mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 22:59:24 +01:00
llama : support Jamba
This commit is contained in:
parent
7e13f19fb5
commit
cbc743e600
@ -2300,7 +2300,7 @@ class MambaModel(Model):
|
||||
self.gguf_writer.add_embedding_length(d_model)
|
||||
self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
|
||||
self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
|
||||
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_ssm_conv_kernel(d_conv)
|
||||
self.gguf_writer.add_ssm_inner_size(d_inner)
|
||||
self.gguf_writer.add_ssm_state_size(d_state)
|
||||
@ -2346,6 +2346,107 @@ class MambaModel(Model):
|
||||
)
|
||||
|
||||
|
||||
@Model.register("JambaForCausalLM")
|
||||
class JambaModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.JAMBA
|
||||
|
||||
def get_vocab_base_pre(self, tokenizer) -> str:
|
||||
del tokenizer # unused
|
||||
|
||||
return "gpt-2"
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
|
||||
d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
|
||||
d_inner = self.hparams["mamba_expand"] * d_model
|
||||
d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
|
||||
# ceiling division
|
||||
# ref: https://stackoverflow.com/a/17511341/22827863
|
||||
# ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
|
||||
dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
|
||||
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
|
||||
n_kv_head = self.hparams["num_key_value_heads"]
|
||||
attn_offset = self.hparams["attn_layer_offset"]
|
||||
attn_period = self.hparams["attn_layer_period"]
|
||||
n_kv_vec = [0 for _ in range(attn_offset)] + [
|
||||
n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
|
||||
]
|
||||
|
||||
self.gguf_writer.add_name(self.dir_model.name)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_embedding_length(d_model)
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_head_count_kv(n_kv_vec)
|
||||
self.gguf_writer.add_ssm_conv_kernel(d_conv)
|
||||
self.gguf_writer.add_ssm_inner_size(d_inner)
|
||||
self.gguf_writer.add_ssm_state_size(d_state)
|
||||
self.gguf_writer.add_ssm_time_step_rank(dt_rank)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
|
||||
self.gguf_writer.add_expert_count(self.hparams["num_experts"])
|
||||
self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
|
||||
# process the experts separately
|
||||
if ".feed_forward.experts." in name:
|
||||
n_experts = self.hparams["num_experts"]
|
||||
|
||||
assert bid is not None
|
||||
|
||||
if self._experts is None:
|
||||
self._experts = [{} for _ in range(self.block_count)]
|
||||
|
||||
self._experts[bid][name] = data_torch
|
||||
|
||||
if len(self._experts[bid]) >= n_experts * 3:
|
||||
|
||||
# merge the experts into a single 3d tensor
|
||||
for wid in ["down_proj", "gate_proj", "up_proj"]:
|
||||
datas: list[Tensor] = []
|
||||
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
|
||||
datas.append(self._experts[bid][ename])
|
||||
del self._experts[bid][ename]
|
||||
|
||||
data_torch = torch.stack(datas, dim=0)
|
||||
|
||||
# using the same merged name as qwen2moe
|
||||
merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
|
||||
|
||||
new_name = self.map_tensor_name(merged_name)
|
||||
|
||||
yield new_name, data_torch
|
||||
return
|
||||
|
||||
new_name = self.map_tensor_name(name)
|
||||
|
||||
if name.endswith(".A_log"):
|
||||
logger.debug("A_log --> A ==> " + new_name)
|
||||
data_torch = -torch.exp(data_torch)
|
||||
|
||||
yield new_name, data_torch
|
||||
|
||||
# same as Mamba
|
||||
def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
|
||||
del n_dims # unused
|
||||
|
||||
return bid is not None and new_name in (
|
||||
self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
|
||||
gguf.MODEL_TENSOR.SSM_CONV1D,
|
||||
gguf.MODEL_TENSOR.SSM_X,
|
||||
gguf.MODEL_TENSOR.SSM_DT,
|
||||
gguf.MODEL_TENSOR.SSM_A,
|
||||
gguf.MODEL_TENSOR.SSM_D,
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@Model.register("CohereForCausalLM")
|
||||
class CommandR2Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.COMMAND_R
|
||||
|
@ -135,6 +135,7 @@ class MODEL_ARCH(IntEnum):
|
||||
GEMMA = auto()
|
||||
STARCODER2 = auto()
|
||||
MAMBA = auto()
|
||||
JAMBA = auto()
|
||||
XVERSE = auto()
|
||||
COMMAND_R = auto()
|
||||
DBRX = auto()
|
||||
@ -180,7 +181,10 @@ class MODEL_TENSOR(IntEnum):
|
||||
SSM_CONV1D = auto()
|
||||
SSM_X = auto()
|
||||
SSM_DT = auto()
|
||||
SSM_DT_NORM = auto()
|
||||
SSM_A = auto()
|
||||
SSM_B_NORM = auto()
|
||||
SSM_C_NORM = auto()
|
||||
SSM_D = auto()
|
||||
SSM_OUT = auto()
|
||||
|
||||
@ -214,6 +218,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.GEMMA: "gemma",
|
||||
MODEL_ARCH.STARCODER2: "starcoder2",
|
||||
MODEL_ARCH.MAMBA: "mamba",
|
||||
MODEL_ARCH.JAMBA: "jamba",
|
||||
MODEL_ARCH.XVERSE: "xverse",
|
||||
MODEL_ARCH.COMMAND_R: "command-r",
|
||||
MODEL_ARCH.DBRX: "dbrx",
|
||||
@ -259,7 +264,10 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
|
||||
MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
|
||||
MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
|
||||
MODEL_TENSOR.SSM_DT_NORM: "blk.{bid}.ssm_dt_norm",
|
||||
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
|
||||
MODEL_TENSOR.SSM_B_NORM: "blk.{bid}.ssm_b_norm",
|
||||
MODEL_TENSOR.SSM_C_NORM: "blk.{bid}.ssm_c_norm",
|
||||
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
|
||||
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
|
||||
}
|
||||
@ -678,6 +686,34 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.SSM_D,
|
||||
MODEL_TENSOR.SSM_OUT,
|
||||
],
|
||||
MODEL_ARCH.JAMBA: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.SSM_IN,
|
||||
MODEL_TENSOR.SSM_CONV1D,
|
||||
MODEL_TENSOR.SSM_X,
|
||||
MODEL_TENSOR.SSM_DT,
|
||||
MODEL_TENSOR.SSM_DT_NORM,
|
||||
MODEL_TENSOR.SSM_A,
|
||||
MODEL_TENSOR.SSM_B_NORM,
|
||||
MODEL_TENSOR.SSM_C_NORM,
|
||||
MODEL_TENSOR.SSM_D,
|
||||
MODEL_TENSOR.SSM_OUT,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
MODEL_ARCH.XVERSE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
|
@ -385,8 +385,11 @@ class GGUFWriter:
|
||||
def add_head_count(self, count: int) -> None:
|
||||
self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
|
||||
|
||||
def add_head_count_kv(self, count: int) -> None:
|
||||
self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
|
||||
def add_head_count_kv(self, count: int | Sequence[int]) -> None:
|
||||
if isinstance(count, int):
|
||||
self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
|
||||
else:
|
||||
self.add_array(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
|
||||
|
||||
def add_key_length(self, length: int) -> None:
|
||||
self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length)
|
||||
|
@ -206,6 +206,7 @@ class TensorNameMap:
|
||||
"h.{bid}.ln_2", # gpt2
|
||||
"model.layers.{bid}.ffn_norm", # internlm2
|
||||
"transformer.decoder_layer.{bid}.rms_norm_2", # Grok
|
||||
"model.layers.{bid}.pre_ff_layernorm", # jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_INP: (
|
||||
@ -214,6 +215,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.mlp.gate", # qwen2moe
|
||||
"transformer.decoder_layer.{bid}.router", # Grok
|
||||
"transformer.blocks.{bid}.ffn.router.layer", # dbrx
|
||||
"model.layers.{bid}.feed_forward.router", # jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
|
||||
@ -244,6 +246,7 @@ class TensorNameMap:
|
||||
"encoder.layers.{bid}.mlp.fc11", # nomic-bert
|
||||
"model.layers.{bid}.mlp.c_fc", # starcoder2
|
||||
"encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
|
||||
"model.layers.{bid}.feed_forward.up_proj", # jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_EXP: (
|
||||
@ -272,6 +275,7 @@ class TensorNameMap:
|
||||
"encoder.layers.{bid}.mlp.fc12", # nomic-bert
|
||||
"encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
|
||||
"transformer.h.{bid}.mlp.linear_1", # refact
|
||||
"model.layers.{bid}.feed_forward.gate_proj", # jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_EXP: (
|
||||
@ -306,6 +310,7 @@ class TensorNameMap:
|
||||
"encoder.layers.{bid}.mlp.fc2", # nomic-bert
|
||||
"model.layers.{bid}.mlp.c_proj", # starcoder2
|
||||
"encoder.layer.{bid}.mlp.wo", # jina-bert-v2
|
||||
"model.layers.{bid}.feed_forward.down_proj", # jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||
@ -347,38 +352,57 @@ class TensorNameMap:
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_IN: (
|
||||
"model.layers.{bid}.in_proj",
|
||||
"backbone.layers.{bid}.mixer.in_proj",
|
||||
"model.layers.{bid}.in_proj", # mamba-hf
|
||||
"backbone.layers.{bid}.mixer.in_proj", # mamba
|
||||
"model.layers.{bid}.mamba.in_proj", # jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_CONV1D: (
|
||||
"model.layers.{bid}.conv1d",
|
||||
"backbone.layers.{bid}.mixer.conv1d",
|
||||
"model.layers.{bid}.conv1d", # mamba-hf
|
||||
"backbone.layers.{bid}.mixer.conv1d", # mamba
|
||||
"model.layers.{bid}.mamba.conv1d", # jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_X: (
|
||||
"model.layers.{bid}.x_proj",
|
||||
"backbone.layers.{bid}.mixer.x_proj",
|
||||
"model.layers.{bid}.x_proj", # mamba-hf
|
||||
"backbone.layers.{bid}.mixer.x_proj", # mamba
|
||||
"model.layers.{bid}.mamba.x_proj", # jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_DT: (
|
||||
"model.layers.{bid}.dt_proj",
|
||||
"backbone.layers.{bid}.mixer.dt_proj",
|
||||
"model.layers.{bid}.dt_proj", # mamba-hf
|
||||
"backbone.layers.{bid}.mixer.dt_proj", # mamba
|
||||
"model.layers.{bid}.mamba.dt_proj", # jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_DT_NORM: (
|
||||
"model.layers.{bid}.mamba.dt_layernorm", # jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_A: (
|
||||
"model.layers.{bid}.A_log",
|
||||
"backbone.layers.{bid}.mixer.A_log",
|
||||
"model.layers.{bid}.A_log", # mamba-hf
|
||||
"backbone.layers.{bid}.mixer.A_log", # mamba
|
||||
"model.layers.{bid}.mamba.A_log", # jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_B_NORM: (
|
||||
"model.layers.{bid}.mamba.b_layernorm", # jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_C_NORM: (
|
||||
"model.layers.{bid}.mamba.c_layernorm", # jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_D: (
|
||||
"model.layers.{bid}.D",
|
||||
"backbone.layers.{bid}.mixer.D",
|
||||
"model.layers.{bid}.D", # mamba-hf
|
||||
"backbone.layers.{bid}.mixer.D", # mamba
|
||||
"model.layers.{bid}.mamba.D", # jamba
|
||||
),
|
||||
|
||||
MODEL_TENSOR.SSM_OUT: (
|
||||
"model.layers.{bid}.out_proj",
|
||||
"backbone.layers.{bid}.mixer.out_proj",
|
||||
"model.layers.{bid}.out_proj", # mamba-hf
|
||||
"backbone.layers.{bid}.mixer.out_proj", # mamba
|
||||
"model.layers.{bid}.mamba.out_proj", # jamba
|
||||
),
|
||||
}
|
||||
|
||||
|
531
llama.cpp
531
llama.cpp
@ -221,6 +221,7 @@ enum llm_arch {
|
||||
LLM_ARCH_GEMMA,
|
||||
LLM_ARCH_STARCODER2,
|
||||
LLM_ARCH_MAMBA,
|
||||
LLM_ARCH_JAMBA,
|
||||
LLM_ARCH_XVERSE,
|
||||
LLM_ARCH_COMMAND_R,
|
||||
LLM_ARCH_DBRX,
|
||||
@ -257,6 +258,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_GEMMA, "gemma" },
|
||||
{ LLM_ARCH_STARCODER2, "starcoder2" },
|
||||
{ LLM_ARCH_MAMBA, "mamba" },
|
||||
{ LLM_ARCH_JAMBA, "jamba" },
|
||||
{ LLM_ARCH_XVERSE, "xverse" },
|
||||
{ LLM_ARCH_COMMAND_R, "command-r" },
|
||||
{ LLM_ARCH_DBRX, "dbrx" },
|
||||
@ -472,7 +474,10 @@ enum llm_tensor {
|
||||
LLM_TENSOR_SSM_CONV1D,
|
||||
LLM_TENSOR_SSM_X,
|
||||
LLM_TENSOR_SSM_DT,
|
||||
LLM_TENSOR_SSM_DT_NORM,
|
||||
LLM_TENSOR_SSM_A,
|
||||
LLM_TENSOR_SSM_B_NORM,
|
||||
LLM_TENSOR_SSM_C_NORM,
|
||||
LLM_TENSOR_SSM_D,
|
||||
LLM_TENSOR_SSM_OUT,
|
||||
};
|
||||
@ -970,6 +975,37 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
||||
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_JAMBA,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
|
||||
{ LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
|
||||
{ LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
|
||||
{ LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
|
||||
{ LLM_TENSOR_SSM_DT_NORM, "blk.%d.ssm_dt_norm" },
|
||||
{ LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
|
||||
{ LLM_TENSOR_SSM_B_NORM, "blk.%d.ssm_b_norm" },
|
||||
{ LLM_TENSOR_SSM_C_NORM, "blk.%d.ssm_c_norm" },
|
||||
{ LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
|
||||
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_XVERSE,
|
||||
{
|
||||
@ -1905,6 +1941,9 @@ struct llama_layer {
|
||||
struct ggml_tensor * attn_k_norm_b;
|
||||
struct ggml_tensor * attn_out_norm;
|
||||
struct ggml_tensor * attn_out_norm_b;
|
||||
struct ggml_tensor * ssm_dt_norm;
|
||||
struct ggml_tensor * ssm_b_norm;
|
||||
struct ggml_tensor * ssm_c_norm;
|
||||
|
||||
// attention
|
||||
struct ggml_tensor * wq;
|
||||
@ -5150,6 +5189,22 @@ static void llm_load_hparams(
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_JAMBA:
|
||||
{
|
||||
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
|
||||
ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
|
||||
ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
|
||||
ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
|
||||
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
// TODO: Jamba layers are a bit heterogenous, so naming this is hard.
|
||||
case 12: // 900M 8x???M
|
||||
case 32: // 51B 16x?B
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_XVERSE:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
@ -6854,6 +6909,118 @@ static bool llm_load_tensors(
|
||||
layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_JAMBA:
|
||||
{
|
||||
const int64_t d_conv = hparams.ssm_d_conv;
|
||||
const int64_t d_inner = hparams.ssm_d_inner;
|
||||
const int64_t d_state = hparams.ssm_d_state;
|
||||
const int64_t dt_rank = hparams.ssm_dt_rank;
|
||||
|
||||
// only an expansion factor of 2 is supported for now
|
||||
GGML_ASSERT(2 * n_embd == d_inner);
|
||||
GGML_ASSERT((int64_t) hparams.n_head_kv_vec.size() == n_layer);
|
||||
|
||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
|
||||
// output
|
||||
{
|
||||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||
|
||||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
// if output is NULL, init from the input tok embed, duplicated to allow offloading
|
||||
if (model.output == NULL) {
|
||||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
const int64_t n_head_kv = hparams.n_head_kv_vec[i];
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
|
||||
|
||||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
// norm
|
||||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
|
||||
if (n_head_kv == 0) {
|
||||
// Mamba layer
|
||||
layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
|
||||
|
||||
layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
|
||||
layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
|
||||
|
||||
layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
|
||||
|
||||
layer.ssm_dt_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT_NORM, "weight", i), {dt_rank});
|
||||
|
||||
layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
|
||||
layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
|
||||
|
||||
layer.ssm_b_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_B_NORM, "weight", i), {d_state});
|
||||
layer.ssm_c_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_C_NORM, "weight", i), {d_state});
|
||||
|
||||
// no "weight" suffix for these
|
||||
layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
|
||||
layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
|
||||
|
||||
// out_proj
|
||||
layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
|
||||
|
||||
layer.wq = nullptr;
|
||||
layer.wk = nullptr;
|
||||
layer.wv = nullptr;
|
||||
layer.wo = nullptr;
|
||||
|
||||
} else {
|
||||
// Attention layers
|
||||
|
||||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||||
|
||||
layer.ssm_in = nullptr;
|
||||
layer.ssm_conv1d = nullptr;
|
||||
layer.ssm_conv1d_b = nullptr;
|
||||
layer.ssm_x = nullptr;
|
||||
layer.ssm_dt_norm = nullptr;
|
||||
layer.ssm_dt = nullptr;
|
||||
layer.ssm_dt_b = nullptr;
|
||||
layer.ssm_b_norm = nullptr;
|
||||
layer.ssm_c_norm = nullptr;
|
||||
layer.ssm_a = nullptr;
|
||||
layer.ssm_d = nullptr;
|
||||
layer.ssm_out = nullptr;
|
||||
}
|
||||
|
||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
|
||||
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
|
||||
if (layer.ffn_gate_inp) {
|
||||
// MoE
|
||||
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
|
||||
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
|
||||
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
|
||||
|
||||
layer.ffn_gate = nullptr;
|
||||
layer.ffn_down = nullptr;
|
||||
layer.ffn_up = nullptr;
|
||||
} else {
|
||||
// FFN (no MoE)
|
||||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
|
||||
layer.ffn_gate_exps = nullptr;
|
||||
layer.ffn_down_exps = nullptr;
|
||||
layer.ffn_up_exps = nullptr;
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_XVERSE:
|
||||
{
|
||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
@ -7632,6 +7799,132 @@ static struct ggml_tensor * llm_build_kv(
|
||||
return cur;
|
||||
}
|
||||
|
||||
// TODO: split
|
||||
static struct ggml_tensor * llm_build_mamba(
|
||||
struct ggml_context * ctx,
|
||||
const llama_model & model,
|
||||
const llama_hparams & hparams,
|
||||
const llama_rs_cache & rs,
|
||||
struct ggml_cgraph * graph,
|
||||
struct ggml_tensor * cur,
|
||||
struct ggml_tensor * state_copy,
|
||||
struct ggml_tensor * state_mask,
|
||||
struct ggml_tensor * state_seq,
|
||||
struct ggml_tensor * w_dt_norm,
|
||||
struct ggml_tensor * w_b_norm,
|
||||
struct ggml_tensor * w_c_norm,
|
||||
int32_t n_tokens,
|
||||
int32_t rs_head,
|
||||
int32_t n_rs,
|
||||
const llm_build_cb & cb,
|
||||
int il) {
|
||||
const int64_t d_conv = hparams.ssm_d_conv;
|
||||
const int64_t d_inner = hparams.ssm_d_inner;
|
||||
const int64_t d_state = hparams.ssm_d_state;
|
||||
const int64_t dt_rank = hparams.ssm_dt_rank;
|
||||
|
||||
struct ggml_tensor * conv_states = ggml_reshape_2d(ctx, rs.r_l[il], hparams.n_embd_r(il), rs.size);
|
||||
struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx, rs.s_l[il], hparams.n_embd_s(il), rs.size);
|
||||
|
||||
// copy states
|
||||
{
|
||||
// TODO: use some sort of read-only head and n to pass smaller tensors to ggml_get_rows
|
||||
// NOTE: assuming the copy destinations are ALL contained in the current batch
|
||||
// this shrinks the tensors's ne[1] to n_rs
|
||||
conv_states = ggml_get_rows(ctx, conv_states, state_copy);
|
||||
ssm_states = ggml_get_rows(ctx, ssm_states, state_copy);
|
||||
}
|
||||
|
||||
// clear states of sequences which are starting at the beginning of this batch
|
||||
{
|
||||
conv_states = ggml_mul(ctx, conv_states, state_mask);
|
||||
ssm_states = ggml_mul(ctx, ssm_states, state_mask);
|
||||
}
|
||||
|
||||
conv_states = ggml_reshape_3d(ctx, conv_states, d_conv - 1, d_inner, n_rs);
|
||||
ssm_states = ggml_reshape_3d(ctx, ssm_states, d_state, d_inner, n_rs);
|
||||
|
||||
// {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
|
||||
struct ggml_tensor * xz = ggml_mul_mat(ctx, model.layers[il].ssm_in, cur);
|
||||
// split the above in two
|
||||
// => {d_inner, n_tokens}
|
||||
struct ggml_tensor * x = ggml_view_2d(ctx, xz, d_inner, xz->ne[1], xz->nb[1], 0);
|
||||
struct ggml_tensor * z = ggml_view_2d(ctx, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
|
||||
|
||||
// conv
|
||||
{
|
||||
// Custom operator which is needed only to ease simultaneous sequence processing.
|
||||
// For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
|
||||
// then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
|
||||
// then element-wise multiply that with the conv1d weigth,
|
||||
// then sum the elements of each row,
|
||||
// (the last two steps are a dot product over rows (also doable with mul_mat))
|
||||
// then permute away the ne[0] dimension,
|
||||
// and then you're left with the resulting x tensor.
|
||||
// The new conv_states is the last (d_conv - 1) columns
|
||||
// of the last 3rd dimensional "layer" of the self-overlapping view.
|
||||
// For simultaneous sequences, it's more complicated.
|
||||
struct ggml_tensor * x_conv = ggml_ssm_conv(ctx, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
|
||||
|
||||
// store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
|
||||
ggml_build_forward_expand(graph,
|
||||
ggml_cpy(ctx,
|
||||
ggml_view_2d(ctx, x_conv, d_conv - 1, d_inner*n_rs, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
|
||||
ggml_view_1d(ctx, rs.r_l[il], (d_conv - 1)*(d_inner)*(n_rs), rs_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
|
||||
|
||||
// extract x from x_conv
|
||||
x = ggml_view_2d(ctx, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
|
||||
|
||||
// bias
|
||||
x = ggml_add(ctx, x, model.layers[il].ssm_conv1d_b);
|
||||
|
||||
x = ggml_silu(ctx, x);
|
||||
}
|
||||
|
||||
// ssm
|
||||
{
|
||||
// {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
|
||||
struct ggml_tensor * x_db = ggml_mul_mat(ctx, model.layers[il].ssm_x, x);
|
||||
// split
|
||||
struct ggml_tensor * dt = ggml_view_2d(ctx, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
|
||||
struct ggml_tensor * B = ggml_view_2d(ctx, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
|
||||
struct ggml_tensor * C = ggml_view_2d(ctx, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
|
||||
|
||||
if (w_dt_norm) { dt = llm_build_norm(ctx, dt, hparams, w_dt_norm, NULL, LLM_NORM_RMS, cb, il); }
|
||||
if (w_b_norm) { B = llm_build_norm(ctx, B, hparams, w_b_norm, NULL, LLM_NORM_RMS, cb, il); }
|
||||
if (w_c_norm) { C = llm_build_norm(ctx, C, hparams, w_b_norm, NULL, LLM_NORM_RMS, cb, il); }
|
||||
|
||||
// {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
|
||||
dt = ggml_mul_mat(ctx, model.layers[il].ssm_dt, dt);
|
||||
dt = ggml_add(ctx, dt, model.layers[il].ssm_dt_b);
|
||||
|
||||
// Custom operator to optimize the parallel associative scan
|
||||
// as described in the Annex D of the Mamba paper.
|
||||
// => {d_inner, n_tokens} and {d_state, d_inner, n_rs} combined,
|
||||
// because only a single tensor can be returned.
|
||||
struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
|
||||
|
||||
// store last states (the second part of y_ssm_states)
|
||||
ggml_build_forward_expand(graph,
|
||||
ggml_cpy(ctx,
|
||||
ggml_view_1d(ctx, y_ssm_states, d_state*d_inner*n_rs, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
|
||||
ggml_view_1d(ctx, rs.s_l[il], d_state*d_inner*n_rs, rs_head*d_state*d_inner*ggml_element_size(ssm_states))));
|
||||
|
||||
struct ggml_tensor * y = ggml_view_2d(ctx, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
|
||||
|
||||
// TODO: skip computing output for unused tokens
|
||||
|
||||
// {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
|
||||
y = ggml_add(ctx, y, ggml_mul(ctx, x, model.layers[il].ssm_d));
|
||||
y = ggml_mul(ctx, y, ggml_silu(ctx, z));
|
||||
|
||||
// {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
|
||||
cur = ggml_mul_mat(ctx, model.layers[il].ssm_out, y);
|
||||
}
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
struct llm_build_context {
|
||||
const llama_model & model;
|
||||
llama_context & lctx;
|
||||
@ -11024,13 +11317,6 @@ struct llm_build_context {
|
||||
struct ggml_cgraph * build_mamba() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t d_model = n_embd;
|
||||
const int64_t d_conv = hparams.ssm_d_conv;
|
||||
const int64_t d_inner = hparams.ssm_d_inner;
|
||||
GGML_ASSERT(2 * d_model == d_inner);
|
||||
const int64_t d_state = hparams.ssm_d_state;
|
||||
const int64_t dt_rank = hparams.ssm_dt_rank;
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
@ -11042,112 +11328,21 @@ struct llm_build_context {
|
||||
struct ggml_tensor * state_seq = build_inp_s_seq();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, rs_self.r_l[il], hparams.n_embd_r(il), rs_self.size);
|
||||
struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, rs_self.s_l[il], hparams.n_embd_s(il), rs_self.size);
|
||||
|
||||
// copy states
|
||||
{
|
||||
// TODO: use some sort of read-only head and n to pass smaller tensors to ggml_get_rows
|
||||
// NOTE: assuming the copy destinations are ALL contained in the current batch
|
||||
// this shrinks the tensors's ne[1] to n_rs
|
||||
conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
|
||||
ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
|
||||
}
|
||||
|
||||
// clear states of sequences which are starting at the beginning of this batch
|
||||
{
|
||||
conv_states = ggml_mul(ctx0, conv_states, state_mask);
|
||||
ssm_states = ggml_mul(ctx0, ssm_states, state_mask);
|
||||
}
|
||||
|
||||
conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_rs);
|
||||
ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_rs);
|
||||
|
||||
// norm
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
|
||||
struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
|
||||
// split the above in two
|
||||
// => {d_inner, n_tokens}
|
||||
struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
|
||||
struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
|
||||
cur = llm_build_mamba(ctx0, model, hparams, rs_self, gf, cur,
|
||||
state_copy, state_mask, state_seq, NULL, NULL, NULL,
|
||||
n_tokens, rs_head, n_rs, cb, il);
|
||||
|
||||
// conv
|
||||
{
|
||||
// Custom operator which is needed only to ease simultaneous sequence processing.
|
||||
// For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
|
||||
// then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
|
||||
// then element-wise multiply that with the conv1d weigth,
|
||||
// then sum the elements of each row,
|
||||
// (the last two steps are a dot product over rows (also doable with mul_mat))
|
||||
// then permute away the ne[0] dimension,
|
||||
// and then you're left with the resulting x tensor.
|
||||
// The new conv_states is the last (d_conv - 1) columns
|
||||
// of the last 3rd dimensional "layer" of the self-overlapping view.
|
||||
// For simultaneous sequences, it's more complicated.
|
||||
struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
|
||||
|
||||
// store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_cpy(ctx0,
|
||||
ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_rs, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
|
||||
ggml_view_1d(ctx0, rs_self.r_l[il], (d_conv - 1)*(d_inner)*(n_rs), rs_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
|
||||
|
||||
// extract x from x_conv
|
||||
x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
|
||||
|
||||
// bias
|
||||
x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
|
||||
|
||||
x = ggml_silu(ctx0, x);
|
||||
}
|
||||
|
||||
// ssm
|
||||
{
|
||||
// {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
|
||||
struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
|
||||
// split
|
||||
struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
|
||||
struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
|
||||
struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
|
||||
|
||||
// {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
|
||||
dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
|
||||
dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
|
||||
|
||||
// Custom operator to optimize the parallel associative scan
|
||||
// as described in the Annex D of the Mamba paper.
|
||||
// => {d_inner, n_tokens} and {d_state, d_inner, n_rs} combined,
|
||||
// because only a single tensor can be returned.
|
||||
struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
|
||||
|
||||
// store last states (the second part of y_ssm_states)
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_cpy(ctx0,
|
||||
ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_rs, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
|
||||
ggml_view_1d(ctx0, rs_self.s_l[il], d_state*d_inner*n_rs, rs_head*d_state*d_inner*ggml_element_size(ssm_states))));
|
||||
|
||||
struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
|
||||
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
x = ggml_get_rows(ctx0, x, inp_out_ids);
|
||||
y = ggml_get_rows(ctx0, y, inp_out_ids);
|
||||
z = ggml_get_rows(ctx0, z, inp_out_ids);
|
||||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||||
}
|
||||
|
||||
// {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
|
||||
y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
|
||||
y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
|
||||
|
||||
// {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
|
||||
cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||||
}
|
||||
|
||||
// residual
|
||||
@ -11173,6 +11368,125 @@ struct llm_build_context {
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_jamba() {
|
||||
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
// {n_embd, n_tokens}
|
||||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||
|
||||
struct ggml_tensor * state_copy = build_inp_s_copy();
|
||||
struct ggml_tensor * state_mask = build_inp_s_mask();
|
||||
struct ggml_tensor * state_seq = build_inp_s_seq();
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
const int64_t n_head_kv = hparams.n_head_kv_l(il);
|
||||
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
if (n_head_kv == 0) {
|
||||
// Mamba
|
||||
cur = llm_build_mamba(ctx0, model, hparams, rs_self, gf, cur,
|
||||
state_copy, state_mask, state_seq,
|
||||
model.layers[il].ssm_dt_norm, model.layers[il].ssm_b_norm, model.layers[il].ssm_c_norm,
|
||||
n_tokens, rs_head, n_rs, cb, il);
|
||||
} else {
|
||||
// Attention
|
||||
|
||||
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
||||
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
||||
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
// No RoPE :)
|
||||
|
||||
cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
|
||||
model.layers[il].wo, NULL,
|
||||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||||
}
|
||||
|
||||
// residual
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, inpL, cur);
|
||||
cb(cur, "ffn_inp", il);
|
||||
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
// feed-forward network
|
||||
if (model.layers[il].ffn_gate_inp == nullptr) {
|
||||
// FFN
|
||||
cur = llm_build_ffn(ctx0, cur,
|
||||
model.layers[il].ffn_up, NULL,
|
||||
model.layers[il].ffn_gate, NULL,
|
||||
model.layers[il].ffn_down, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
} else {
|
||||
// MoE branch
|
||||
cur = llm_build_moe_ffn(ctx0, cur,
|
||||
model.layers[il].ffn_gate_inp,
|
||||
model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps,
|
||||
model.layers[il].ffn_down_exps,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_SILU, false,
|
||||
cb, il);
|
||||
cb(cur, "ffn_moe_out", il);
|
||||
}
|
||||
|
||||
// residual
|
||||
cur = ggml_add(ctx0, ffn_inp, cur);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
// final rmsnorm
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
// lm_head
|
||||
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_command_r() {
|
||||
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
@ -11630,6 +11944,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm.build_mamba();
|
||||
} break;
|
||||
case LLM_ARCH_JAMBA:
|
||||
{
|
||||
result = llm.build_jamba();
|
||||
} break;
|
||||
case LLM_ARCH_XVERSE:
|
||||
{
|
||||
result = llm.build_xverse();
|
||||
@ -16644,6 +16962,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_REFACT:
|
||||
case LLM_ARCH_BLOOM:
|
||||
case LLM_ARCH_MAMBA:
|
||||
case LLM_ARCH_JAMBA:
|
||||
case LLM_ARCH_JINA_BERT_V2:
|
||||
return LLAMA_ROPE_TYPE_NONE;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user