diff --git a/examples/server/CMakeLists.txt b/examples/server/CMakeLists.txt index 0035859a6..63fca1d59 100644 --- a/examples/server/CMakeLists.txt +++ b/examples/server/CMakeLists.txt @@ -34,14 +34,6 @@ endforeach() add_executable(${TARGET} ${TARGET_SRCS}) install(TARGETS ${TARGET} RUNTIME) -# clean up generated files in pre-build step -foreach(asset ${PUBLIC_ASSETS}) - set(output "${CMAKE_CURRENT_BINARY_DIR}/${asset}.hpp") - add_custom_command(TARGET ${TARGET} PRE_BUILD - COMMAND "${CMAKE_COMMAND}" -E remove -f "${output}" - ) -endforeach() - target_link_libraries(${TARGET} PRIVATE common ${CMAKE_THREAD_LIBS_INIT}) if (LLAMA_SERVER_SSL) diff --git a/examples/server/README.md b/examples/server/README.md index 8dbed2626..0bab40a82 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -618,9 +618,76 @@ This endpoint is public (no API key check). By default, it is read-only. To make ```json { - "default_generation_settings": { ... }, + "default_generation_settings": { + "id": 0, + "id_task": -1, + "n_ctx": 1024, + "speculative": false, + "is_processing": false, + "params": { + "n_predict": -1, + "seed": 4294967295, + "temperature": 0.800000011920929, + "dynatemp_range": 0.0, + "dynatemp_exponent": 1.0, + "top_k": 40, + "top_p": 0.949999988079071, + "min_p": 0.05000000074505806, + "xtc_probability": 0.0, + "xtc_threshold": 0.10000000149011612, + "typical_p": 1.0, + "repeat_last_n": 64, + "repeat_penalty": 1.0, + "presence_penalty": 0.0, + "frequency_penalty": 0.0, + "dry_multiplier": 0.0, + "dry_base": 1.75, + "dry_allowed_length": 2, + "dry_penalty_last_n": -1, + "dry_sequence_breakers": [ + "\n", + ":", + "\"", + "*" + ], + "mirostat": 0, + "mirostat_tau": 5.0, + "mirostat_eta": 0.10000000149011612, + "penalize_nl": false, + "stop": [], + "max_tokens": -1, + "n_keep": 0, + "n_discard": 0, + "ignore_eos": false, + "stream": true, + "n_probs": 0, + "min_keep": 0, + "grammar": "", + "samplers": [ + "dry", + "top_k", + "typ_p", + "top_p", + "min_p", + "xtc", + "temperature" + ], + "speculative.n_max": 16, + "speculative.n_min": 5, + "speculative.p_min": 0.8999999761581421, + "timings_per_token": false + }, + "prompt": "", + "next_token": { + "has_next_token": true, + "has_new_line": false, + "n_remain": -1, + "n_decoded": 0, + "stopping_word": "" + } + }, "total_slots": 1, - "chat_template": "" + "chat_template": "..." } ``` @@ -739,56 +806,74 @@ Example: ```json [ - { - "dynatemp_exponent": 1.0, - "dynatemp_range": 0.0, - "frequency_penalty": 0.0, - "grammar": "", - "id": 0, - "ignore_eos": false, - "is_processing": false, - "logit_bias": [], - "min_p": 0.05000000074505806, - "mirostat": 0, - "mirostat_eta": 0.10000000149011612, - "mirostat_tau": 5.0, - "model": "llama-2-7b-32k-instruct.Q2_K.gguf", - "n_ctx": 2048, - "n_keep": 0, - "n_predict": 100000, - "n_probs": 0, - "next_token": { - "has_next_token": true, - "n_remain": -1, - "n_decoded": 0, - "stopped_eos": false, - "stopped_limit": false, - "stopped_word": false, - "stopping_word": "" - }, - "penalize_nl": true, - "presence_penalty": 0.0, - "prompt": "Say hello to llama.cpp", - "repeat_last_n": 64, - "repeat_penalty": 1.100000023841858, - "samplers": [ - "top_k", - "typical_p", - "top_p", - "min_p", - "temperature" - ], - "seed": 42, - "stop": [ - "\n" - ], - "stream": false, - "task_id": 0, - "temperature": 0.0, - "top_k": 40, - "top_p": 0.949999988079071, - "typical_p": 1.0 + { + "id": 0, + "id_task": -1, + "n_ctx": 1024, + "speculative": false, + "is_processing": false, + "params": { + "n_predict": -1, + "seed": 4294967295, + "temperature": 0.800000011920929, + "dynatemp_range": 0.0, + "dynatemp_exponent": 1.0, + "top_k": 40, + "top_p": 0.949999988079071, + "min_p": 0.05000000074505806, + "xtc_probability": 0.0, + "xtc_threshold": 0.10000000149011612, + "typical_p": 1.0, + "repeat_last_n": 64, + "repeat_penalty": 1.0, + "presence_penalty": 0.0, + "frequency_penalty": 0.0, + "dry_multiplier": 0.0, + "dry_base": 1.75, + "dry_allowed_length": 2, + "dry_penalty_last_n": -1, + "dry_sequence_breakers": [ + "\n", + ":", + "\"", + "*" + ], + "mirostat": 0, + "mirostat_tau": 5.0, + "mirostat_eta": 0.10000000149011612, + "penalize_nl": false, + "stop": [], + "max_tokens": -1, + "n_keep": 0, + "n_discard": 0, + "ignore_eos": false, + "stream": true, + "n_probs": 0, + "min_keep": 0, + "grammar": "", + "samplers": [ + "dry", + "top_k", + "typ_p", + "top_p", + "min_p", + "xtc", + "temperature" + ], + "speculative.n_max": 16, + "speculative.n_min": 5, + "speculative.p_min": 0.8999999761581421, + "timings_per_token": false + }, + "prompt": "", + "next_token": { + "has_next_token": true, + "has_new_line": false, + "n_remain": -1, + "n_decoded": 0, + "stopping_word": "" } + } ] ``` diff --git a/examples/server/server.cpp b/examples/server/server.cpp index d57a296a2..1ce8fbae2 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -122,11 +122,6 @@ struct slot_params { struct common_params_sampling sampling; struct common_params_speculative speculative; - // params only used in to_json() - int32_t n_ctx; - uint32_t seed_cur; - bool can_speculative; - // OAI-compat fields bool verbose = false; bool oaicompat = false; @@ -134,7 +129,7 @@ struct slot_params { std::string oaicompat_model; std::string oaicompat_cmpl_id; - json to_json() { + json to_json() const { std::vector samplers; samplers.reserve(sampling.samplers.size()); for (const auto & sampler : sampling.samplers) { @@ -142,8 +137,8 @@ struct slot_params { } return json { - {"n_ctx", n_ctx}, {"n_predict", n_predict}, // Server configured n_predict + {"seed", sampling.seed}, {"temperature", sampling.temp}, {"dynatemp_range", sampling.dynatemp_range}, {"dynatemp_exponent", sampling.dynatemp_exponent}, @@ -177,7 +172,6 @@ struct slot_params { {"min_keep", sampling.min_keep}, {"grammar", sampling.grammar}, {"samplers", samplers}, - {"speculative", can_speculative}, {"speculative.n_max", speculative.n_max}, {"speculative.n_min", speculative.n_min}, {"speculative.p_min", speculative.p_min}, @@ -483,12 +477,6 @@ struct server_task_result_cmpl_partial : server_task_result { return std::vector({initial_ret, second_ret}); } } else { - // Some idiosyncrasy in task processing logic makes several trailing calls - // with empty content, we ignore these at the calee site. - if (content.empty()) { - return std::vector({json::object()}); - } - choices = json::array({json{ {"finish_reason", nullptr}, {"index", 0}, @@ -722,6 +710,7 @@ struct server_slot { llama_batch batch_spec = {}; + llama_context * ctx = nullptr; llama_context * ctx_dft = nullptr; common_speculative * spec = nullptr; @@ -906,6 +895,27 @@ struct server_slot { t_token_generation, n_decoded, t_gen, n_gen_second, t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded); } + + json to_json() const { + return json { + {"id", id}, + {"id_task", id_task}, + {"n_ctx", n_ctx}, + {"speculative", can_speculate()}, + {"is_processing", is_processing()}, + {"params", params.to_json()}, + {"prompt", common_detokenize(ctx, prompt_tokens)}, + {"next_token", + { + {"has_next_token", has_next_token}, + {"has_new_line", has_new_line}, + {"n_remain", n_remaining}, + {"n_decoded", n_decoded}, + {"stopping_word", stopping_word}, + } + }, + }; + } }; struct server_metrics { @@ -1338,6 +1348,7 @@ struct server_context { server_slot slot; slot.id = i; + slot.ctx = ctx; slot.n_ctx = n_ctx_slot; slot.n_predict = params_base.n_predict; @@ -1370,8 +1381,7 @@ struct server_context { slots.push_back(slot); } - default_generation_settings_for_props = slots[0].params.to_json(); - default_generation_settings_for_props["seed"] = -1; + default_generation_settings_for_props = slots[0].to_json(); // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used) @@ -1848,17 +1858,18 @@ struct server_context { queue_results.send(std::move(res)); } - void send_partial_response(server_slot & slot, completion_token_output tkn) { + void send_partial_response(server_slot & slot, const completion_token_output & tkn) { auto res = std::make_unique(); - res->id = slot.id_task; - res->index = slot.index; - res->content = tkn.text_to_send; + + res->id = slot.id_task; + res->index = slot.index; + res->content = tkn.text_to_send; res->truncated = slot.truncated; res->n_decoded = slot.n_decoded; res->n_prompt_tokens = slot.n_prompt_tokens; - res->stop = slot.stop; + res->stop = slot.stop; res->verbose = slot.params.verbose; res->oaicompat = slot.params.oaicompat; @@ -1869,6 +1880,7 @@ struct server_context { // populate res.probs_output if (slot.params.sampling.n_probs > 0) { const llama_tokens to_send_toks = common_tokenize(ctx, tkn.text_to_send, false); + const size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size()); const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size()); @@ -1891,7 +1903,8 @@ struct server_context { void send_final_response(server_slot & slot) { if (slot.params.stream) { // if in stream mode, send the last partial response - return send_partial_response(slot, {0, "", {}}); + send_partial_response(slot, {0, "", {}}); + return; } auto res = std::make_unique(); @@ -2012,6 +2025,7 @@ struct server_context { std::vector tasks; auto create_task = [&](json & task_data, llama_tokens & prompt_tokens) { SRV_DBG("create task, n_tokens = %d\n", (int) prompt_tokens.size()); + server_task task; task.id = queue_tasks.get_new_id(); task.inf_type = inf_type; @@ -2205,18 +2219,7 @@ struct server_context { int n_processing_slots = 0; for (server_slot & slot : slots) { - json slot_data = slot.params.to_json(); - slot_data["id"] = slot.id; - slot_data["id_task"] = slot.id_task; - slot_data["is_processing"] = slot.is_processing(); - slot_data["prompt"] = common_detokenize(ctx, slot.prompt_tokens); - slot_data["next_token"] = { - {"has_next_token", slot.has_next_token}, - {"has_new_line", slot.has_new_line}, - {"n_remain", slot.n_remaining}, - {"n_decoded", slot.n_decoded}, - {"stopping_word", slot.stopping_word}, - }; + json slot_data = slot.to_json(); if (slot.is_processing()) { n_processing_slots++; @@ -2230,6 +2233,7 @@ struct server_context { auto res = std::make_unique(); res->id = task.id; + res->slots_data = std::move(slots_data); res->n_idle_slots = n_idle_slots; res->n_processing_slots = n_processing_slots; res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size(); @@ -3003,11 +3007,11 @@ int main(int argc, char ** argv) { res.status = 200; }; - svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, std::exception_ptr ep) { + svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) { std::string message; try { std::rethrow_exception(ep); - } catch (std::exception & e) { + } catch (const std::exception & e) { message = e.what(); } catch (...) { message = "Unknown Exception"; diff --git a/examples/server/utils.hpp b/examples/server/utils.hpp index a96116ac3..c9fe7d966 100644 --- a/examples/server/utils.hpp +++ b/examples/server/utils.hpp @@ -327,12 +327,12 @@ static std::string llama_get_chat_template(const struct llama_model * model) { std::string template_key = "tokenizer.chat_template"; // call with NULL buffer to get the total size of the string int32_t res = llama_model_meta_val_str(model, template_key.c_str(), NULL, 0); - if (res < 0) { + if (res < 2) { return ""; } else { std::vector model_template(res, 0); llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size()); - return std::string(model_template.data(), model_template.size()); + return std::string(model_template.data(), model_template.size() - 1); } }