.0.0.1:8080`. @@ -279,7 +279,7 @@ node index.js `id_slot`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot. Default: `-1` - `cache_prompt`: Re-use previously cached prompt from the last request if possible. This may prevent re-caching the prompt from scratch. Default: `false` + `cache_prompt`: Re-use KV cache from a previous request if possible. This way the common prefix does not have to be re-processed, only the suffix that differs between the requests. Because (depending on the backend) the logits are **not** guaranteed to be bit-for-bit identical for different batch sizes (prompt processing vs. token generation) enabling this option can cause nondeterministic results. Default: `false` `system_prompt`: Change the system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime) @@ -629,11 +629,11 @@ bash chat.sh ### OAI-like API -The HTTP `server` supports an OAI-like API: https://github.com/openai/openai-openapi +The HTTP `llama-server` supports an OAI-like API: https://github.com/openai/openai-openapi ### API errors -`server` returns errors in the same format as OAI: https://github.com/openai/openai-openapi +`llama-server` returns errors in the same format as OAI: https://github.com/openai/openai-openapi Example of an error: diff --git a/examples/server/bench/README.md b/examples/server/bench/README.md index 23a3ec975..0f18ca396 100644 --- a/examples/server/bench/README.md +++ b/examples/server/bench/README.md @@ -99,7 +99,7 @@ The `bench.py` script does several steps: It aims to be used in the CI, but you can run it manually: ```shell -LLAMA_SERVER_BIN_PATH=../../../cmake-build-release/bin/server python bench.py \ +LLAMA_SERVER_BIN_PATH=../../../cmake-build-release/bin/llama-server python bench.py \ --runner-label local \ --name local \ --branch `git rev-parse --abbrev-ref HEAD` \ diff --git a/examples/server/bench/bench.py b/examples/server/bench/bench.py index 86c5de101..4fbbb2032 100644 --- a/examples/server/bench/bench.py +++ b/examples/server/bench/bench.py @@ -245,7 +245,7 @@ def start_server(args): def start_server_background(args): # Start the server - server_path = '../../../build/bin/server' + server_path = '../../../build/bin/llama-server' if 'LLAMA_SERVER_BIN_PATH' in os.environ: server_path = os.environ['LLAMA_SERVER_BIN_PATH'] server_args = [ diff --git a/examples/server/public/index-new.html b/examples/server/public/index-new.html index d571c2779..5513e9121 100644 --- a/examples/server/public/index-new.html +++ b/examples/server/public/index-new.html @@ -416,7 +416,7 @@ message = html`<${Probabilities} data=${data} />` } else { const text = isArrayMessage ? - data.map(msg => msg.content).join('').replace(/^\s+/, '') : + data.map(msg => msg.content).join('') : data; message = isCompletionMode ? text : @@ -634,12 +634,12 @@ return html`
    -