mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 03:12:23 +01:00
cuda : non-cont concat support (#7610)
* tests : add non-cont concat tests * cuda : non-cont concat support ggml-ci
This commit is contained in:
parent
210d99173d
commit
cce3dcffc5
@ -1,5 +1,6 @@
|
||||
#include "concat.cuh"
|
||||
|
||||
// contiguous kernels
|
||||
static __global__ void concat_f32_dim0(const float * x, const float * y, float * dst, const int ne0, const int ne00) {
|
||||
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (nidx >= ne0) {
|
||||
@ -92,39 +93,104 @@ static void concat_f32_cuda(const float * x, const float * y, float * dst, int n
|
||||
concat_f32_dim2<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
|
||||
}
|
||||
|
||||
// non-contiguous kernel (slow)
|
||||
static __global__ void concat_f32_non_cont(
|
||||
const char * src0,
|
||||
const char * src1,
|
||||
char * dst,
|
||||
int64_t ne00,
|
||||
int64_t ne01,
|
||||
int64_t ne02,
|
||||
int64_t ne03,
|
||||
uint64_t nb00,
|
||||
uint64_t nb01,
|
||||
uint64_t nb02,
|
||||
uint64_t nb03,
|
||||
int64_t /*ne10*/,
|
||||
int64_t /*ne11*/,
|
||||
int64_t /*ne12*/,
|
||||
int64_t /*ne13*/,
|
||||
uint64_t nb10,
|
||||
uint64_t nb11,
|
||||
uint64_t nb12,
|
||||
uint64_t nb13,
|
||||
int64_t ne0,
|
||||
int64_t /*ne1*/,
|
||||
int64_t /*ne2*/,
|
||||
int64_t /*ne3*/,
|
||||
uint64_t nb0,
|
||||
uint64_t nb1,
|
||||
uint64_t nb2,
|
||||
uint64_t nb3,
|
||||
int32_t dim) {
|
||||
const int64_t i3 = blockIdx.z;
|
||||
const int64_t i2 = blockIdx.y;
|
||||
const int64_t i1 = blockIdx.x;
|
||||
|
||||
int64_t o[4] = {0, 0, 0, 0};
|
||||
o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03));
|
||||
|
||||
const float * x;
|
||||
|
||||
for (int i0 = threadIdx.x; i0 < ne0; i0 += blockDim.x) {
|
||||
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
x = (const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00);
|
||||
} else {
|
||||
x = (const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10);
|
||||
}
|
||||
|
||||
float * y = (float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
*y = *x;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
const float * src1_d = (const float *)src1->data;
|
||||
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const int32_t dim = ((int32_t *) dst->op_params)[0];
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
if (dim != 3) {
|
||||
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
|
||||
concat_f32_cuda(
|
||||
src0_d + i3 * (src0->nb[3] / 4),
|
||||
src1_d + i3 * (src1->nb[3] / 4),
|
||||
dst_d + i3 * ( dst->nb[3] / 4),
|
||||
src0->ne[0], src0->ne[1], src0->ne[2],
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dim, stream);
|
||||
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
const float * src1_d = (const float *)src1->data;
|
||||
|
||||
float * dst_d = (float *)dst->data;
|
||||
|
||||
if (dim != 3) {
|
||||
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
|
||||
concat_f32_cuda(
|
||||
src0_d + i3 * (src0->nb[3] / 4),
|
||||
src1_d + i3 * (src1->nb[3] / 4),
|
||||
dst_d + i3 * ( dst->nb[3] / 4),
|
||||
src0->ne[0], src0->ne[1], src0->ne[2],
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dim, stream);
|
||||
}
|
||||
} else {
|
||||
const size_t size0 = ggml_nbytes(src0);
|
||||
const size_t size1 = ggml_nbytes(src1);
|
||||
|
||||
CUDA_CHECK(cudaMemcpyAsync(dst_d, src0_d, size0, cudaMemcpyDeviceToDevice, stream));
|
||||
CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream));
|
||||
}
|
||||
} else {
|
||||
const size_t size0 = ggml_nbytes(src0);
|
||||
const size_t size1 = ggml_nbytes(src1);
|
||||
|
||||
CUDA_CHECK(cudaMemcpyAsync(dst_d, src0_d, size0, cudaMemcpyDeviceToDevice, stream));
|
||||
CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream));
|
||||
dim3 grid_dim(dst->ne[1], dst->ne[2], dst->ne[3]);
|
||||
concat_f32_non_cont<<<grid_dim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(
|
||||
(const char *)src0->data,
|
||||
(const char *)src1->data,
|
||||
( char *)dst->data,
|
||||
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
|
||||
src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
|
||||
src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3],
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
|
||||
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3], dim);
|
||||
}
|
||||
}
|
||||
|
@ -1262,22 +1262,37 @@ struct test_concat : public test_case {
|
||||
const std::array<int64_t, 4> ne_a;
|
||||
const int64_t ne_b_d;
|
||||
const int dim;
|
||||
const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR4(type, ne_a, ne_b_d, dim);
|
||||
return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
|
||||
}
|
||||
|
||||
test_concat(ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne_a = {10, 10, 10, 10},
|
||||
int64_t ne_b_d = 10,
|
||||
int dim = 2)
|
||||
: type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim) {}
|
||||
int dim = 2, int v = 0)
|
||||
: type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
auto ne_b = ne_a;
|
||||
ne_b[dim] = ne_b_d;
|
||||
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
||||
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
|
||||
ggml_tensor * a;
|
||||
if (v & 1) {
|
||||
auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
|
||||
a = ggml_new_tensor(ctx, type, 4, ne.data());
|
||||
a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
|
||||
} else {
|
||||
a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
||||
}
|
||||
ggml_tensor * b;
|
||||
if (v & 2) {
|
||||
auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
|
||||
b = ggml_new_tensor(ctx, type, 4, ne.data());
|
||||
b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
|
||||
} else {
|
||||
b = ggml_new_tensor(ctx, type, 4, ne_b.data());
|
||||
}
|
||||
ggml_tensor * out = ggml_concat(ctx, a, b, dim);
|
||||
return out;
|
||||
}
|
||||
@ -2215,9 +2230,11 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
}
|
||||
}
|
||||
|
||||
for (int dim : { 0, 1, 2, 3, }) {
|
||||
test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim));
|
||||
test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim));
|
||||
for (int v : { 0, 1, 2, 3 }) {
|
||||
for (int dim : { 0, 1, 2, 3, }) {
|
||||
test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
|
||||
test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
|
||||
}
|
||||
}
|
||||
|
||||
for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
|
||||
|
Loading…
Reference in New Issue
Block a user