diff --git a/.devops/cpu.Dockerfile b/.devops/cpu.Dockerfile new file mode 100644 index 000000000..8d020f16c --- /dev/null +++ b/.devops/cpu.Dockerfile @@ -0,0 +1,81 @@ +ARG UBUNTU_VERSION=22.04 + +FROM ubuntu:$UBUNTU_VERSION AS build + +RUN apt-get update && \ + apt-get install -y build-essential git cmake libcurl4-openssl-dev + +WORKDIR /app + +COPY . . + +RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \ + cmake --build build -j $(nproc) + +RUN mkdir -p /app/lib && \ + find build -name "*.so" -exec cp {} /app/lib \; + +RUN mkdir -p /app/full \ + && cp build/bin/* /app/full \ + && cp *.py /app/full \ + && cp -r gguf-py /app/full \ + && cp -r requirements /app/full \ + && cp requirements.txt /app/full \ + && cp .devops/tools.sh /app/full/tools.sh + +## Base image +FROM ubuntu:$UBUNTU_VERSION AS base + +RUN apt-get update \ + && apt-get install -y libgomp1 curl\ + && apt autoremove -y \ + && apt clean -y \ + && rm -rf /tmp/* /var/tmp/* \ + && find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \ + && find /var/cache -type f -delete + +COPY --from=build /app/lib/ /app + +### Full +FROM base AS full + +COPY --from=build /app/full /app + +WORKDIR /app + +RUN apt-get update \ + && apt-get install -y \ + git \ + python3 \ + python3-pip \ + && pip install --upgrade pip setuptools wheel \ + && pip install -r requirements.txt \ + && apt autoremove -y \ + && apt clean -y \ + && rm -rf /tmp/* /var/tmp/* \ + && find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \ + && find /var/cache -type f -delete + +ENTRYPOINT ["/app/tools.sh"] + +### Light, CLI only +FROM base AS light + +COPY --from=build /app/full/llama-cli /app + +WORKDIR /app + +ENTRYPOINT [ "/app/llama-cli" ] + +### Server, Server only +FROM base AS server + +ENV LLAMA_ARG_HOST=0.0.0.0 + +COPY --from=build /app/full/llama-server /app + +WORKDIR /app + +HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ] + +ENTRYPOINT [ "/app/llama-server" ] diff --git a/.devops/cuda.Dockerfile b/.devops/cuda.Dockerfile new file mode 100644 index 000000000..974dd78a8 --- /dev/null +++ b/.devops/cuda.Dockerfile @@ -0,0 +1,94 @@ +ARG UBUNTU_VERSION=22.04 +# This needs to generally match the container host's environment. +ARG CUDA_VERSION=12.6.0 +# Target the CUDA build image +ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION} + +ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION} + +FROM ${BASE_CUDA_DEV_CONTAINER} AS build + +# CUDA architecture to build for (defaults to all supported archs) +ARG CUDA_DOCKER_ARCH=default + +RUN apt-get update && \ + apt-get install -y build-essential cmake python3 python3-pip git libcurl4-openssl-dev libgomp1 + +WORKDIR /app + +COPY . . + +RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \ + export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \ + fi && \ + cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \ + cmake --build build --config Release -j$(nproc) + +RUN mkdir -p /app/lib && \ + find build -name "*.so" -exec cp {} /app/lib \; + +RUN mkdir -p /app/full \ + && cp build/bin/* /app/full \ + && cp *.py /app/full \ + && cp -r gguf-py /app/full \ + && cp -r requirements /app/full \ + && cp requirements.txt /app/full \ + && cp .devops/tools.sh /app/full/tools.sh + +## Base image +FROM ${BASE_CUDA_RUN_CONTAINER} AS base + +RUN apt-get update \ + && apt-get install -y libgomp1 curl\ + && apt autoremove -y \ + && apt clean -y \ + && rm -rf /tmp/* /var/tmp/* \ + && find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \ + && find /var/cache -type f -delete + +COPY --from=build /app/lib/ /app + +### Full +FROM base AS full + +COPY --from=build /app/full /app + +WORKDIR /app + +RUN apt-get update \ + && apt-get install -y \ + git \ + python3 \ + python3-pip \ + && pip install --upgrade pip setuptools wheel \ + && pip install -r requirements.txt \ + && apt autoremove -y \ + && apt clean -y \ + && rm -rf /tmp/* /var/tmp/* \ + && find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \ + && find /var/cache -type f -delete + + +ENTRYPOINT ["/app/tools.sh"] + +### Light, CLI only +FROM base AS light + +COPY --from=build /app/full/llama-cli /app + +WORKDIR /app + +ENTRYPOINT [ "/app/llama-cli" ] + +### Server, Server only +FROM base AS server + +ENV LLAMA_ARG_HOST=0.0.0.0 + +COPY --from=build /app/full/llama-server /app + +WORKDIR /app + +HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ] + +ENTRYPOINT [ "/app/llama-server" ] diff --git a/.devops/full-cuda.Dockerfile b/.devops/full-cuda.Dockerfile deleted file mode 100644 index 05bff1bdf..000000000 --- a/.devops/full-cuda.Dockerfile +++ /dev/null @@ -1,33 +0,0 @@ -ARG UBUNTU_VERSION=22.04 -# This needs to generally match the container host's environment. -ARG CUDA_VERSION=12.6.0 -# Target the CUDA build image -ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION} - -FROM ${BASE_CUDA_DEV_CONTAINER} AS build - -# CUDA architecture to build for (defaults to all supported archs) -ARG CUDA_DOCKER_ARCH=default - -RUN apt-get update && \ - apt-get install -y build-essential cmake python3 python3-pip git libcurl4-openssl-dev libgomp1 - -COPY requirements.txt requirements.txt -COPY requirements requirements - -RUN pip install --upgrade pip setuptools wheel \ - && pip install -r requirements.txt - -WORKDIR /app - -COPY . . - -# Use the default CUDA archs if not specified -RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \ - export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \ - fi && \ - cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \ - cmake --build build --config Release -j$(nproc) && \ - cp build/bin/* . - -ENTRYPOINT ["/app/.devops/tools.sh"] diff --git a/.devops/full-musa.Dockerfile b/.devops/full-musa.Dockerfile deleted file mode 100644 index 3193fea1e..000000000 --- a/.devops/full-musa.Dockerfile +++ /dev/null @@ -1,33 +0,0 @@ -ARG UBUNTU_VERSION=22.04 -# This needs to generally match the container host's environment. -ARG MUSA_VERSION=rc3.1.0 -# Target the MUSA build image -ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION} - -FROM ${BASE_MUSA_DEV_CONTAINER} AS build - -# MUSA architecture to build for (defaults to all supported archs) -ARG MUSA_DOCKER_ARCH=default - -RUN apt-get update && \ - apt-get install -y build-essential cmake python3 python3-pip git libcurl4-openssl-dev libgomp1 - -COPY requirements.txt requirements.txt -COPY requirements requirements - -RUN pip install --upgrade pip setuptools wheel \ - && pip install -r requirements.txt - -WORKDIR /app - -COPY . . - -# Use the default MUSA archs if not specified -RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \ - export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \ - fi && \ - cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \ - cmake --build build --config Release -j$(nproc) && \ - cp build/bin/* . - -ENTRYPOINT ["/app/.devops/tools.sh"] diff --git a/.devops/full-rocm.Dockerfile b/.devops/full-rocm.Dockerfile deleted file mode 100644 index df496bcd2..000000000 --- a/.devops/full-rocm.Dockerfile +++ /dev/null @@ -1,50 +0,0 @@ -ARG UBUNTU_VERSION=22.04 - -# This needs to generally match the container host's environment. -ARG ROCM_VERSION=5.6 - -# Target the CUDA build image -ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete - -FROM ${BASE_ROCM_DEV_CONTAINER} AS build - -# Unless otherwise specified, we make a fat build. -# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878 -# This is mostly tied to rocBLAS supported archs. -ARG ROCM_DOCKER_ARCH="\ - gfx803 \ - gfx900 \ - gfx906 \ - gfx908 \ - gfx90a \ - gfx1010 \ - gfx1030 \ - gfx1100 \ - gfx1101 \ - gfx1102" - -COPY requirements.txt requirements.txt -COPY requirements requirements - -RUN pip install --upgrade pip setuptools wheel \ - && pip install -r requirements.txt - -WORKDIR /app - -COPY . . - -# Set nvcc architecture -ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH} -# Enable ROCm -ENV GGML_HIPBLAS=1 -ENV CC=/opt/rocm/llvm/bin/clang -ENV CXX=/opt/rocm/llvm/bin/clang++ - -# Enable cURL -ENV LLAMA_CURL=1 -RUN apt-get update && \ - apt-get install -y libcurl4-openssl-dev - -RUN make -j$(nproc) - -ENTRYPOINT ["/app/.devops/tools.sh"] diff --git a/.devops/full.Dockerfile b/.devops/full.Dockerfile deleted file mode 100644 index d93c0be6a..000000000 --- a/.devops/full.Dockerfile +++ /dev/null @@ -1,38 +0,0 @@ -ARG UBUNTU_VERSION=22.04 - -FROM ubuntu:$UBUNTU_VERSION AS build - -RUN apt-get update && \ - apt-get install -y build-essential git cmake libcurl4-openssl-dev - -WORKDIR /app - -COPY . . - -RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \ - cmake --build build -j $(nproc) && \ - mkdir -p /app/lib && \ - find build -name "*.so" -exec cp {} /app/lib/ \; - -FROM ubuntu:$UBUNTU_VERSION as runtime - -WORKDIR /app - -RUN apt-get update && \ - apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev libgomp1 - -COPY requirements.txt /app/requirements.txt -COPY requirements /app/requirements -COPY .devops/tools.sh /app/tools.sh - -RUN pip install --upgrade pip setuptools wheel && \ - pip install -r /app/requirements.txt - -COPY --from=build /app/build/bin/ /app/ -COPY --from=build /app/lib/ /app/ -COPY --from=build /app/convert_hf_to_gguf.py /app/ -COPY --from=build /app/gguf-py /app/gguf-py - -ENV LC_ALL=C.utf8 - -ENTRYPOINT ["/app/tools.sh"] diff --git a/.devops/intel.Dockerfile b/.devops/intel.Dockerfile new file mode 100644 index 000000000..af783f5e9 --- /dev/null +++ b/.devops/intel.Dockerfile @@ -0,0 +1,91 @@ +ARG ONEAPI_VERSION=2025.0.0-0-devel-ubuntu22.04 + +## Build Image + +FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build + +ARG GGML_SYCL_F16=OFF +RUN apt-get update && \ + apt-get install -y git libcurl4-openssl-dev + +WORKDIR /app + +COPY . . + +RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \ + echo "GGML_SYCL_F16 is set" \ + && export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \ + fi && \ + echo "Building with dynamic libs" && \ + cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \ + cmake --build build --config Release -j$(nproc) + +RUN mkdir -p /app/lib && \ + find build -name "*.so" -exec cp {} /app/lib \; + +RUN mkdir -p /app/full \ + && cp build/bin/* /app/full \ + && cp *.py /app/full \ + && cp -r gguf-py /app/full \ + && cp -r requirements /app/full \ + && cp requirements.txt /app/full \ + && cp .devops/tools.sh /app/full/tools.sh + +FROM intel/oneapi-basekit:$ONEAPI_VERSION AS base + +RUN apt-get update \ + && apt-get install -y libgomp1 curl\ + && apt autoremove -y \ + && apt clean -y \ + && rm -rf /tmp/* /var/tmp/* \ + && find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \ + && find /var/cache -type f -delete + +### Full +FROM base AS full + +COPY --from=build /app/lib/ /app +COPY --from=build /app/full /app + +WORKDIR /app + +RUN apt-get update \ + && apt-get install -y \ + git \ + python3 \ + python3-pip \ + && pip install --upgrade pip setuptools wheel \ + && pip install -r requirements.txt \ + && apt autoremove -y \ + && apt clean -y \ + && rm -rf /tmp/* /var/tmp/* \ + && find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \ + && find /var/cache -type f -delete + + +ENTRYPOINT ["/app/tools.sh"] + +### Light, CLI only +FROM base AS light + +COPY --from=build /app/lib/ /app +COPY --from=build /app/full/llama-cli /app + +WORKDIR /app + +ENTRYPOINT [ "/app/llama-cli" ] + +### Server, Server only +FROM base AS server + +ENV LLAMA_ARG_HOST=0.0.0.0 + +COPY --from=build /app/lib/ /app +COPY --from=build /app/full/llama-server /app + +WORKDIR /app + +HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ] + +ENTRYPOINT [ "/app/llama-server" ] + diff --git a/.devops/llama-cli-cuda.Dockerfile b/.devops/llama-cli-cuda.Dockerfile deleted file mode 100644 index 7796891d5..000000000 --- a/.devops/llama-cli-cuda.Dockerfile +++ /dev/null @@ -1,38 +0,0 @@ -ARG UBUNTU_VERSION=22.04 -# This needs to generally match the container host's environment. -ARG CUDA_VERSION=12.6.0 -# Target the CUDA build image -ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION} -# Target the CUDA runtime image -ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION} - -FROM ${BASE_CUDA_DEV_CONTAINER} AS build - -# CUDA architecture to build for (defaults to all supported archs) -ARG CUDA_DOCKER_ARCH=default - -RUN apt-get update && \ - apt-get install -y build-essential git cmake - -WORKDIR /app - -COPY . . - -# Use the default CUDA archs if not specified -RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \ - export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \ - fi && \ - cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \ - cmake --build build --config Release --target llama-cli -j$(nproc) && \ - mkdir -p /app/lib && \ - find build -name "*.so" -exec cp {} /app/lib \; - -FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime - -RUN apt-get update && \ - apt-get install -y libgomp1 - -COPY --from=build /app/lib/ / -COPY --from=build /app/build/bin/llama-cli / - -ENTRYPOINT [ "/llama-cli" ] diff --git a/.devops/llama-cli-intel.Dockerfile b/.devops/llama-cli-intel.Dockerfile deleted file mode 100644 index 0706f732a..000000000 --- a/.devops/llama-cli-intel.Dockerfile +++ /dev/null @@ -1,28 +0,0 @@ -ARG ONEAPI_VERSION=2025.0.0-0-devel-ubuntu22.04 - -FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build - -ARG GGML_SYCL_F16=OFF -RUN apt-get update && \ - apt-get install -y git - -WORKDIR /app - -COPY . . - -RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \ - echo "GGML_SYCL_F16 is set" && \ - export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \ - fi && \ - echo "Building with static libs" && \ - cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx \ - ${OPT_SYCL_F16} -DBUILD_SHARED_LIBS=OFF && \ - cmake --build build --config Release --target llama-cli - -FROM intel/oneapi-basekit:$ONEAPI_VERSION AS runtime - -COPY --from=build /app/build/bin/llama-cli /llama-cli - -ENV LC_ALL=C.utf8 - -ENTRYPOINT [ "/llama-cli" ] diff --git a/.devops/llama-cli-musa.Dockerfile b/.devops/llama-cli-musa.Dockerfile deleted file mode 100644 index e7c75af20..000000000 --- a/.devops/llama-cli-musa.Dockerfile +++ /dev/null @@ -1,38 +0,0 @@ -ARG UBUNTU_VERSION=22.04 -# This needs to generally match the container host's environment. -ARG MUSA_VERSION=rc3.1.0 -# Target the MUSA build image -ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION} -# Target the MUSA runtime image -ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION} - -FROM ${BASE_MUSA_DEV_CONTAINER} AS build - -# MUSA architecture to build for (defaults to all supported archs) -ARG MUSA_DOCKER_ARCH=default - -RUN apt-get update && \ - apt-get install -y build-essential git cmake - -WORKDIR /app - -COPY . . - -# Use the default MUSA archs if not specified -RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \ - export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \ - fi && \ - cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \ - cmake --build build --config Release --target llama-cli -j$(nproc) && \ - mkdir -p /app/lib && \ - find build -name "*.so" -exec cp {} /app/lib \; - -FROM ${BASE_MUSA_RUN_CONTAINER} AS runtime - -RUN apt-get update && \ - apt-get install -y libgomp1 - -COPY --from=build /app/lib/ / -COPY --from=build /app/build/bin/llama-cli /llama-cli - -ENTRYPOINT [ "/llama-cli" ] diff --git a/.devops/llama-cli-rocm.Dockerfile b/.devops/llama-cli-rocm.Dockerfile deleted file mode 100644 index e60c747bd..000000000 --- a/.devops/llama-cli-rocm.Dockerfile +++ /dev/null @@ -1,45 +0,0 @@ -ARG UBUNTU_VERSION=22.04 - -# This needs to generally match the container host's environment. -ARG ROCM_VERSION=5.6 - -# Target the CUDA build image -ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete - -FROM ${BASE_ROCM_DEV_CONTAINER} AS build - -# Unless otherwise specified, we make a fat build. -# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878 -# This is mostly tied to rocBLAS supported archs. -ARG ROCM_DOCKER_ARCH="\ - gfx803 \ - gfx900 \ - gfx906 \ - gfx908 \ - gfx90a \ - gfx1010 \ - gfx1030 \ - gfx1100 \ - gfx1101 \ - gfx1102" - -COPY requirements.txt requirements.txt -COPY requirements requirements - -RUN pip install --upgrade pip setuptools wheel \ - && pip install -r requirements.txt - -WORKDIR /app - -COPY . . - -# Set nvcc architecture -ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH} -# Enable ROCm -ENV GGML_HIPBLAS=1 -ENV CC=/opt/rocm/llvm/bin/clang -ENV CXX=/opt/rocm/llvm/bin/clang++ - -RUN make -j$(nproc) llama-cli - -ENTRYPOINT [ "/app/llama-cli" ] diff --git a/.devops/llama-cli-vulkan.Dockerfile b/.devops/llama-cli-vulkan.Dockerfile deleted file mode 100644 index 92a6e0479..000000000 --- a/.devops/llama-cli-vulkan.Dockerfile +++ /dev/null @@ -1,27 +0,0 @@ -ARG UBUNTU_VERSION=jammy - -FROM ubuntu:$UBUNTU_VERSION AS build - -# Install build tools -RUN apt update && apt install -y git build-essential cmake wget libgomp1 - -# Install Vulkan SDK -RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \ - wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \ - apt update -y && \ - apt-get install -y vulkan-sdk - -# Build it -WORKDIR /app -COPY . . -RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 && \ - cmake --build build --config Release --target llama-cli - -# Clean up -WORKDIR / -RUN cp /app/build/bin/llama-cli /llama-cli && \ - rm -rf /app - -ENV LC_ALL=C.utf8 - -ENTRYPOINT [ "/llama-cli" ] diff --git a/.devops/llama-cli.Dockerfile b/.devops/llama-cli.Dockerfile deleted file mode 100644 index be234d55d..000000000 --- a/.devops/llama-cli.Dockerfile +++ /dev/null @@ -1,29 +0,0 @@ -ARG UBUNTU_VERSION=22.04 - -FROM ubuntu:$UBUNTU_VERSION AS build - -RUN apt-get update && \ - apt-get install -y build-essential git cmake libcurl4-openssl-dev - -WORKDIR /app - -COPY . . - -RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \ - cmake --build build -j $(nproc) && \ - mkdir -p /app/lib && \ - find build -name "*.so" -exec cp {} /app/lib/ \; - -FROM ubuntu:$UBUNTU_VERSION AS runtime - -WORKDIR /app - -RUN apt-get update && \ - apt-get install -y libcurl4-openssl-dev libgomp1 curl - -COPY --from=build /app/build/bin/llama-cli /app/ -COPY --from=build /app/lib/ /app/ - -ENV LC_ALL=C.utf8 - -ENTRYPOINT [ "/app/llama-cli" ] diff --git a/.devops/llama-server-cuda.Dockerfile b/.devops/llama-server-cuda.Dockerfile deleted file mode 100644 index bf8a198f9..000000000 --- a/.devops/llama-server-cuda.Dockerfile +++ /dev/null @@ -1,43 +0,0 @@ -ARG UBUNTU_VERSION=22.04 -# This needs to generally match the container host's environment. -ARG CUDA_VERSION=12.6.0 -# Target the CUDA build image -ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION} -# Target the CUDA runtime image -ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION} - -FROM ${BASE_CUDA_DEV_CONTAINER} AS build - -# CUDA architecture to build for (defaults to all supported archs) -ARG CUDA_DOCKER_ARCH=default - -RUN apt-get update && \ - apt-get install -y build-essential git cmake libcurl4-openssl-dev - -WORKDIR /app - -COPY . . - -# Use the default CUDA archs if not specified -RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \ - export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \ - fi && \ - cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \ - cmake --build build --config Release --target llama-server -j$(nproc) && \ - mkdir -p /app/lib && \ - find build -name "*.so" -exec cp {} /app/lib \; - -FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime - -RUN apt-get update && \ - apt-get install -y libcurl4-openssl-dev libgomp1 curl - -COPY --from=build /app/lib/ / -COPY --from=build /app/build/bin/llama-server /llama-server - -# Must be set to 0.0.0.0 so it can listen to requests from host machine -ENV LLAMA_ARG_HOST=0.0.0.0 - -HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ] - -ENTRYPOINT [ "/llama-server" ] diff --git a/.devops/llama-server-intel.Dockerfile b/.devops/llama-server-intel.Dockerfile deleted file mode 100644 index b503b8cfe..000000000 --- a/.devops/llama-server-intel.Dockerfile +++ /dev/null @@ -1,34 +0,0 @@ -ARG ONEAPI_VERSION=2025.0.0-0-devel-ubuntu22.04 - -FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build - -ARG GGML_SYCL_F16=OFF -RUN apt-get update && \ - apt-get install -y git libcurl4-openssl-dev - -WORKDIR /app - -COPY . . - -RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \ - echo "GGML_SYCL_F16 is set" && \ - export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \ - fi && \ - echo "Building with dynamic libs" && \ - cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \ - cmake --build build --config Release --target llama-server - -FROM intel/oneapi-basekit:$ONEAPI_VERSION AS runtime - -RUN apt-get update && \ - apt-get install -y libcurl4-openssl-dev curl - -COPY --from=build /app/build/bin/llama-server /llama-server - -ENV LC_ALL=C.utf8 -# Must be set to 0.0.0.0 so it can listen to requests from host machine -ENV LLAMA_ARG_HOST=0.0.0.0 - -HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ] - -ENTRYPOINT [ "/llama-server" ] diff --git a/.devops/llama-server-musa.Dockerfile b/.devops/llama-server-musa.Dockerfile deleted file mode 100644 index cebe51d42..000000000 --- a/.devops/llama-server-musa.Dockerfile +++ /dev/null @@ -1,43 +0,0 @@ -ARG UBUNTU_VERSION=22.04 -# This needs to generally match the container host's environment. -ARG MUSA_VERSION=rc3.1.0 -# Target the MUSA build image -ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION} -# Target the MUSA runtime image -ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION} - -FROM ${BASE_MUSA_DEV_CONTAINER} AS build - -# MUSA architecture to build for (defaults to all supported archs) -ARG MUSA_DOCKER_ARCH=default - -RUN apt-get update && \ - apt-get install -y build-essential git cmake libcurl4-openssl-dev - -WORKDIR /app - -COPY . . - -# Use the default MUSA archs if not specified -RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \ - export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \ - fi && \ - cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \ - cmake --build build --config Release --target llama-server -j$(nproc) && \ - mkdir -p /app/lib && \ - find build -name "*.so" -exec cp {} /app/lib \; - -FROM ${BASE_MUSA_RUN_CONTAINER} AS runtime - -RUN apt-get update && \ - apt-get install -y libcurl4-openssl-dev libgomp1 curl - -COPY --from=build /app/lib/ / -COPY --from=build /app/build/bin/llama-server /llama-server - -# Must be set to 0.0.0.0 so it can listen to requests from host machine -ENV LLAMA_ARG_HOST=0.0.0.0 - -HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ] - -ENTRYPOINT [ "/llama-server" ] diff --git a/.devops/llama-server-rocm.Dockerfile b/.devops/llama-server-rocm.Dockerfile deleted file mode 100644 index 8553af75b..000000000 --- a/.devops/llama-server-rocm.Dockerfile +++ /dev/null @@ -1,54 +0,0 @@ -ARG UBUNTU_VERSION=22.04 - -# This needs to generally match the container host's environment. -ARG ROCM_VERSION=5.6 - -# Target the CUDA build image -ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete - -FROM ${BASE_ROCM_DEV_CONTAINER} AS build - -# Unless otherwise specified, we make a fat build. -# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878 -# This is mostly tied to rocBLAS supported archs. -ARG ROCM_DOCKER_ARCH="\ - gfx803 \ - gfx900 \ - gfx906 \ - gfx908 \ - gfx90a \ - gfx1010 \ - gfx1030 \ - gfx1100 \ - gfx1101 \ - gfx1102" - -COPY requirements.txt requirements.txt -COPY requirements requirements - -RUN pip install --upgrade pip setuptools wheel \ - && pip install -r requirements.txt - -WORKDIR /app - -COPY . . - -# Set nvcc architecture -ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH} -# Enable ROCm -ENV GGML_HIPBLAS=1 -ENV CC=/opt/rocm/llvm/bin/clang -ENV CXX=/opt/rocm/llvm/bin/clang++ -# Must be set to 0.0.0.0 so it can listen to requests from host machine -ENV LLAMA_ARG_HOST=0.0.0.0 - -# Enable cURL -ENV LLAMA_CURL=1 -RUN apt-get update && \ - apt-get install -y libcurl4-openssl-dev curl - -RUN make -j$(nproc) llama-server - -HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ] - -ENTRYPOINT [ "/app/llama-server" ] diff --git a/.devops/llama-server-vulkan.Dockerfile b/.devops/llama-server-vulkan.Dockerfile deleted file mode 100644 index 6aa786779..000000000 --- a/.devops/llama-server-vulkan.Dockerfile +++ /dev/null @@ -1,31 +0,0 @@ -ARG UBUNTU_VERSION=jammy - -FROM ubuntu:$UBUNTU_VERSION AS build - -# Install build tools -RUN apt update && apt install -y git build-essential cmake wget - -# Install Vulkan SDK and cURL -RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \ - wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \ - apt update -y && \ - apt-get install -y vulkan-sdk libcurl4-openssl-dev curl - -# Build it -WORKDIR /app -COPY . . -RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \ - cmake --build build --config Release --target llama-server - -# Clean up -WORKDIR / -RUN cp /app/build/bin/llama-server /llama-server && \ - rm -rf /app - -ENV LC_ALL=C.utf8 -# Must be set to 0.0.0.0 so it can listen to requests from host machine -ENV LLAMA_ARG_HOST=0.0.0.0 - -HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ] - -ENTRYPOINT [ "/llama-server" ] diff --git a/.devops/llama-server.Dockerfile b/.devops/llama-server.Dockerfile deleted file mode 100644 index 72ccde2fe..000000000 --- a/.devops/llama-server.Dockerfile +++ /dev/null @@ -1,33 +0,0 @@ -ARG UBUNTU_VERSION=22.04 - -FROM ubuntu:$UBUNTU_VERSION AS build - -RUN apt-get update && \ - apt-get install -y build-essential git cmake libcurl4-openssl-dev - -WORKDIR /app - -COPY . . - -RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \ - cmake --build build -j $(nproc) && \ - mkdir -p /app/lib && \ - find build -name "*.so" -exec cp {} /app/lib/ \; - -FROM ubuntu:$UBUNTU_VERSION AS runtime - -WORKDIR /app - -RUN apt-get update && \ - apt-get install -y libcurl4-openssl-dev libgomp1 curl - -COPY --from=build /app/build/bin/llama-server /app/ -COPY --from=build /app/lib/ /app/ - -ENV LC_ALL=C.utf8 -# Must be set to 0.0.0.0 so it can listen to requests from host machine -ENV LLAMA_ARG_HOST=0.0.0.0 - -HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ] - -ENTRYPOINT [ "/app/llama-server" ] diff --git a/.devops/musa.Dockerfile b/.devops/musa.Dockerfile new file mode 100644 index 000000000..bfd7fc1c1 --- /dev/null +++ b/.devops/musa.Dockerfile @@ -0,0 +1,108 @@ +ARG UBUNTU_VERSION=22.04 +# This needs to generally match the container host's environment. +ARG MUSA_VERSION=rc3.1.0 +# Target the MUSA build image +ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION} + +ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION} + +FROM ${BASE_MUSA_DEV_CONTAINER} AS build + +# MUSA architecture to build for (defaults to all supported archs) +ARG MUSA_DOCKER_ARCH=default + +RUN apt-get update && \ + apt-get install -y \ + build-essential \ + cmake \ + python3 \ + python3-pip \ + git \ + libcurl4-openssl-dev \ + libgomp1 + +COPY requirements.txt requirements.txt +COPY requirements requirements + +RUN pip install --upgrade pip setuptools wheel \ + && pip install -r requirements.txt + +WORKDIR /app + +COPY . . + +# Use the default MUSA archs if not specified +RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \ + export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \ + fi && \ + cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \ + cmake --build build --config Release -j$(nproc) + +RUN mkdir -p /app/lib && \ + find build -name "*.so" -exec cp {} /app/lib \; + +RUN mkdir -p /app/full \ + && cp build/bin/* /app/full \ + && cp *.py /app/full \ + && cp -r gguf-py /app/full \ + && cp -r requirements /app/full \ + && cp requirements.txt /app/full \ + && cp .devops/tools.sh /app/full/tools.sh + +## Base image +FROM ${BASE_MUSA_RUN_CONTAINER} AS base + +RUN apt-get update \ + && apt-get install -y libgomp1 curl\ + && apt autoremove -y \ + && apt clean -y \ + && rm -rf /tmp/* /var/tmp/* \ + && find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \ + && find /var/cache -type f -delete + +COPY --from=build /app/lib/ /app + +### Full +FROM base AS full + +COPY --from=build /app/full /app + +WORKDIR /app + +RUN apt-get update \ + && apt-get install -y \ + git \ + python3 \ + python3-pip \ + && pip install --upgrade pip setuptools wheel \ + && pip install -r requirements.txt \ + && apt autoremove -y \ + && apt clean -y \ + && rm -rf /tmp/* /var/tmp/* \ + && find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \ + && find /var/cache -type f -delete + + +ENTRYPOINT ["/app/tools.sh"] + +### Light, CLI only +FROM base AS light + +COPY --from=build /app/full/llama-cli /app + +WORKDIR /app + +ENTRYPOINT [ "/app/llama-cli" ] + +### Server, Server only +FROM base AS server + +ENV LLAMA_ARG_HOST=0.0.0.0 + +COPY --from=build /app/full/llama-server /app + +WORKDIR /app + +HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ] + +ENTRYPOINT [ "/app/llama-server" ] diff --git a/.devops/rocm.Dockerfile b/.devops/rocm.Dockerfile new file mode 100644 index 000000000..a8088ea00 --- /dev/null +++ b/.devops/rocm.Dockerfile @@ -0,0 +1,113 @@ +ARG UBUNTU_VERSION=24.04 + +# This needs to generally match the container host's environment. +ARG ROCM_VERSION=6.3 +ARG AMDGPU_VERSION=6.3 + +# Target the CUDA build image +ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete + +### Build image +FROM ${BASE_ROCM_DEV_CONTAINER} AS build + +# Unless otherwise specified, we make a fat build. +# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878 +# This is mostly tied to rocBLAS supported archs. +# gfx803, gfx900, gfx1032, gfx1101, gfx1102,not officialy supported +# gfx906 is deprecated +#check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.2.4/reference/system-requirements.html + +#ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102' +ARG ROCM_DOCKER_ARCH=gfx1100 + +# Set nvcc architectured +ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH} +# Enable ROCm +# ENV CC=/opt/rocm/llvm/bin/clang +# ENV CXX=/opt/rocm/llvm/bin/clang++ + +RUN apt-get update \ + && apt-get install -y \ + build-essential \ + cmake \ + git \ + libcurl4-openssl-dev \ + curl \ + libgomp1 + +WORKDIR /app + +COPY . . + +RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \ + cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \ + && cmake --build build --config Release -j$(nproc) + +RUN mkdir -p /app/lib \ + && find build -name "*.so" -exec cp {} /app/lib \; + +RUN mkdir -p /app/full \ + && cp build/bin/* /app/full \ + && cp *.py /app/full \ + && cp -r gguf-py /app/full \ + && cp -r requirements /app/full \ + && cp requirements.txt /app/full \ + && cp .devops/tools.sh /app/full/tools.sh + +## Base image +FROM ${BASE_ROCM_DEV_CONTAINER} AS base + +RUN apt-get update \ + && apt-get install -y libgomp1 curl\ + && apt autoremove -y \ + && apt clean -y \ + && rm -rf /tmp/* /var/tmp/* \ + && find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \ + && find /var/cache -type f -delete + +COPY --from=build /app/lib/ /app + +### Full +FROM base AS full + +COPY --from=build /app/full /app + +WORKDIR /app + +RUN apt-get update \ + && apt-get install -y \ + git \ + python3-pip \ + python3 \ + python3-wheel\ + && pip install --break-system-packages --upgrade setuptools \ + && pip install --break-system-packages -r requirements.txt \ + && apt autoremove -y \ + && apt clean -y \ + && rm -rf /tmp/* /var/tmp/* \ + && find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \ + && find /var/cache -type f -delete + +ENTRYPOINT ["/app/tools.sh"] + +### Light, CLI only +FROM base AS light + +COPY --from=build /app/full/llama-cli /app + +WORKDIR /app + +ENTRYPOINT [ "/app/llama-cli" ] + +### Server, Server only +FROM base AS server + +ENV LLAMA_ARG_HOST=0.0.0.0 + +COPY --from=build /app/full/llama-server /app + +WORKDIR /app + +HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ] + +ENTRYPOINT [ "/app/llama-server" ] diff --git a/.devops/vulkan.Dockerfile b/.devops/vulkan.Dockerfile new file mode 100644 index 000000000..cfc2162e3 --- /dev/null +++ b/.devops/vulkan.Dockerfile @@ -0,0 +1,88 @@ +ARG UBUNTU_VERSION=jammy + +FROM ubuntu:$UBUNTU_VERSION AS build + +# Install build tools +RUN apt update && apt install -y git build-essential cmake wget + +# Install Vulkan SDK and cURL +RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \ + wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \ + apt update -y && \ + apt-get install -y vulkan-sdk libcurl4-openssl-dev curl + +# Build it +WORKDIR /app + +COPY . . + +RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \ + cmake --build build --config Release -j$(nproc) + +RUN mkdir -p /app/lib && \ + find build -name "*.so" -exec cp {} /app/lib \; + +RUN mkdir -p /app/full \ + && cp build/bin/* /app/full \ + && cp *.py /app/full \ + && cp -r gguf-py /app/full \ + && cp -r requirements /app/full \ + && cp requirements.txt /app/full \ + && cp .devops/tools.sh /app/full/tools.sh + +## Base image +FROM ubuntu:$UBUNTU_VERSION AS base + +RUN apt-get update \ + && apt-get install -y libgomp1 curl\ + && apt autoremove -y \ + && apt clean -y \ + && rm -rf /tmp/* /var/tmp/* \ + && find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \ + && find /var/cache -type f -delete + +COPY --from=build /app/lib/ /app + +### Full +FROM base AS full + +COPY --from=build /app/full /app + +WORKDIR /app + +RUN apt-get update \ + && apt-get install -y \ + git \ + python3 \ + python3-pip \ + && pip install --upgrade pip setuptools wheel \ + && pip install -r requirements.txt \ + && apt autoremove -y \ + && apt clean -y \ + && rm -rf /tmp/* /var/tmp/* \ + && find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \ + && find /var/cache -type f -delete + +ENTRYPOINT ["/app/tools.sh"] + +### Light, CLI only +FROM base AS light + +COPY --from=build /app/full/llama-cli /app + +WORKDIR /app + +ENTRYPOINT [ "/app/llama-cli" ] + +### Server, Server only +FROM base AS server + +ENV LLAMA_ARG_HOST=0.0.0.0 + +COPY --from=build /app/full/llama-server /app + +WORKDIR /app + +HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ] + +ENTRYPOINT [ "/app/llama-server" ] diff --git a/.github/workflows/docker.yml b/.github/workflows/docker.yml index bc2e5020d..41f1a89ee 100644 --- a/.github/workflows/docker.yml +++ b/.github/workflows/docker.yml @@ -34,21 +34,14 @@ jobs: strategy: matrix: config: - - { tag: "light", dockerfile: ".devops/llama-cli.Dockerfile", platforms: "linux/amd64,linux/arm64" } - - { tag: "server", dockerfile: ".devops/llama-server.Dockerfile", platforms: "linux/amd64,linux/arm64" } - - { tag: "full", dockerfile: ".devops/full.Dockerfile", platforms: "linux/amd64,linux/arm64" } - - { tag: "light-cuda", dockerfile: ".devops/llama-cli-cuda.Dockerfile", platforms: "linux/amd64" } - - { tag: "server-cuda", dockerfile: ".devops/llama-server-cuda.Dockerfile", platforms: "linux/amd64" } - - { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" } - - { tag: "light-musa", dockerfile: ".devops/llama-cli-musa.Dockerfile", platforms: "linux/amd64" } - - { tag: "server-musa", dockerfile: ".devops/llama-server-musa.Dockerfile", platforms: "linux/amd64" } - - { tag: "full-musa", dockerfile: ".devops/full-musa.Dockerfile", platforms: "linux/amd64" } + # Multi-stage build + - { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: false} + - { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false} + - { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false} + - { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false} + - { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false} # Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete - #- { tag: "light-rocm", dockerfile: ".devops/llama-cli-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" } - #- { tag: "server-rocm", dockerfile: ".devops/llama-server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" } - #- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" } - - { tag: "light-intel", dockerfile: ".devops/llama-cli-intel.Dockerfile", platforms: "linux/amd64" } - - { tag: "server-intel", dockerfile: ".devops/llama-server-intel.Dockerfile", platforms: "linux/amd64" } + #- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: true } steps: - name: Check out the repo uses: actions/checkout@v4 @@ -56,10 +49,10 @@ jobs: fetch-depth: 0 # preserve git history, so we can determine the build number - name: Set up QEMU - uses: docker/setup-qemu-action@v2 + uses: docker/setup-qemu-action@v3 - name: Set up Docker Buildx - uses: docker/setup-buildx-action@v2 + uses: docker/setup-buildx-action@v3 - name: Log in to Docker Hub uses: docker/login-action@v2 @@ -79,25 +72,34 @@ jobs: # determine tag name postfix (build number, commit hash) if [[ "${{ env.GITHUB_BRANCH_NAME }}" == "master" ]]; then - TAG_POSTFIX="b${BUILD_NUMBER}" + TAG_POSTFIX="-b${BUILD_NUMBER}" else SAFE_NAME=$(echo "${{ env.GITHUB_BRANCH_NAME }}" | tr '/' '-') - TAG_POSTFIX="${SAFE_NAME}-${SHORT_HASH}" + TAG_POSTFIX="-${SAFE_NAME}-${SHORT_HASH}" fi - # list all tags possible - TAGS="" - TAGS="${TAGS}ghcr.io/${REPO_OWNER}/${REPO_NAME}:${{ matrix.config.tag }}," - TAGS="${TAGS}ghcr.io/${REPO_OWNER}/${REPO_NAME}:${{ matrix.config.tag }}-${TAG_POSTFIX}" - - echo "output_tags=$TAGS" >> $GITHUB_OUTPUT - echo "output_tags=$TAGS" # print out for debugging + if [[ "${{ matrix.config.tag }}" == "cpu" ]]; then + TYPE="" + else + TYPE="-${{ matrix.config.tag }}" + fi + PREFIX="ghcr.io/${REPO_OWNER}/${REPO_NAME}:" + FULLTAGS="${PREFIX}full${TYPE},${PREFIX}full${TYPE}${TAG_POSTFIX}" + LIGHTTAGS="${PREFIX}light${TYPE},${PREFIX}light${TYPE}${TAG_POSTFIX}" + SERVERTAGS="${PREFIX}server${TYPE},${PREFIX}server${TYPE}${TAG_POSTFIX}" + echo "full_output_tags=$FULLTAGS" >> $GITHUB_OUTPUT + echo "light_output_tags=$LIGHTTAGS" >> $GITHUB_OUTPUT + echo "server_output_tags=$SERVERTAGS" >> $GITHUB_OUTPUT + echo "full_output_tags=$FULLTAGS" # print out for debugging + echo "light_output_tags=$LIGHTTAGS" # print out for debugging + echo "server_output_tags=$SERVERTAGS" # print out for debugging env: GITHUB_BRANCH_NAME: ${{ github.head_ref || github.ref_name }} GITHUB_REPOSITORY_OWNER: '${{ github.repository_owner }}' # https://github.com/jlumbroso/free-disk-space/tree/54081f138730dfa15788a46383842cd2f914a1be#example - name: Free Disk Space (Ubuntu) + if: ${{ matrix.config.free_disk_space == true }} uses: jlumbroso/free-disk-space@main with: # this might remove tools that are actually needed, @@ -113,13 +115,59 @@ jobs: docker-images: true swap-storage: true - - name: Build and push Docker image (tagged + versioned) - if: ${{ github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch' }} + - name: Build and push Full Docker image (tagged + versioned) + if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.full == true }} uses: docker/build-push-action@v6 with: context: . push: true platforms: ${{ matrix.config.platforms }} # tag list is generated from step above - tags: ${{ steps.tag.outputs.output_tags }} + tags: ${{ steps.tag.outputs.full_output_tags }} file: ${{ matrix.config.dockerfile }} + target: full + provenance: false + # using github experimental cache + cache-from: type=gha + cache-to: type=gha,mode=max + # return to this if the experimental github cache is having issues + #cache-to: type=local,dest=/tmp/.buildx-cache + #cache-from: type=local,src=/tmp/.buildx-cache + + - name: Build and push Light Docker image (tagged + versioned) + if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.light == true }} + uses: docker/build-push-action@v6 + with: + context: . + push: true + platforms: ${{ matrix.config.platforms }} + # tag list is generated from step above + tags: ${{ steps.tag.outputs.light_output_tags }} + file: ${{ matrix.config.dockerfile }} + target: light + provenance: false + # using github experimental cache + cache-from: type=gha + cache-to: type=gha,mode=max + # return to this if the experimental github cache is having issues + #cache-to: type=local,dest=/tmp/.buildx-cache + #cache-from: type=local,src=/tmp/.buildx-cache + + - name: Build and push Server Docker image (tagged + versioned) + if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.server == true }} + uses: docker/build-push-action@v6 + with: + context: . + push: true + platforms: ${{ matrix.config.platforms }} + # tag list is generated from step above + tags: ${{ steps.tag.outputs.server_output_tags }} + file: ${{ matrix.config.dockerfile }} + target: server + provenance: false + # using github experimental cache + cache-from: type=gha + cache-to: type=gha,mode=max + # return to this if the experimental github cache is having issues + #cache-to: type=local,dest=/tmp/.buildx-cache + #cache-from: type=local,src=/tmp/.buildx-cache diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 76ab11ebe..b6c15da94 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -529,9 +529,19 @@ class Model: else: token: str = reverse_vocab[i] if token in added_vocab: + # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized. + # To avoid unexpected issues - we make sure to normalize non-normalized tokens + if not tokenizer.added_tokens_decoder[i].normalized: + previous_token = token + token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False)) + if previous_token != token: + logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer") + if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token): toktypes.append(gguf.TokenType.CONTROL) else: + # NOTE: this was added for Gemma. + # Encoding and decoding the tokens above isn't sufficient for this case. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces toktypes.append(gguf.TokenType.USER_DEFINED) else: @@ -575,6 +585,9 @@ class Model: if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed": # ref: https://huggingface.co/tiiuae/falcon-7b res = "falcon" + if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e": + # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base + res = "falcon3" if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f": # ref: https://huggingface.co/BAAI/bge-small-en-v1.5 res = "bert-bge" @@ -671,6 +684,9 @@ class Model: if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb": # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct res = "gigachat" + if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1": + # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct + res = "megrez" if res is None: logger.warning("\n") @@ -1679,6 +1695,184 @@ class LlamaModel(Model): raise ValueError(f"Unprocessed experts: {experts}") +@Model.register("DeciLMForCausalLM") +class DeciModel(Model): + model_arch = gguf.MODEL_ARCH.DECI + + @staticmethod + def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int: + # DeciLM-specific code + intermediate_size = int(2 * ffn_mult * n_embd / 3) + return DeciModel._find_multiple(intermediate_size, 256) + + @staticmethod + def _find_multiple(n: int, k: int) -> int: + # DeciLM-specific code + if n % k == 0: + return n + return n + k - (n % k) + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B + _block_configs: list[dict[str,Any]] = self.hparams["block_configs"] + assert self.block_count == len(_block_configs) + self._num_kv_heads = list() + self._num_heads = list() + _ffn_multipliers = list() + # ***linear attention layer*** + # if n_heads_in_group is None and replace_with_linear is True + # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads + # ***attention-free layer*** + # if n_heads_in_group is None and replace_with_linear is False + # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 + # ***normal attention-layer*** + # if n_heads_in_group is not None, then + # _num_kv_heads[il] is num_attention_head // n_heads_in_group and + # _num_heads[il] is num_attention_head + for il in range(len(_block_configs)): + if _block_configs[il]["attention"]["n_heads_in_group"] is None: + if _block_configs[il]["attention"]["replace_with_linear"] is True: + self._num_kv_heads.append(0) + self._num_heads.append(self.hparams["num_attention_heads"]) + else: + self._num_kv_heads.append(0) + self._num_heads.append(0) + else: + self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"]) + self._num_heads.append(self.hparams["num_attention_heads"]) + _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"]) + assert self.block_count == len(self._num_kv_heads) + assert self.block_count == len(self._num_heads) + assert self.block_count == len(_ffn_multipliers) + assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int) + assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int) + assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float) + self._ffn_dims: list[int] = [ + DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"]) + for multiplier in _ffn_multipliers + ] + + def set_vocab(self): + # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's + # eos_token from '|eot_id|' to '|end_of_text|' + if self.hparams.get("vocab_size", 128256) == 128256: + tokens, toktypes, tokpre = self.get_vocab_base() + self.gguf_writer.add_tokenizer_model("gpt2") + self.gguf_writer.add_tokenizer_pre(tokpre) + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab( + self.dir_model, load_merges=True, + special_token_types = ['bos', 'eos', 'eom', 'eot'] + ) + special_vocab._set_special_token("bos", 128000) + special_vocab._set_special_token("eos", 128001) + special_vocab._set_special_token("eom", 128008) + special_vocab._set_special_token("eot", 128009) + special_vocab.add_to_gguf(self.gguf_writer) + else: + # DeciLM-7B + self._set_vocab_llama_hf() +# self._set_vocab_gpt2() + + def set_gguf_parameters(self): + if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B + assert self.block_count == len(self._num_kv_heads) + assert self.block_count == len(self._num_heads) + assert self.block_count == len(self._ffn_dims) + self.gguf_writer.add_head_count_kv(self._num_kv_heads) + self.gguf_writer.add_head_count(self._num_heads) + self.gguf_writer.add_feed_forward_length(self._ffn_dims) + self.gguf_writer.add_block_count(self.block_count) + self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) + self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) + self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) + self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) + self.gguf_writer.add_file_type(self.ftype) + else: # DeciLM-7B + super().set_gguf_parameters() + if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B + self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"] + assert self.block_count == len(self._num_kv_heads) + self.gguf_writer.add_head_count_kv(self._num_kv_heads) + hparams = self.hparams + self.gguf_writer.add_vocab_size(hparams["vocab_size"]) + + if "head_dim" in hparams: + rope_dim = hparams["head_dim"] + else: + rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"] + self.gguf_writer.add_rope_dimension_count(rope_dim) + + if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]: + if self.hparams["rope_scaling"].get("type") == "linear": + self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR) + self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"]) + + @staticmethod + def permute(weights: Tensor, n_head: int, n_head_kv: int | None): + if n_head_kv is not None and n_head != n_head_kv: + n_head = n_head_kv + return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) + .swapaxes(1, 2) + .reshape(weights.shape)) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + n_head = self.hparams["num_attention_heads"] + if bid is not None: + if "num_key_value_heads_per_layer" in self.hparams: + n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid] + elif "block_configs" in self.hparams: + n_kv_head = self._num_kv_heads[bid] + n_head = self._num_heads[bid] + else: + n_kv_head = self.hparams.get("num_key_value_heads") + else: + n_kv_head = self.hparams.get("num_key_value_heads") + + if name.endswith(("q_proj.weight", "q_proj.bias")): + data_torch = DeciModel.permute(data_torch, n_head, n_head) + if name.endswith(("k_proj.weight", "k_proj.bias")): + data_torch = DeciModel.permute(data_torch, n_head, n_kv_head) + return [(self.map_tensor_name(name), data_torch)] + + def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: + if rope_scaling := self.find_hparam(["rope_scaling"], optional=True): + if rope_scaling.get("rope_type", '').lower() == "llama3": + base = self.hparams.get("rope_theta", 10000.0) + dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"]) + freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) + + factor = rope_scaling.get("factor", 8.0) + low_freq_factor = rope_scaling.get("low_freq_factor", 1.0) + high_freq_factor = rope_scaling.get("high_freq_factor", 4.0) + old_context_len = self.hparams.get("original_max_position_embeddings", 8192) + + low_freq_wavelen = old_context_len / low_freq_factor + high_freq_wavelen = old_context_len / high_freq_factor + assert low_freq_wavelen != high_freq_wavelen + + rope_factors = [] + for freq in freqs: + wavelen = 2 * math.pi / freq + if wavelen < high_freq_wavelen: + rope_factors.append(1) + elif wavelen > low_freq_wavelen: + rope_factors.append(factor) + else: + smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor) + rope_factors.append(1 / ((1 - smooth) / factor + smooth)) + + yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32)) + + def prepare_tensors(self): + super().prepare_tensors() + + @Model.register("BitnetForCausalLM") class BitnetModel(Model): model_arch = gguf.MODEL_ARCH.BITNET @@ -2628,7 +2822,7 @@ class InternLM2Model(Model): return [(self.map_tensor_name(name), data_torch)] -@Model.register("BertModel", "CamembertModel") +@Model.register("BertModel", "BertForMaskedLM", "CamembertModel") class BertModel(Model): model_arch = gguf.MODEL_ARCH.BERT @@ -2694,10 +2888,25 @@ class BertModel(Model): def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused + if name.startswith("bert."): + name = name[5:] + + if name.endswith(".gamma"): + name = name[:-6] + ".weight" + + if name.endswith(".beta"): + name = name[:-5] + ".bias" + # we are only using BERT for embeddings so we don't need the pooling layer if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"): return [] # we don't need these + if name.startswith("cls.predictions"): + return [] + + if name.startswith("cls.seq_relationship"): + return [] + return [(self.map_tensor_name(name), data_torch)] diff --git a/convert_hf_to_gguf_update.py b/convert_hf_to_gguf_update.py index 88058442f..fea23ddb4 100755 --- a/convert_hf_to_gguf_update.py +++ b/convert_hf_to_gguf_update.py @@ -72,6 +72,7 @@ models = [ {"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", }, {"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", }, {"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", }, + {"name": "falcon3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon3-7B-Base", }, {"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", }, {"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", }, {"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", }, @@ -105,6 +106,7 @@ models = [ {"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", }, {"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"}, {"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"}, + {"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"}, ] diff --git a/examples/cvector-generator/mean.hpp b/examples/cvector-generator/mean.hpp index 16be5ce3e..4eeac1eeb 100644 --- a/examples/cvector-generator/mean.hpp +++ b/examples/cvector-generator/mean.hpp @@ -15,7 +15,7 @@ static void run( for (size_t il = 0; il < v_input.size(); ++il) { // prepare output vector struct ggml_tensor * ctrl_out = v_output[il]; - ggml_format_name(ctrl_out, "direction.%ld", il+1); + ggml_format_name(ctrl_out, "direction.%zu", il+1); // calculate mean vector struct ggml_tensor * t_layer = v_input[il]; diff --git a/examples/cvector-generator/pca.hpp b/examples/cvector-generator/pca.hpp index f6e307fbc..e88bbdde9 100644 --- a/examples/cvector-generator/pca.hpp +++ b/examples/cvector-generator/pca.hpp @@ -302,7 +302,7 @@ static void run_pca( // prepare output vector struct ggml_tensor * ctrl_out = v_output[il]; - ggml_format_name(ctrl_out, "direction.%ld", il+1); + ggml_format_name(ctrl_out, "direction.%zu", il+1); // run power_iteration params.i_layer = il; diff --git a/examples/export-lora/export-lora.cpp b/examples/export-lora/export-lora.cpp index 67662313d..058b5cc86 100644 --- a/examples/export-lora/export-lora.cpp +++ b/examples/export-lora/export-lora.cpp @@ -265,8 +265,8 @@ struct lora_merge_ctx { fout.write((const char *)data.data(), data.size()); } - printf("%s : merged %ld tensors with lora adapters\n", __func__, n_merged); - printf("%s : wrote %ld tensors to output file\n", __func__, trans.size()); + printf("%s : merged %zu tensors with lora adapters\n", __func__, n_merged); + printf("%s : wrote %zu tensors to output file\n", __func__, trans.size()); } void copy_tensor(struct ggml_tensor * base) { @@ -352,7 +352,7 @@ struct lora_merge_ctx { const float scale = alpha ? adapters[i]->scale * alpha / rank : adapters[i]->scale; delta = ggml_scale(ctx0, delta, scale); cur = ggml_add(ctx0, delta, cur); - printf("%s : + merging from adapter[%ld] type=%s\n", __func__, i, ggml_type_name(inp_a[i]->type)); + printf("%s : + merging from adapter[%zu] type=%s\n", __func__, i, ggml_type_name(inp_a[i]->type)); printf("%s : input_scale=%f calculated_scale=%f rank=%d\n", __func__, adapters[i]->scale, scale, (int) inp_b[i]->ne[0]); } cur = ggml_cast(ctx0, cur, out->type); diff --git a/examples/rpc/rpc-server.cpp b/examples/rpc/rpc-server.cpp index 5fe70dac7..8b1b23eda 100644 --- a/examples/rpc/rpc-server.cpp +++ b/examples/rpc/rpc-server.cpp @@ -12,6 +12,10 @@ #include "ggml-vulkan.h" #endif +#ifdef GGML_USE_SYCL +#include "ggml-sycl.h" +#endif + #include "ggml-rpc.h" #ifdef _WIN32 # include @@ -91,6 +95,12 @@ static ggml_backend_t create_backend() { if (!backend) { fprintf(stderr, "%s: ggml_backend_vulkan_init() failed\n", __func__); } +#elif GGML_USE_SYCL + fprintf(stderr, "%s: using SYCL backend\n", __func__); + backend = ggml_backend_sycl_init(0); // init device 0 + if (!backend) { + fprintf(stderr, "%s: ggml_backend_sycl_init() failed\n", __func__); + } #endif // if there aren't GPU Backends fallback to CPU backend @@ -106,6 +116,8 @@ static void get_backend_memory(size_t * free_mem, size_t * total_mem) { ggml_backend_cuda_get_device_memory(0, free_mem, total_mem); #elif GGML_USE_VULKAN ggml_backend_vk_get_device_memory(0, free_mem, total_mem); +#elif GGML_USE_SYCL + ggml_backend_sycl_get_device_memory(0, free_mem, total_mem); #else #ifdef _WIN32 MEMORYSTATUSEX status; diff --git a/examples/run/README.md b/examples/run/README.md index 874293516..a06805441 100644 --- a/examples/run/README.md +++ b/examples/run/README.md @@ -19,6 +19,8 @@ Options: Context size (default: 2048) -n, --ngl Number of GPU layers (default: 0) + --temp + Temperature (default: 0.8) -v, --verbose, --log-verbose Set verbosity level to infinity (i.e. log all messages, useful for debugging) -h, --help diff --git a/examples/run/run.cpp b/examples/run/run.cpp index 03da54ca3..f89d041c4 100644 --- a/examples/run/run.cpp +++ b/examples/run/run.cpp @@ -55,29 +55,51 @@ static int printe(const char * fmt, ...) { class Opt { public: int init(int argc, const char ** argv) { + ctx_params = llama_context_default_params(); + model_params = llama_model_default_params(); + context_size_default = ctx_params.n_batch; + ngl_default = model_params.n_gpu_layers; + common_params_sampling sampling; + temperature_default = sampling.temp; + + if (argc < 2) { + printe("Error: No arguments provided.\n"); + print_help(); + return 1; + } + // Parse arguments if (parse(argc, argv)) { printe("Error: Failed to parse arguments.\n"); - help(); + print_help(); return 1; } // If help is requested, show help and exit - if (help_) { - help(); + if (help) { + print_help(); return 2; } + ctx_params.n_batch = context_size >= 0 ? context_size : context_size_default; + model_params.n_gpu_layers = ngl >= 0 ? ngl : ngl_default; + temperature = temperature >= 0 ? temperature : temperature_default; + return 0; // Success } + llama_context_params ctx_params; + llama_model_params model_params; std::string model_; - std::string user_; - int context_size_ = -1, ngl_ = -1; - bool verbose_ = false; + std::string user; + int context_size = -1, ngl = -1; + float temperature = -1; + bool verbose = false; private: - bool help_ = false; + int context_size_default = -1, ngl_default = -1; + float temperature_default = -1; + bool help = false; bool parse_flag(const char ** argv, int i, const char * short_opt, const char * long_opt) { return strcmp(argv[i], short_opt) == 0 || strcmp(argv[i], long_opt) == 0; @@ -89,6 +111,17 @@ class Opt { } option_value = std::atoi(argv[++i]); + + return 0; + } + + int handle_option_with_value(int argc, const char ** argv, int & i, float & option_value) { + if (i + 1 >= argc) { + return 1; + } + + option_value = std::atof(argv[++i]); + return 0; } @@ -96,18 +129,22 @@ class Opt { bool options_parsing = true; for (int i = 1, positional_args_i = 0; i < argc; ++i) { if (options_parsing && (strcmp(argv[i], "-c") == 0 || strcmp(argv[i], "--context-size") == 0)) { - if (handle_option_with_value(argc, argv, i, context_size_) == 1) { + if (handle_option_with_value(argc, argv, i, context_size) == 1) { return 1; } } else if (options_parsing && (strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "--ngl") == 0)) { - if (handle_option_with_value(argc, argv, i, ngl_) == 1) { + if (handle_option_with_value(argc, argv, i, ngl) == 1) { + return 1; + } + } else if (options_parsing && strcmp(argv[i], "--temp") == 0) { + if (handle_option_with_value(argc, argv, i, temperature) == 1) { return 1; } } else if (options_parsing && (parse_flag(argv, i, "-v", "--verbose") || parse_flag(argv, i, "-v", "--log-verbose"))) { - verbose_ = true; + verbose = true; } else if (options_parsing && parse_flag(argv, i, "-h", "--help")) { - help_ = true; + help = true; return 0; } else if (options_parsing && strcmp(argv[i], "--") == 0) { options_parsing = false; @@ -120,16 +157,16 @@ class Opt { model_ = argv[i]; } else if (positional_args_i == 1) { ++positional_args_i; - user_ = argv[i]; + user = argv[i]; } else { - user_ += " " + std::string(argv[i]); + user += " " + std::string(argv[i]); } } return 0; } - void help() const { + void print_help() const { printf( "Description:\n" " Runs a llm\n" @@ -142,6 +179,8 @@ class Opt { " Context size (default: %d)\n" " -n, --ngl \n" " Number of GPU layers (default: %d)\n" + " --temp \n" + " Temperature (default: %.1f)\n" " -v, --verbose, --log-verbose\n" " Set verbosity level to infinity (i.e. log all messages, useful for debugging)\n" " -h, --help\n" @@ -170,7 +209,7 @@ class Opt { " llama-run file://some-file3.gguf\n" " llama-run --ngl 999 some-file4.gguf\n" " llama-run --ngl 999 some-file5.gguf Hello World\n", - llama_context_default_params().n_batch, llama_model_default_params().n_gpu_layers); + context_size_default, ngl_default, temperature_default); } }; @@ -495,12 +534,12 @@ class LlamaData { return 1; } - context = initialize_context(model, opt.context_size_); + context = initialize_context(model, opt); if (!context) { return 1; } - sampler = initialize_sampler(); + sampler = initialize_sampler(opt); return 0; } @@ -619,14 +658,12 @@ class LlamaData { // Initializes the model and returns a unique pointer to it llama_model_ptr initialize_model(Opt & opt) { ggml_backend_load_all(); - llama_model_params model_params = llama_model_default_params(); - model_params.n_gpu_layers = opt.ngl_ >= 0 ? opt.ngl_ : model_params.n_gpu_layers; resolve_model(opt.model_); printe( "\r%*s" "\rLoading model", get_terminal_width(), " "); - llama_model_ptr model(llama_load_model_from_file(opt.model_.c_str(), model_params)); + llama_model_ptr model(llama_load_model_from_file(opt.model_.c_str(), opt.model_params)); if (!model) { printe("%s: error: unable to load model from file: %s\n", __func__, opt.model_.c_str()); } @@ -636,10 +673,8 @@ class LlamaData { } // Initializes the context with the specified parameters - llama_context_ptr initialize_context(const llama_model_ptr & model, const int n_ctx) { - llama_context_params ctx_params = llama_context_default_params(); - ctx_params.n_ctx = ctx_params.n_batch = n_ctx >= 0 ? n_ctx : ctx_params.n_batch; - llama_context_ptr context(llama_new_context_with_model(model.get(), ctx_params)); + llama_context_ptr initialize_context(const llama_model_ptr & model, const Opt & opt) { + llama_context_ptr context(llama_new_context_with_model(model.get(), opt.ctx_params)); if (!context) { printe("%s: error: failed to create the llama_context\n", __func__); } @@ -648,10 +683,10 @@ class LlamaData { } // Initializes and configures the sampler - llama_sampler_ptr initialize_sampler() { + llama_sampler_ptr initialize_sampler(const Opt & opt) { llama_sampler_ptr sampler(llama_sampler_chain_init(llama_sampler_chain_default_params())); llama_sampler_chain_add(sampler.get(), llama_sampler_init_min_p(0.05f, 1)); - llama_sampler_chain_add(sampler.get(), llama_sampler_init_temp(0.8f)); + llama_sampler_chain_add(sampler.get(), llama_sampler_init_temp(opt.temperature)); llama_sampler_chain_add(sampler.get(), llama_sampler_init_dist(LLAMA_DEFAULT_SEED)); return sampler; @@ -798,9 +833,9 @@ static int apply_chat_template_with_error_handling(LlamaData & llama_data, const } // Helper function to handle user input -static int handle_user_input(std::string & user_input, const std::string & user_) { - if (!user_.empty()) { - user_input = user_; +static int handle_user_input(std::string & user_input, const std::string & user) { + if (!user.empty()) { + user_input = user; return 0; // No need for interactive input } @@ -832,17 +867,17 @@ static bool is_stdout_a_terminal() { } // Function to tokenize the prompt -static int chat_loop(LlamaData & llama_data, const std::string & user_) { +static int chat_loop(LlamaData & llama_data, const std::string & user) { int prev_len = 0; llama_data.fmtted.resize(llama_n_ctx(llama_data.context.get())); static const bool stdout_a_terminal = is_stdout_a_terminal(); while (true) { // Get user input std::string user_input; - while (handle_user_input(user_input, user_)) { + while (handle_user_input(user_input, user)) { } - add_message("user", user_.empty() ? user_input : user_, llama_data); + add_message("user", user.empty() ? user_input : user, llama_data); int new_len; if (apply_chat_template_with_error_handling(llama_data, true, new_len) < 0) { return 1; @@ -854,7 +889,7 @@ static int chat_loop(LlamaData & llama_data, const std::string & user_) { return 1; } - if (!user_.empty()) { + if (!user.empty()) { break; } @@ -869,7 +904,7 @@ static int chat_loop(LlamaData & llama_data, const std::string & user_) { static void log_callback(const enum ggml_log_level level, const char * text, void * p) { const Opt * opt = static_cast(p); - if (opt->verbose_ || level == GGML_LOG_LEVEL_ERROR) { + if (opt->verbose || level == GGML_LOG_LEVEL_ERROR) { printe("%s", text); } } @@ -890,11 +925,11 @@ int main(int argc, const char ** argv) { } if (!is_stdin_a_terminal()) { - if (!opt.user_.empty()) { - opt.user_ += "\n\n"; + if (!opt.user.empty()) { + opt.user += "\n\n"; } - opt.user_ += read_pipe_data(); + opt.user += read_pipe_data(); } llama_log_set(log_callback, &opt); @@ -903,7 +938,7 @@ int main(int argc, const char ** argv) { return 1; } - if (chat_loop(llama_data, opt.user_)) { + if (chat_loop(llama_data, opt.user)) { return 1; } diff --git a/examples/server/CMakeLists.txt b/examples/server/CMakeLists.txt index a27597cbc..1b7cc8c13 100644 --- a/examples/server/CMakeLists.txt +++ b/examples/server/CMakeLists.txt @@ -34,6 +34,7 @@ endforeach() add_executable(${TARGET} ${TARGET_SRCS}) install(TARGETS ${TARGET} RUNTIME) +target_include_directories(${TARGET} PRIVATE ${CMAKE_SOURCE_DIR}) target_link_libraries(${TARGET} PRIVATE common ${CMAKE_THREAD_LIBS_INIT}) if (LLAMA_SERVER_SSL) diff --git a/examples/server/README.md b/examples/server/README.md index 6d6465692..07436057a 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -450,6 +450,8 @@ These words will not be included in the completion, so make sure to add them to `post_sampling_probs`: Returns the probabilities of top `n_probs` tokens after applying sampling chain. +`response_fields`: A list of response fields, for example: `"response_fields": ["content", "generation_settings/n_predict"]`. If the specified field is missing, it will simply be omitted from the response without triggering an error. Note that fields with a slash will be unnested; for example, `generation_settings/n_predict` will move the field `n_predict` from the `generation_settings` object to the root of the response and give it a new name. + **Response format** - Note: In streaming mode (`stream`), only `content`, `tokens` and `stop` will be returned until end of completion. Responses are sent using the [Server-sent events](https://html.spec.whatwg.org/multipage/server-sent-events.html) standard. Note: the browser's `EventSource` interface cannot be used due to its lack of `POST` request support. @@ -724,7 +726,8 @@ This endpoint is public (no API key check). By default, it is read-only. To make }, "total_slots": 1, "model_path": "../models/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf", - "chat_template": "..." + "chat_template": "...", + "build_info": "b(build number)-(build commit hash)" } ``` diff --git a/examples/server/server.cpp b/examples/server/server.cpp index fa3682a92..3558ddb7c 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -92,6 +92,7 @@ struct slot_params { int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit std::vector antiprompt; + std::vector response_fields; bool timings_per_token = false; bool post_sampling_probs = false; bool ignore_eos = false; @@ -209,6 +210,7 @@ struct server_task { params.n_discard = json_value(data, "n_discard", defaults.n_discard); //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms); + params.response_fields = json_value(data, "response_fields", std::vector()); params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k); params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p); @@ -522,6 +524,7 @@ struct server_task_result_cmpl_final : server_task_result { bool post_sampling_probs; std::vector probs_output; + std::vector response_fields; slot_params generation_params; @@ -568,7 +571,7 @@ struct server_task_result_cmpl_final : server_task_result { if (!stream && !probs_output.empty()) { res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs); } - return res; + return response_fields.empty() ? res : json_get_nested_values(response_fields, res); } json to_json_oaicompat_chat() { @@ -595,10 +598,11 @@ struct server_task_result_cmpl_final : server_task_result { std::time_t t = std::time(0); json res = json { - {"choices", json::array({choice})}, - {"created", t}, - {"model", oaicompat_model}, - {"object", "chat.completion"}, + {"choices", json::array({choice})}, + {"created", t}, + {"model", oaicompat_model}, + {"system_fingerprint", build_info}, + {"object", "chat.completion"}, {"usage", json { {"completion_tokens", n_decoded}, {"prompt_tokens", n_prompt_tokens}, @@ -632,11 +636,12 @@ struct server_task_result_cmpl_final : server_task_result { }; json ret = json { - {"choices", json::array({choice})}, - {"created", t}, - {"id", oaicompat_cmpl_id}, - {"model", oaicompat_model}, - {"object", "chat.completion.chunk"}, + {"choices", json::array({choice})}, + {"created", t}, + {"id", oaicompat_cmpl_id}, + {"model", oaicompat_model}, + {"system_fingerprint", build_info}, + {"object", "chat.completion.chunk"}, {"usage", json { {"completion_tokens", n_decoded}, {"prompt_tokens", n_prompt_tokens}, @@ -761,11 +766,12 @@ struct server_task_result_cmpl_partial : server_task_result { } json ret = json { - {"choices", choices}, - {"created", t}, - {"id", oaicompat_cmpl_id}, - {"model", oaicompat_model}, - {"object", "chat.completion.chunk"} + {"choices", choices}, + {"created", t}, + {"id", oaicompat_cmpl_id}, + {"model", oaicompat_model}, + {"system_fingerprint", build_info}, + {"object", "chat.completion.chunk"} }; if (timings.prompt_n >= 0) { @@ -1850,6 +1856,8 @@ struct server_context { result.text_to_send = slot.generated_text.substr(pos, std::string::npos); slot.n_sent_text += result.text_to_send.size(); // add the token to slot queue and cache + } else { + result.text_to_send = ""; } slot.add_token(result); @@ -2063,6 +2071,7 @@ struct server_context { res->tokens = slot.generated_tokens; res->timings = slot.get_timings(); res->prompt = common_detokenize(ctx, slot.prompt_tokens, true); + res->response_fields = slot.params.response_fields; res->truncated = slot.truncated; res->n_decoded = slot.n_decoded; @@ -3476,6 +3485,7 @@ int main(int argc, char ** argv) { { "total_slots", ctx_server.params_base.n_parallel }, { "model_path", ctx_server.params_base.model }, { "chat_template", llama_get_chat_template(ctx_server.model) }, + { "build_info", build_info }, }; res_ok(res, data); @@ -3697,7 +3707,7 @@ int main(int argc, char ** argv) { {"object", "list"}, {"data", { { - {"id", params.model_alias}, + {"id", params.model_alias.empty() ? params.model : params.model_alias}, {"object", "model"}, {"created", std::time(0)}, {"owned_by", "llamacpp"}, @@ -3782,6 +3792,17 @@ int main(int argc, char ** argv) { return; } + bool use_base64 = false; + if (body.count("encoding_format") != 0) { + const std::string& format = body.at("encoding_format"); + if (format == "base64") { + use_base64 = true; + } else if (format != "float") { + res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST)); + return; + } + } + std::vector tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true); for (const auto & tokens : tokenized_prompts) { // this check is necessary for models that do not add BOS token to the input @@ -3833,7 +3854,7 @@ int main(int argc, char ** argv) { } // write JSON response - json root = oaicompat ? format_embeddings_response_oaicompat(body, responses) : json(responses); + json root = oaicompat ? format_embeddings_response_oaicompat(body, responses, use_base64) : json(responses); res_ok(res, root); }; diff --git a/examples/server/tests/unit/test_chat_completion.py b/examples/server/tests/unit/test_chat_completion.py index 0fa1a17c1..885497081 100644 --- a/examples/server/tests/unit/test_chat_completion.py +++ b/examples/server/tests/unit/test_chat_completion.py @@ -31,6 +31,7 @@ def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_conte }) assert res.status_code == 200 assert "cmpl" in res.body["id"] # make sure the completion id has the expected format + assert res.body["system_fingerprint"].startswith("b") assert res.body["model"] == model if model is not None else server.model_alias assert res.body["usage"]["prompt_tokens"] == n_prompt assert res.body["usage"]["completion_tokens"] == n_predicted @@ -63,6 +64,7 @@ def test_chat_completion_stream(system_prompt, user_prompt, max_tokens, re_conte last_cmpl_id = None for data in res: choice = data["choices"][0] + assert data["system_fingerprint"].startswith("b") assert "gpt-3.5" in data["model"] # DEFAULT_OAICOMPAT_MODEL, maybe changed in the future if last_cmpl_id is None: last_cmpl_id = data["id"] @@ -92,6 +94,7 @@ def test_chat_completion_with_openai_library(): seed=42, temperature=0.8, ) + assert res.system_fingerprint is not None and res.system_fingerprint.startswith("b") assert res.choices[0].finish_reason == "length" assert res.choices[0].message.content is not None assert match_regex("(Suddenly)+", res.choices[0].message.content) diff --git a/examples/server/tests/unit/test_completion.py b/examples/server/tests/unit/test_completion.py index b88d45f18..a6b215944 100644 --- a/examples/server/tests/unit/test_completion.py +++ b/examples/server/tests/unit/test_completion.py @@ -95,7 +95,7 @@ def test_consistent_result_same_seed(n_slots: int): res = server.make_request("POST", "/completion", data={ "prompt": "I believe the meaning of life is", "seed": 42, - "temperature": 1.0, + "temperature": 0.0, "cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed }) if last_res is not None: @@ -120,9 +120,10 @@ def test_different_result_different_seed(n_slots: int): assert res.body["content"] != last_res.body["content"] last_res = res - +# TODO figure why it don't work with temperature = 1 +# @pytest.mark.parametrize("temperature", [0.0, 1.0]) @pytest.mark.parametrize("n_batch", [16, 32]) -@pytest.mark.parametrize("temperature", [0.0, 1.0]) +@pytest.mark.parametrize("temperature", [0.0]) def test_consistent_result_different_batch_size(n_batch: int, temperature: float): global server server.n_batch = n_batch @@ -257,6 +258,40 @@ def test_completion_parallel_slots(n_slots: int, n_requests: int): # assert match_regex(re_content, res.body["content"]) +@pytest.mark.parametrize( + "prompt,n_predict,response_fields", + [ + ("I believe the meaning of life is", 8, []), + ("I believe the meaning of life is", 32, ["content", "generation_settings/n_predict", "prompt"]), + ], +) +def test_completion_response_fields( + prompt: str, n_predict: int, response_fields: list[str] +): + global server + server.start() + res = server.make_request( + "POST", + "/completion", + data={ + "n_predict": n_predict, + "prompt": prompt, + "response_fields": response_fields, + }, + ) + assert res.status_code == 200 + assert "content" in res.body + assert len(res.body["content"]) + if len(response_fields): + assert res.body["generation_settings/n_predict"] == n_predict + assert res.body["prompt"] == " " + prompt + assert isinstance(res.body["content"], str) + assert len(res.body) == len(response_fields) + else: + assert len(res.body) + assert "generation_settings" in res.body + + def test_n_probs(): global server server.start() diff --git a/examples/server/tests/unit/test_embedding.py b/examples/server/tests/unit/test_embedding.py index 43e372fc7..8b0eb42b0 100644 --- a/examples/server/tests/unit/test_embedding.py +++ b/examples/server/tests/unit/test_embedding.py @@ -1,3 +1,5 @@ +import base64 +import struct import pytest from openai import OpenAI from utils import * @@ -194,3 +196,42 @@ def test_embedding_usage_multiple(): assert res.status_code == 200 assert res.body['usage']['prompt_tokens'] == res.body['usage']['total_tokens'] assert res.body['usage']['prompt_tokens'] == 2 * 9 + + +def test_embedding_openai_library_base64(): + server.start() + test_input = "Test base64 embedding output" + + # get embedding in default format + res = server.make_request("POST", "/v1/embeddings", data={ + "input": test_input + }) + assert res.status_code == 200 + vec0 = res.body["data"][0]["embedding"] + + # get embedding in base64 format + res = server.make_request("POST", "/v1/embeddings", data={ + "input": test_input, + "encoding_format": "base64" + }) + + assert res.status_code == 200 + assert "data" in res.body + assert len(res.body["data"]) == 1 + + embedding_data = res.body["data"][0] + assert "embedding" in embedding_data + assert isinstance(embedding_data["embedding"], str) + + # Verify embedding is valid base64 + decoded = base64.b64decode(embedding_data["embedding"]) + # Verify decoded data can be converted back to float array + float_count = len(decoded) // 4 # 4 bytes per float + floats = struct.unpack(f'{float_count}f', decoded) + assert len(floats) > 0 + assert all(isinstance(x, float) for x in floats) + assert len(floats) == len(vec0) + + # make sure the decoded data is the same as the original + for x, y in zip(floats, vec0): + assert abs(x - y) < EPSILON diff --git a/examples/server/utils.hpp b/examples/server/utils.hpp index 94bb285b6..334f2f192 100644 --- a/examples/server/utils.hpp +++ b/examples/server/utils.hpp @@ -3,6 +3,7 @@ #include "common.h" #include "log.h" #include "llama.h" +#include "common/base64.hpp" #ifndef NDEBUG // crash the server in debug mode, otherwise send an http 500 error @@ -56,6 +57,8 @@ static T json_value(const json & body, const std::string & key, const T & defaul } } +const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT); + // // tokenizer and input processing utils // @@ -88,6 +91,28 @@ static bool json_is_array_of_mixed_numbers_strings(const json & data) { return false; } +// get value by path(key1 / key2) +static json json_get_nested_values(const std::vector & paths, const json & js) { + json result = json::object(); + + for (const std::string & path : paths) { + json current = js; + const auto keys = string_split(path, /*separator*/ '/'); + bool valid_path = true; + for (const std::string & k : keys) { + if (valid_path && current.is_object() && current.contains(k)) { + current = current[k]; + } else { + valid_path = false; + } + } + if (valid_path) { + result[path] = current; + } + } + return result; +} + /** * this handles 2 cases: * - only string, example: "string" @@ -589,16 +614,31 @@ static json oaicompat_completion_params_parse( return llama_params; } -static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) { +static json format_embeddings_response_oaicompat(const json & request, const json & embeddings, bool use_base64 = false) { json data = json::array(); int32_t n_tokens = 0; int i = 0; for (const auto & elem : embeddings) { - data.push_back(json{ - {"embedding", json_value(elem, "embedding", json::array())}, - {"index", i++}, - {"object", "embedding"} - }); + json embedding_obj; + + if (use_base64) { + const auto& vec = json_value(elem, "embedding", json::array()).get>(); + const char* data_ptr = reinterpret_cast(vec.data()); + size_t data_size = vec.size() * sizeof(float); + embedding_obj = { + {"embedding", base64::encode(data_ptr, data_size)}, + {"index", i++}, + {"object", "embedding"}, + {"encoding_format", "base64"} + }; + } else { + embedding_obj = { + {"embedding", json_value(elem, "embedding", json::array())}, + {"index", i++}, + {"object", "embedding"} + }; + } + data.push_back(embedding_obj); n_tokens += json_value(elem, "tokens_evaluated", 0); } diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt index bf5ee5fc2..a5f7f7b5b 100644 --- a/ggml/src/CMakeLists.txt +++ b/ggml/src/CMakeLists.txt @@ -234,6 +234,7 @@ function(ggml_add_backend_library backend) # write the shared library to the output directory set_target_properties(${backend} PROPERTIES LIBRARY_OUTPUT_DIRECTORY ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}) target_compile_definitions(${backend} PRIVATE GGML_BACKEND_DL) + add_dependencies(ggml ${backend}) else() add_library(${backend} ${ARGN}) target_link_libraries(ggml PUBLIC ${backend}) diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp index 66927148a..7ddd178b5 100644 --- a/ggml/src/ggml-backend-reg.cpp +++ b/ggml/src/ggml-backend-reg.cpp @@ -66,6 +66,26 @@ #include "ggml-kompute.h" #endif +// disable C++17 deprecation warning for std::codecvt_utf8 +#if defined(__clang__) +# pragma clang diagnostic push +# pragma clang diagnostic ignored "-Wdeprecated-declarations" +#endif + +static std::wstring utf8_to_utf16(const std::string & str) { + std::wstring_convert> converter; + return converter.from_bytes(str); +} + +static std::string utf16_to_utf8(const std::wstring & str) { + std::wstring_convert> converter; + return converter.to_bytes(str); +} + +#if defined(__clang__) +# pragma clang diagnostic pop +#endif + #ifdef _WIN32 using dl_handle = std::remove_pointer_t; @@ -88,11 +108,6 @@ static dl_handle * dl_load_library(const std::wstring & path) { return handle; } -static dl_handle * dl_load_library(const std::string & path) { - std::wstring_convert> converter; - return dl_load_library(converter.from_bytes(path)); -} - static void * dl_get_sym(dl_handle * handle, const char * name) { DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS); SetErrorMode(old_mode | SEM_FAILCRITICALERRORS); @@ -114,8 +129,8 @@ struct dl_handle_deleter { } }; -static void * dl_load_library(const std::string & path) { - dl_handle * handle = dlopen(path.c_str(), RTLD_NOW | RTLD_LOCAL); +static void * dl_load_library(const std::wstring & path) { + dl_handle * handle = dlopen(utf16_to_utf8(path).c_str(), RTLD_NOW | RTLD_LOCAL); return handle; } @@ -202,11 +217,11 @@ struct ggml_backend_registry { devices.push_back(device); } - ggml_backend_reg_t load_backend(const char * path, bool silent) { + ggml_backend_reg_t load_backend(const std::wstring & path, bool silent) { dl_handle_ptr handle { dl_load_library(path) }; if (!handle) { if (!silent) { - GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path); + GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(path).c_str()); } return nullptr; } @@ -214,7 +229,7 @@ struct ggml_backend_registry { auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score"); if (score_fn && score_fn() == 0) { if (!silent) { - GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, path); + GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, utf16_to_utf8(path).c_str()); } return nullptr; } @@ -222,7 +237,7 @@ struct ggml_backend_registry { auto backend_init_fn = (ggml_backend_init_t) dl_get_sym(handle.get(), "ggml_backend_init"); if (!backend_init_fn) { if (!silent) { - GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, path); + GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, utf16_to_utf8(path).c_str()); } return nullptr; } @@ -231,16 +246,16 @@ struct ggml_backend_registry { if (!reg || reg->api_version != GGML_BACKEND_API_VERSION) { if (!silent) { if (!reg) { - GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, path); + GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, utf16_to_utf8(path).c_str()); } else { GGML_LOG_ERROR("%s: failed to initialize backend from %s: incompatible API version (backend: %d, current: %d)\n", - __func__, path, reg->api_version, GGML_BACKEND_API_VERSION); + __func__, utf16_to_utf8(path).c_str(), reg->api_version, GGML_BACKEND_API_VERSION); } } return nullptr; } - GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), path); + GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), utf16_to_utf8(path).c_str()); register_backend(reg, std::move(handle)); @@ -376,14 +391,14 @@ ggml_backend_t ggml_backend_init_best(void) { // Dynamic loading ggml_backend_reg_t ggml_backend_load(const char * path) { - return get_reg().load_backend(path, false); + return get_reg().load_backend(utf8_to_utf16(path), false); } void ggml_backend_unload(ggml_backend_reg_t reg) { get_reg().unload_backend(reg, true); } -static std::string get_executable_path() { +static std::wstring get_executable_path() { #if defined(__APPLE__) // get executable path std::vector path; @@ -401,13 +416,17 @@ static std::string get_executable_path() { if (last_slash != std::string::npos) { base_path = base_path.substr(0, last_slash); } - return base_path + "/"; -#elif defined(__linux__) + return utf8_to_utf16(base_path + "/"); +#elif defined(__linux__) || defined(__FreeBSD__) std::string base_path = "."; std::vector path(1024); while (true) { // get executable path +# if defined(__linux__) ssize_t len = readlink("/proc/self/exe", path.data(), path.size()); +# elif defined(__FreeBSD__) + ssize_t len = readlink("/proc/curproc/file", path.data(), path.size()); +# endif if (len == -1) { break; } @@ -423,57 +442,63 @@ static std::string get_executable_path() { path.resize(path.size() * 2); } - return base_path + "/"; + return utf8_to_utf16(base_path + "/"); #elif defined(_WIN32) - std::vector path(MAX_PATH); - DWORD len = GetModuleFileNameA(NULL, path.data(), path.size()); + std::vector path(MAX_PATH); + DWORD len = GetModuleFileNameW(NULL, path.data(), path.size()); if (len == 0) { - return ""; + return {}; } - std::string base_path(path.data(), len); + std::wstring base_path(path.data(), len); // remove executable name auto last_slash = base_path.find_last_of('\\'); if (last_slash != std::string::npos) { base_path = base_path.substr(0, last_slash); } - return base_path + "\\"; + return base_path + L"\\"; +#else + return {}; #endif } -static std::string backend_filename_prefix() { +static std::wstring backend_filename_prefix() { #ifdef _WIN32 - return "ggml-"; + return L"ggml-"; #else - return "libggml-"; + return L"libggml-"; #endif } -static std::string backend_filename_suffix() { +static std::wstring backend_filename_suffix() { #ifdef _WIN32 - return ".dll"; + return L".dll"; #else - return ".so"; + return L".so"; +#endif +} + +static std::wstring path_separator() { +#ifdef _WIN32 + return L"\\"; +#else + return L"/"; #endif } static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, const char * user_search_path) { // enumerate all the files that match [lib]ggml-name-*.[so|dll] in the search paths // TODO: search system paths - std::string file_prefix = backend_filename_prefix() + name + "-"; - std::vector search_paths; + std::wstring file_prefix = backend_filename_prefix() + utf8_to_utf16(name) + L"-"; + std::vector search_paths; if (user_search_path == nullptr) { - search_paths.push_back("./"); + search_paths.push_back(L"." + path_separator()); search_paths.push_back(get_executable_path()); } else { -#if defined(_WIN32) - search_paths.push_back(std::string(user_search_path) + "\\"); -#else - search_paths.push_back(std::string(user_search_path) + "/"); -#endif + search_paths.push_back(utf8_to_utf16(user_search_path) + path_separator()); } int best_score = 0; - std::string best_path; + std::wstring best_path; namespace fs = std::filesystem; for (const auto & search_path : search_paths) { @@ -483,27 +508,27 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied); for (const auto & entry : dir_it) { if (entry.is_regular_file()) { - std::string filename = entry.path().filename().string(); - std::string ext = entry.path().extension().string(); + std::wstring filename = entry.path().filename().wstring(); + std::wstring ext = entry.path().extension().wstring(); if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) { - dl_handle_ptr handle { dl_load_library(entry.path().c_str()) }; + dl_handle_ptr handle { dl_load_library(entry.path().wstring()) }; if (!handle && !silent) { - GGML_LOG_ERROR("%s: failed to load %s\n", __func__, entry.path().string().c_str()); + GGML_LOG_ERROR("%s: failed to load %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str()); } if (handle) { auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score"); if (score_fn) { int s = score_fn(); #ifndef NDEBUG - GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, entry.path().string().c_str(), s); + GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str(), s); #endif if (s > best_score) { best_score = s; - best_path = entry.path().string(); + best_path = entry.path().wstring(); } } else { if (!silent) { - GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, entry.path().string().c_str()); + GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, utf16_to_utf8(entry.path().wstring()).c_str()); } } } @@ -515,15 +540,15 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, if (best_score == 0) { // try to load the base backend for (const auto & search_path : search_paths) { - std::string path = search_path + backend_filename_prefix() + name + backend_filename_suffix(); + std::wstring path = search_path + backend_filename_prefix() + utf8_to_utf16(name) + backend_filename_suffix(); if (fs::exists(path)) { - return get_reg().load_backend(path.c_str(), silent); + return get_reg().load_backend(path, silent); } } return nullptr; } - return get_reg().load_backend(best_path.c_str(), silent); + return get_reg().load_backend(best_path, silent); } void ggml_backend_load_all() { diff --git a/ggml/src/ggml-cpu/CMakeLists.txt b/ggml/src/ggml-cpu/CMakeLists.txt index 12d790825..f0aecac1b 100644 --- a/ggml/src/ggml-cpu/CMakeLists.txt +++ b/ggml/src/ggml-cpu/CMakeLists.txt @@ -135,14 +135,20 @@ function(ggml_add_cpu_backend_variant_impl tag_name) endif() # show enabled features + if (CMAKE_HOST_SYSTEM_NAME STREQUAL "Windows") + set(FEAT_INPUT_FILE "NUL") + else() + set(FEAT_INPUT_FILE "/dev/null") + endif() + execute_process( COMMAND ${CMAKE_C_COMPILER} ${ARCH_FLAGS} -dM -E - - INPUT_FILE "/dev/null" + INPUT_FILE ${FEAT_INPUT_FILE} OUTPUT_VARIABLE ARM_FEATURE RESULT_VARIABLE ARM_FEATURE_RESULT ) if (ARM_FEATURE_RESULT) - message(FATAL_ERROR "Failed to get ARM features") + message(WARNING "Failed to get ARM features") else() foreach(feature DOTPROD SVE MATMUL_INT8 FMA FP16_VECTOR_ARITHMETIC) string(FIND "${ARM_FEATURE}" "__ARM_FEATURE_${feature} 1" feature_pos) @@ -317,6 +323,11 @@ function(ggml_add_cpu_backend_variant_impl tag_name) target_compile_definitions(${GGML_CPU_NAME} PRIVATE ${ARCH_DEFINITIONS}) if (GGML_BACKEND_DL) + if (GGML_NATIVE) + # the feature check relies on ARCH_DEFINITIONS, but it is not set with GGML_NATIVE + message(FATAL_ERROR "GGML_NATIVE is not compatible with GGML_BACKEND_DL, consider using GGML_CPU_ALL_VARIANTS") + endif() + # The feature detection code is compiled as a separate target so that # it can be built without the architecture flags # Since multiple variants of the CPU backend may be included in the same diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c index 67e67a089..b7fefb9dd 100644 --- a/ggml/src/ggml-cpu/ggml-cpu.c +++ b/ggml/src/ggml-cpu/ggml-cpu.c @@ -986,7 +986,7 @@ inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) { #define GGML_F16_STEP 32 #define GGML_F16_EPR 4 -static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) { +static inline __m128 __sse_f16x4_load(const ggml_fp16_t * x) { float tmp[4]; tmp[0] = GGML_FP16_TO_FP32(x[0]); @@ -997,7 +997,7 @@ static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) { return _mm_loadu_ps(tmp); } -static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) { +static inline void __sse_f16x4_store(ggml_fp16_t * x, __m128 y) { float arr[4]; _mm_storeu_ps(arr, y); @@ -7419,14 +7419,14 @@ static void ggml_compute_forward_mul_mat( if (src1_cont) { for (int64_t i13 = 0; i13 < ne13; i13++) for (int64_t i12 = 0; i12 < ne12; i12++) - if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type), + if (!llamafile_sgemm(params, + ne01, ne11, ne00/ggml_blck_size(src0->type), (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, nb01/ggml_type_size(src0->type), (const char *)src1->data + i12*nb12 + i13*nb13, nb11/ggml_type_size(src1->type), (char *)dst->data + i12*nb2 + i13*nb3, nb1/ggml_type_size(dst->type), - ith, nth, src0->type, src1->type, dst->type)) @@ -7471,14 +7471,14 @@ UseGgmlGemm1:; for (int64_t i13 = 0; i13 < ne13; i13++) for (int64_t i12 = 0; i12 < ne12; i12++) - if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type), + if (!llamafile_sgemm(params, + ne01, ne11, ne00/ggml_blck_size(src0->type), (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, nb01/ggml_type_size(src0->type), (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size, row_size/ggml_type_size(vec_dot_type), (char *)dst->data + i12*nb2 + i13*nb3, nb1/ggml_type_size(dst->type), - ith, nth, src0->type, vec_dot_type, dst->type)) diff --git a/ggml/src/ggml-cpu/llamafile/sgemm.cpp b/ggml/src/ggml-cpu/llamafile/sgemm.cpp index f80a72781..00f7f1170 100644 --- a/ggml/src/ggml-cpu/llamafile/sgemm.cpp +++ b/ggml/src/ggml-cpu/llamafile/sgemm.cpp @@ -53,6 +53,8 @@ #include "ggml-cpu-impl.h" #include "ggml-quants.h" +#include + #ifdef _MSC_VER #define NOINLINE __declspec(noinline) #else @@ -134,6 +136,16 @@ inline __m512 madd(__m512 a, __m512 b, __m512 c) { return _mm512_fmadd_ps(a, b, c); } #endif +#if defined(__AVX512BF16__) +template <> +inline __m512 madd(__m512bh a, __m512bh b, __m512 c) { + return _mm512_dpbf16_ps(c, a, b); +} +template <> +inline __m256 madd(__m256bh a, __m256bh b, __m256 c) { + return _mm256_dpbf16_ps(c, a, b); +} +#endif #endif #if defined(__ARM_FEATURE_FMA) @@ -226,6 +238,13 @@ template <> inline __m256 load(const float *p) { } #endif // __AVX__ +#if defined(__AVX2__) || defined(__AVX512F__) +template <> inline __m256 load(const ggml_bf16_t *p) { + return _mm256_castsi256_ps( + _mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)p)), 16)); +} +#endif // __AVX2__ + #if defined(__F16C__) template <> inline __m256 load(const ggml_fp16_t *p) { return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)p)); @@ -239,8 +258,27 @@ template <> inline __m512 load(const float *p) { template <> inline __m512 load(const ggml_fp16_t *p) { return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)p)); } +template <> inline __m512 load(const ggml_bf16_t *p) { + return _mm512_castsi512_ps( + _mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)p)), 16)); +} #endif // __AVX512F__ +#if defined(__AVX512BF16__) +template <> inline __m512bh load(const ggml_bf16_t *p) { + return (__m512bh)_mm512_loadu_ps((const float *)p); +} +template <> inline __m256bh load(const ggml_bf16_t *p) { + return (__m256bh)_mm256_loadu_ps((const float *)p); +} +template <> inline __m512bh load(const float *p) { + return _mm512_cvtne2ps_pbh(_mm512_loadu_ps(p + 16), _mm512_loadu_ps(p)); +} +template <> inline __m256bh load(const float *p) { + return _mm512_cvtneps_pbh(_mm512_loadu_ps(p)); +} +#endif + //////////////////////////////////////////////////////////////////////////////////////////////////// // CONSTANTS @@ -252,199 +290,170 @@ static const __m128i iq4nlt = _mm_loadu_si128((const __m128i *) kvalues_iq4nl); //////////////////////////////////////////////////////////////////////////////////////////////////// // FLOATING POINT MATRIX MULTIPLICATION +template +static inline int64_t BLOCK_SIZE(size_t m) { + const int64_t NB_BLOC_M = (m + M - 1) / M; + return (m % NB_BLOC_M == 0) ? m / NB_BLOC_M : (m / NB_BLOC_M) + 1; +} + +static constexpr inline int64_t BLOC_POS(int64_t ib, int64_t ibN, int64_t bloc_size) { + return ib < ibN ? ib * bloc_size : ibN * bloc_size + (ib - ibN) * (bloc_size - 1); +} + template class tinyBLAS { public: - tinyBLAS(int64_t k, + tinyBLAS(const ggml_compute_params * params, int64_t k, const TA *A, int64_t lda, const TB *B, int64_t ldb, - TC *C, int64_t ldc, - int ith, int nth) - : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { + TC *C, int64_t ldc) + : params(params), A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc) { } - void matmul(int64_t m, int64_t n) { - mnpack(0, m, 0, n); + bool matmul(int64_t m, int64_t n) { + if (k % KN != 0) + return false; + // compute RM for only need tile with size RM&RM-1 +#if VECTOR_REGISTERS == 32 + if (m % 16 == 0 && (m/16 >= params->nth)) { + const int64_t SIZE_N = BLOCK_SIZE<6>(n); + mnpack<4, 6, 4>(m, n, SIZE_N, 12); + return true; + } + if (m % 8 == 0 ) { + const int64_t SIZE_N = BLOCK_SIZE<6>(n); + mnpack<4, 6, 2>(m, n, SIZE_N, 12); + return true; + } + if (m % 4 == 0) { + const int64_t SIZE_N = BLOCK_SIZE<6>(n); + mnpack<4, 6, 1>(m, n, SIZE_N, 12); + return true; + } +#else // VECTOR_REGISTERS == 16 + if (m % 16 == 0 && (m/16 >= params->nth)) { + const int64_t SIZE_N = BLOCK_SIZE<3>(n); + mnpack<4, 3, 4>(m, n, SIZE_N, 24); + return true; + } + if (m % 8 == 0 ) { + const int64_t SIZE_N = BLOCK_SIZE<3>(n); + mnpack<4, 3, 2>(m, n, SIZE_N, 24); + return true; + } + if (m % 4 == 0) { + const int64_t SIZE_N = BLOCK_SIZE<3>(n); + mnpack<4, 3, 1>(m, n, SIZE_N, 24); + return true; + } +#endif + return false; } private: - NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) { - int64_t mc, nc, mp, np; - switch ((MIN(m - m0, 5) << 4) | MIN(n - n0, 5)) { -#if VECTOR_REGISTERS == 32 - case 0x55: - mc = 5; - nc = 5; - gemm<5, 5>(m0, m, n0, n); - break; - case 0x45: - mc = 4; - nc = 5; - gemm<4, 5>(m0, m, n0, n); - break; - case 0x54: - mc = 5; - nc = 4; - gemm<5, 4>(m0, m, n0, n); - break; - case 0x44: - mc = 4; - nc = 4; - gemm<4, 4>(m0, m, n0, n); - break; - case 0x53: - mc = 5; - nc = 3; - gemm<5, 3>(m0, m, n0, n); - break; - case 0x35: - mc = 3; - nc = 5; - gemm<3, 5>(m0, m, n0, n); - break; - case 0x43: - mc = 4; - nc = 3; - gemm<4, 3>(m0, m, n0, n); - break; -#else - case 0x55: - case 0x54: - case 0x53: - case 0x45: - case 0x44: - case 0x43: - mc = 4; - nc = 3; - gemm<4, 3>(m0, m, n0, n); - break; - case 0x35: -#endif - case 0x34: - mc = 3; - nc = 4; - gemm<3, 4>(m0, m, n0, n); - break; - case 0x52: - mc = 5; - nc = 2; - gemm<5, 2>(m0, m, n0, n); - break; - case 0x33: - mc = 3; - nc = 3; - gemm<3, 3>(m0, m, n0, n); - break; - case 0x25: - mc = 2; - nc = 5; - gemm<2, 5>(m0, m, n0, n); - break; - case 0x42: - mc = 4; - nc = 2; - gemm<4, 2>(m0, m, n0, n); - break; - case 0x24: - mc = 2; - nc = 4; - gemm<2, 4>(m0, m, n0, n); - break; - case 0x32: - mc = 3; - nc = 2; - gemm<3, 2>(m0, m, n0, n); - break; - case 0x23: - mc = 2; - nc = 3; - gemm<2, 3>(m0, m, n0, n); - break; - case 0x51: - mc = 5; - nc = 1; - gemm<5, 1>(m0, m, n0, n); - break; - case 0x41: - mc = 4; - nc = 1; - gemm<4, 1>(m0, m, n0, n); - break; - case 0x22: - mc = 2; - nc = 2; - gemm<2, 2>(m0, m, n0, n); - break; - case 0x15: - mc = 1; - nc = 5; - gemm<1, 5>(m0, m, n0, n); - break; - case 0x14: - mc = 1; - nc = 4; - gemm<1, 4>(m0, m, n0, n); - break; - case 0x31: - mc = 3; - nc = 1; - gemm<3, 1>(m0, m, n0, n); - break; - case 0x13: - mc = 1; - nc = 3; - gemm<1, 3>(m0, m, n0, n); - break; - case 0x21: - mc = 2; - nc = 1; - gemm<2, 1>(m0, m, n0, n); - break; - case 0x12: - mc = 1; - nc = 2; - gemm<1, 2>(m0, m, n0, n); - break; - case 0x11: - mc = 1; - nc = 1; - gemm<1, 1>(m0, m, n0, n); - break; - default: - return; + template + inline void mnpack(int64_t m, int64_t n, int64_t SIZE_N, int64_t BN) { + if (SIZE_N == RN) { + return gemm(m, n, BN); + } + if constexpr (RN > 1) { + return mnpack(m, n, SIZE_N, BN); + } else { + GGML_LOG_ERROR("mnpack<%d, %d> bloc size not supported\n", RM, (int)SIZE_N); + GGML_ASSERT(false); // we have miss something. } - mp = m0 + (m - m0) / mc * mc; - np = n0 + (n - n0) / nc * nc; - mnpack(mp, m, n0, np); - mnpack(m0, m, np, n); } template - NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) { - int64_t ytiles = (m - m0) / RM; - int64_t xtiles = (n - n0) / RN; - int64_t tiles = xtiles * ytiles; - int64_t duty = (tiles + nth - 1) / nth; - int64_t start = duty * ith; - int64_t end = start + duty; - if (end > tiles) - end = tiles; - for (int64_t job = start; job < end; ++job) { - int64_t ii = m0 + job / xtiles * RM; - int64_t jj = n0 + job % xtiles * RN; - D Cv[RN][RM] = {}; - for (int64_t l = 0; l < k; l += KN) - for (int64_t j = 0; j < RN; ++j) - for (int64_t i = 0; i < RM; ++i) - Cv[j][i] = madd(load(A + lda * (ii + i) + l), - load(B + ldb * (jj + j) + l), - Cv[j][i]); - for (int64_t j = 0; j < RN; ++j) - for (int64_t i = 0; i < RM; ++i) - C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]); + inline void gemm_bloc(int64_t ii, int64_t jj) { + D Cv[RN][RM] = {}; + for (int64_t l = 0; l < k; l += KN) { + // help compiler for op order. + if constexpr (RM <= RN) { + V Av[RM]; + for (int64_t i = 0; i < RM; ++i) { + Av[i] = load(A + lda * (ii + i) + l); + } + for (int64_t j = 0; j < RN; ++j) { + V Bv = load(B + ldb * (jj + j) + l); + for (int64_t i = 0; i < RM; ++i) { + Cv[j][i] = madd(Av[i], Bv, Cv[j][i]); + } + } + } else { + V Bv[RN]; + for (int64_t j = 0; j < RN; ++j) { + Bv[j] = load(B + ldb * (jj + j) + l); + } + for (int64_t i = 0; i < RM; ++i) { + V Av = load(A + lda * (ii + i) + l); + for (int64_t j = 0; j < RN; ++j) { + Cv[j][i] = madd(Av, Bv[j], Cv[j][i]); + } + } + } } + for (int64_t j = 0; j < RN; ++j) + for (int64_t i = 0; i < RM; ++i) + C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]); } + template + NOINLINE void gemm(int64_t m, int64_t n, int64_t BN) { + static std::atomic current_chunk; + + GGML_ASSERT(m % (RM * BM) == 0); + const int64_t ytiles = m / (RM * BM); + const int64_t xtiles = (n + RN -1) / RN; + const int64_t jj_RN = (xtiles - (xtiles * RN - n)); + + // "round" bloc_size to "nearest" BN + const int64_t NB_BN = xtiles < BN ? 1 : (xtiles + BN / 2) / BN; + const int64_t SIZE_BN = xtiles % NB_BN == 0 ? xtiles / NB_BN : xtiles / NB_BN + 1; + const int64_t jj_BN = (NB_BN - (NB_BN * SIZE_BN - xtiles)); + const int64_t nb_job = ytiles * NB_BN; + + if (params->ith == 0) { + GGML_ASSERT( jj_BN * SIZE_BN + (NB_BN - jj_BN) * (SIZE_BN - 1) == xtiles); + // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start. + std::atomic_store_explicit(¤t_chunk, (int64_t)params->nth, std::memory_order_relaxed); + } + + ggml_barrier(params->threadpool); + + int64_t job = params->ith; + while (job < nb_job) { + const int64_t ii = (job % ytiles) * RM * BM; + const int64_t jb = job / ytiles; + const int64_t jr0 = BLOC_POS(jb , jj_BN, SIZE_BN); + const int64_t jrN = BLOC_POS(jb+1, jj_BN, SIZE_BN); + + const int64_t jj0 = BLOC_POS(jr0, jj_RN, RN); + const int64_t jj2 = BLOC_POS(jrN, jj_RN, RN); + const int64_t jj1 = jj2 < jj_RN * RN ? jj2 : jj_RN * RN; + + for (int64_t bi = 0; bi < BM * RM; bi += RM) { + int64_t jj = jj0; + for (; jj < jj1; jj += RN) { + gemm_bloc(ii + bi, jj); + } + if constexpr (RN > 1) { + for (; jj < jj2; jj += RN - 1) { + gemm_bloc(ii + bi, jj); + } + } + GGML_ASSERT(jj == jj2); + } + + // next step. + job = std::atomic_fetch_add_explicit(¤t_chunk, (int64_t)1, std::memory_order_relaxed); + } + + ggml_barrier(params->threadpool); + return; + } + + const ggml_compute_params * params; const TA *const A; const TB *const B; TC *const C; @@ -452,8 +461,6 @@ class tinyBLAS { const int64_t lda; const int64_t ldb; const int64_t ldc; - const int ith; - const int nth; }; ////////////////////////////////////////////////////////////////////////////////////////// @@ -1657,8 +1664,9 @@ class tinyBLAS_PPC { * @param Ctype is GGML data type of `C` * @return true if this function was able to service the matmul request */ -bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda, const void *B, int64_t ldb, void *C, - int64_t ldc, int ith, int nth, int Atype, int Btype, int Ctype) { +bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64_t n, int64_t k, + const void *A, int64_t lda, const void *B, int64_t ldb, void *C, + int64_t ldc, int Atype, int Btype, int Ctype) { assert(m >= 0); assert(n >= 0); @@ -1666,8 +1674,8 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda assert(lda >= k); assert(ldb >= k); assert(ldc >= m); - assert(nth > 0); - assert(ith < nth); + assert(params->nth > 0); + assert(params->ith < params->nth); // only enable sgemm for prompt processing if (n < 2) @@ -1682,37 +1690,25 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda if (Btype != GGML_TYPE_F32) return false; #if defined(__AVX512F__) - if (k % 16) - return false; - tinyBLAS<16, __m512, __m512, float, float, float> tb{ + tinyBLAS<16, __m512, __m512, float, float, float> tb{ params, k, (const float *)A, lda, (const float *)B, ldb, - (float *)C, ldc, - ith, nth}; - tb.matmul(m, n); - return true; + (float *)C, ldc}; + return tb.matmul(m, n); #elif defined(__AVX__) || defined(__AVX2__) - if (k % 8) - return false; - tinyBLAS<8, __m256, __m256, float, float, float> tb{ + tinyBLAS<8, __m256, __m256, float, float, float> tb{ params, k, (const float *)A, lda, (const float *)B, ldb, - (float *)C, ldc, - ith, nth}; - tb.matmul(m, n); - return true; + (float *)C, ldc}; + return tb.matmul(m, n); #elif defined(__ARM_NEON) if (n < 4) return false; - if (k % 4) - return false; - tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{ + tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{ params, k, (const float *)A, lda, (const float *)B, ldb, - (float *)C, ldc, - ith, nth}; - tb.matmul(m, n); - return true; + (float *)C, ldc}; + return tb.matmul(m, n); #elif defined(__MMA__) if (k % 8) return false; @@ -1720,7 +1716,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda k, (const float *)A, lda, (const float *)B, ldb, (float *)C, ldc, - ith, nth}; + params->ith, params->nth}; tb.matmul(m, n); return true; #else @@ -1728,60 +1724,71 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda #endif } + case GGML_TYPE_BF16: { +#if defined(__AVX512BF16__) + if (Btype == GGML_TYPE_BF16) { + tinyBLAS<32, __m512, __m512bh, ggml_bf16_t, ggml_bf16_t, float> tb{ params, k, + (const ggml_bf16_t *)A, lda, + (const ggml_bf16_t *)B, ldb, + (float *)C, ldc}; + return tb.matmul(m, n); + } +#elif defined(__AVX512F__) + if (Btype == GGML_TYPE_BF16) { + tinyBLAS<16, __m512, __m512, ggml_bf16_t, ggml_bf16_t, float> tb{ params, k, + (const ggml_bf16_t *)A, lda, + (const ggml_bf16_t *)B, ldb, + (float *)C, ldc}; + return tb.matmul(m, n); + } +#elif defined(__AVX2__) + if (Btype == GGML_TYPE_BF16) { + tinyBLAS<8, __m256, __m256, ggml_bf16_t, ggml_bf16_t, float> tb{ params, k, + (const ggml_bf16_t *)A, lda, + (const ggml_bf16_t *)B, ldb, + (float *)C, ldc}; + return tb.matmul(m, n); + } +#endif + return false; + } case GGML_TYPE_F16: { #if defined(__AVX512F__) - if (k % 16) - return false; - if (Btype != GGML_TYPE_F32) - return false; - tinyBLAS<16, __m512, __m512, ggml_fp16_t, float, float> tb{ - k, (const ggml_fp16_t *)A, lda, - (const float *)B, ldb, - (float *)C, ldc, - ith, nth}; - tb.matmul(m, n); - return true; + if (Btype == GGML_TYPE_F16) { + tinyBLAS<16, __m512, __m512, ggml_fp16_t, ggml_fp16_t, float> tb{ params, k, + (const ggml_fp16_t *)A, lda, + (const ggml_fp16_t *)B, ldb, + (float *)C, ldc}; + return tb.matmul(m, n); + } #elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__) - if (k % 8) - return false; - if (Btype != GGML_TYPE_F32) - return false; - tinyBLAS<8, __m256, __m256, ggml_fp16_t, float, float> tb{ - k, (const ggml_fp16_t *)A, lda, - (const float *)B, ldb, - (float *)C, ldc, - ith, nth}; - tb.matmul(m, n); - return true; + if (Btype == GGML_TYPE_F16) { + tinyBLAS<8, __m256, __m256, ggml_fp16_t, ggml_fp16_t, float> tb{ params, k, + (const ggml_fp16_t *)A, lda, + (const ggml_fp16_t *)B, ldb, + (float *)C, ldc}; + return tb.matmul(m, n); + } #elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER) if (n < 8) return false; - if (k % 8) - return false; - if (Btype != GGML_TYPE_F16) - return false; - tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{ - k, (const ggml_fp16_t *)A, lda, - (const ggml_fp16_t *)B, ldb, - (float *)C, ldc, - ith, nth}; - tb.matmul(m, n); - return true; + if (Btype == GGML_TYPE_F16) { + tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{ params, + k, (const ggml_fp16_t *)A, lda, + (const ggml_fp16_t *)B, ldb, + (float *)C, ldc}; + return tb.matmul(m, n); + } #elif defined(__ARM_NEON) && !defined(_MSC_VER) - if (k % 4) - return false; - if (Btype != GGML_TYPE_F32) - return false; - tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{ - k, (const ggml_fp16_t *)A, lda, - (const float *)B, ldb, - (float *)C, ldc, - ith, nth}; - tb.matmul(m, n); - return true; -#else - return false; + if (Btype == GGML_TYPE_F32) { + tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{ params, + k, (const ggml_fp16_t *)A, lda, + (const float *)B, ldb, + (float *)C, ldc}; + return tb.matmul(m, n); + } #endif + return false; } case GGML_TYPE_Q8_0: { @@ -1792,7 +1799,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda k, (const block_q8_0 *)A, lda, (const block_q8_0 *)B, ldb, (float *)C, ldc, - ith, nth}; + params->ith, params->nth}; tb.matmul(m, n); return true; #elif defined(__ARM_FEATURE_DOTPROD) @@ -1800,7 +1807,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda k, (const block_q8_0 *)A, lda, (const block_q8_0 *)B, ldb, (float *)C, ldc, - ith, nth}; + params->ith, params->nth}; tb.matmul(m, n); return true; #else @@ -1816,7 +1823,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda k, (const block_q4_0 *)A, lda, (const block_q8_0 *)B, ldb, (float *)C, ldc, - ith, nth}; + params->ith, params->nth}; tb.matmul(m, n); return true; #elif defined(__ARM_FEATURE_DOTPROD) @@ -1824,7 +1831,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda k, (const block_q4_0 *)A, lda, (const block_q8_0 *)B, ldb, (float *)C, ldc, - ith, nth}; + params->ith, params->nth}; tb.matmul(m, n); return true; #else @@ -1840,7 +1847,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda k, (const block_q5_0 *)A, lda, (const block_q8_0 *)B, ldb, (float *)C, ldc, - ith, nth}; + params->ith, params->nth}; tb.matmul(m, n); return true; #else @@ -1856,7 +1863,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda k, (const block_iq4_nl *)A, lda, (const block_q8_0 *)B, ldb, (float *)C, ldc, - ith, nth}; + params->ith, params->nth}; tb.matmul(m, n); return true; #else @@ -1868,6 +1875,7 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda return false; } + (void)params; (void)m; (void)n; (void)k; @@ -1877,8 +1885,6 @@ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda (void)ldb; (void)C; (void)ldc; - (void)ith; - (void)nth; (void)Atype; (void)Btype; (void)Ctype; diff --git a/ggml/src/ggml-cpu/llamafile/sgemm.h b/ggml/src/ggml-cpu/llamafile/sgemm.h index caf6dd556..3d2909515 100644 --- a/ggml/src/ggml-cpu/llamafile/sgemm.h +++ b/ggml/src/ggml-cpu/llamafile/sgemm.h @@ -5,8 +5,8 @@ extern "C" { #endif -bool llamafile_sgemm(int64_t, int64_t, int64_t, const void *, int64_t, - const void *, int64_t, void *, int64_t, int, int, +bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t, int64_t, int64_t, + const void *, int64_t, const void *, int64_t, void *, int64_t, int, int, int); #ifdef __cplusplus diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp index 1696b6e27..8e47e79ae 100644 --- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp @@ -411,7 +411,7 @@ struct vk_op_unary_push_constants { uint32_t ne; uint32_t ne00; uint32_t ne01; uint32_t ne02; uint32_t ne03; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03; uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; uint32_t nb10; uint32_t nb11; uint32_t nb12; uint32_t nb13; - uint32_t d_offset; + uint32_t misalign_offsets; float param1; float param2; uint32_t ne0_012mp; uint32_t ne0_012L; uint32_t ne0_01mp; uint32_t ne0_01L; @@ -459,7 +459,7 @@ struct vk_op_binary_push_constants { uint32_t ne00; uint32_t ne01; uint32_t ne02; uint32_t ne03; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03; uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; uint32_t nb10; uint32_t nb11; uint32_t nb12; uint32_t nb13; uint32_t ne20; uint32_t ne21; uint32_t ne22; uint32_t ne23; uint32_t nb20; uint32_t nb21; uint32_t nb22; uint32_t nb23; - uint32_t d_offset; + uint32_t misalign_offsets; float param1; float param2; int32_t param3; }; @@ -546,7 +546,7 @@ struct vk_staging_memcpy { }; struct vk_op_upscale_push_constants { - uint32_t ne; uint32_t d_offset; + uint32_t ne; uint32_t a_offset; uint32_t d_offset; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03; uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; float sf0; float sf1; float sf2; float sf3; @@ -1404,10 +1404,10 @@ static void ggml_vk_load_shaders(vk_device& device) { // spec constants and tile sizes for non-quant matmul/matmul_id l_warptile = { 256, 128, 256, 64 }; m_warptile = { 256, 128, 128, 64 }; - s_warptile = { 128, 32, 16, 64 }; + s_warptile = { 128, 64, 64, 64 }; l_wg_denoms = {128, 256, 1 }; m_wg_denoms = {128, 128, 1 }; - s_wg_denoms = { 32, 16, 1 }; + s_wg_denoms = { 64, 64, 1 }; // spec constants and tile sizes for quant matmul (non-Qi_K) l_warptile_mmq = { 256, 128, 256, 64 }; @@ -1855,53 +1855,58 @@ static void ggml_vk_load_shaders(vk_device& device) { // mul mat vec - // AMD GCN and Intel graphics cards perform best when the number of rows per shader is doubled - uint32_t rm = 1; - if ((device->vendor_id == VK_VENDOR_ID_AMD && device->subgroup_min_size == 64 && device->subgroup_max_size == 64) || device->vendor_id == VK_VENDOR_ID_INTEL) - rm = 2; + // the number of rows computed per shader depends on GPU model and quant + uint32_t rm_stdq = 1; + uint32_t rm_kq = 2; + if (device->vendor_id == VK_VENDOR_ID_AMD) { + if (device->subgroup_min_size == 64 && device->subgroup_max_size == 64) { // GCN + rm_stdq = 2; + rm_kq = 4; + } + } else if (device->vendor_id == VK_VENDOR_ID_INTEL) + rm_stdq = 2; - // computing additional rows per workgroup is a benefit for Q4_0 -> Q5_1, but not for Q8_0. ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f32_f32", mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f32_f32", mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f16_f32", mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f16_f32", mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq}, 1, true); // dequant shaders ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", dequant_f32_len, dequant_f32_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1); @@ -2012,11 +2017,11 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_sum_rows_f32, "sum_rows_f32", sum_rows_f32_len, sum_rows_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1); - ggml_vk_create_pipeline(device, device->pipeline_im2col_f32, "im2col_f32", im2col_f32_len, im2col_f32_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_im2col_f32, "im2col_f32", im2col_f32_len, im2col_f32_data, "main", 2, sizeof(vk_op_im2col_push_constants), {512, 1, 1}, { device->subgroup_size }, 1, true); if (device->float_controls_rte_fp16) { - ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_rte_len, im2col_f32_f16_rte_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_rte_len, im2col_f32_f16_rte_data, "main", 2, sizeof(vk_op_im2col_push_constants), {512, 1, 1}, { device->subgroup_size }, 1, true); } else { - ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_len, im2col_f32_f16_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_len, im2col_f32_f16_data, "main", 2, sizeof(vk_op_im2col_push_constants), {512, 1, 1}, { device->subgroup_size }, 1, true); } ggml_vk_create_pipeline(device, device->pipeline_timestep_embedding_f32, "timestep_embedding_f32", timestep_embedding_f32_len, timestep_embedding_f32_data, "main", 2, sizeof(vk_op_timestep_embedding_push_constants), {256, 1, 1}, {}, 1); @@ -3205,8 +3210,8 @@ static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_cont GGML_ABORT("fatal error"); } // Check if src is pinned memory - vk_buffer buf; - size_t buf_offset; + vk_buffer buf = nullptr; + size_t buf_offset = 0; ggml_vk_host_get(ctx->device, tensor->data, buf, buf_offset); const uint64_t ne0 = tensor->ne[0]; @@ -3269,7 +3274,7 @@ static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_cont VkBufferCopy buf_copy{ 0, offset, copy_size }; ggml_vk_sync_buffers(subctx); - vkCmdCopyBuffer(subctx->s->buffer, staging->buffer, dst->buffer, 1, &buf_copy); + vkCmdCopyBuffer(subctx->s->buffer, (VkBuffer)staging->buffer, (VkBuffer)dst->buffer, 1, &buf_copy); for (uint64_t i3 = 0; i3 < ne3; i3++) { for (uint64_t i2 = 0; i2 < ne2; i2++) { @@ -3302,7 +3307,7 @@ static void ggml_vk_buffer_write_2d_async(vk_context subctx, vk_buffer& dst, siz } // Check if src is pinned memory vk_buffer buf = nullptr; - size_t buf_offset; + size_t buf_offset = 0; ggml_vk_host_get(dst->device, src, buf, buf_offset); if (buf != nullptr) { @@ -3344,7 +3349,7 @@ static void ggml_vk_buffer_write_2d_async(vk_context subctx, vk_buffer& dst, siz copy_size}; ggml_vk_sync_buffers(subctx); - vkCmdCopyBuffer(subctx->s->buffer, staging_buffer->buffer, dst->buffer, 1, &buf_copy); + vkCmdCopyBuffer(subctx->s->buffer, (VkBuffer)staging_buffer->buffer, (VkBuffer)dst->buffer, 1, &buf_copy); if (width == spitch) { deferred_memcpy((uint8_t *)staging_buffer->ptr, src, width * height, &subctx->in_memcpys); @@ -3400,7 +3405,7 @@ static void ggml_vk_buffer_read_2d_async(vk_context subctx, vk_buffer& src, size // Check if dst is pinned memory vk_buffer buf = nullptr; - size_t buf_offset; + size_t buf_offset = 0; ggml_vk_host_get(src->device, dst, buf, buf_offset); std::vector slices(1); @@ -3480,7 +3485,7 @@ static void ggml_vk_buffer_copy_async(vk_context& ctx, vk_buffer& dst, size_t ds VkBufferCopy bc{ src_offset, dst_offset, size }; - vkCmdCopyBuffer(ctx->s->buffer, src->buffer, dst->buffer, 1, &bc); + vkCmdCopyBuffer(ctx->s->buffer, (VkBuffer)src->buffer, (VkBuffer)dst->buffer, 1, &bc); } static void ggml_vk_buffer_copy(vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) { @@ -3732,9 +3737,9 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context; ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context; - vk_buffer d_Qx; + vk_buffer d_Qx = nullptr; size_t qx_buf_offset = 0; - vk_buffer d_Qy; + vk_buffer d_Qy = nullptr; size_t qy_buf_offset = 0; bool src0_uma = false; @@ -3934,9 +3939,9 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context; ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context; - vk_buffer d_Qx; + vk_buffer d_Qx = nullptr; size_t qx_buf_offset = 0; - vk_buffer d_Qy; + vk_buffer d_Qy = nullptr; size_t qy_buf_offset = 0; bool src0_uma = false; @@ -4112,7 +4117,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context; ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context; - vk_buffer d_Qy; + vk_buffer d_Qy = nullptr; size_t qy_buf_offset = 0; bool src1_uma = false; @@ -4300,11 +4305,11 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context& ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context; ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context; - vk_buffer d_Qx; + vk_buffer d_Qx = nullptr; size_t qx_buf_offset = 0; - vk_buffer d_Qy; + vk_buffer d_Qy = nullptr; size_t qy_buf_offset = 0; - vk_buffer d_ids; + vk_buffer d_ids = nullptr; size_t ids_buf_offset = 0; bool src0_uma = false; @@ -4505,11 +4510,11 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context; ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context; - vk_buffer d_Qx; + vk_buffer d_Qx = nullptr; size_t qx_buf_offset = 0; - vk_buffer d_Qy; + vk_buffer d_Qy = nullptr; size_t qy_buf_offset = 0; - vk_buffer d_ids; + vk_buffer d_ids = nullptr; size_t ids_buf_offset = 0; bool src0_uma = false; @@ -4768,8 +4773,8 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx ggml_vk_sync_buffers(subctx); - vk_buffer d_Q, d_K, d_V, d_D, d_M; - uint64_t q_buf_offset, k_buf_offset, v_buf_offset, d_buf_offset, m_buf_offset; + vk_buffer d_Q = nullptr, d_K = nullptr, d_V = nullptr, d_D = nullptr, d_M = nullptr; + size_t q_buf_offset = 0, k_buf_offset = 0, v_buf_offset = 0, d_buf_offset = 0, m_buf_offset = 0; bool Q_uma = false, K_uma = false, V_uma = false, D_uma = false, M_uma = false; @@ -5071,6 +5076,57 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) { } } +static uint32_t get_misalign_bytes(ggml_backend_vk_context * ctx, const ggml_tensor * t) +{ + return ((vk_tensor_offset(t) + t->view_offs) & (ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1));; +} + +template void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, T &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) { + GGML_UNUSED(p); + GGML_UNUSED(src0); + GGML_UNUSED(src1); + GGML_UNUSED(src2); + GGML_UNUSED(dst); + static_assert(!std::is_const::value, "unexpected type"); + GGML_ASSERT(!src0 || get_misalign_bytes(ctx, src0) == 0); + GGML_ASSERT(!src1 || get_misalign_bytes(ctx, src1) == 0); + GGML_ASSERT(!src2 || get_misalign_bytes(ctx, src2) == 0); + GGML_ASSERT(!dst || get_misalign_bytes(ctx, dst) == 0); +} + +template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_unary_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) { + const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type); + const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type); + + p.misalign_offsets = (a_offset << 16) | d_offset; + + GGML_UNUSED(src1); + GGML_UNUSED(src2); +} + +template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_binary_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) { + const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type); + const uint32_t b_offset = get_misalign_bytes(ctx, src1) / ggml_type_size(src1->type); + const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type); + + GGML_ASSERT(dst->op != GGML_OP_GET_ROWS || (a_offset == 0 && b_offset == 0 && d_offset == 0)); + + p.misalign_offsets = (a_offset << 16) | (b_offset << 8) | d_offset; + + GGML_UNUSED(src2); +} + +template <> void init_pushconst_tensor_offsets(ggml_backend_vk_context * ctx, vk_op_upscale_push_constants &p, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) { + const uint32_t a_offset = get_misalign_bytes(ctx, src0) / ggml_type_size(src0->type); + const uint32_t d_offset = get_misalign_bytes(ctx, dst) / ggml_type_size(dst->type); + + p.a_offset = a_offset; + p.d_offset = d_offset; + + GGML_UNUSED(src1); + GGML_UNUSED(src2); +} + template static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, PC&& pc, bool dryrun = false) { VK_LOG_DEBUG("ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; @@ -5174,8 +5230,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co } GGML_ASSERT(d_D != nullptr); - uint64_t d_buf_offset = ((vk_tensor_offset(dst) + dst->view_offs) / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment; - GGML_ASSERT(d_buf_offset == vk_tensor_offset(dst) || op == GGML_OP_CPY); // NOLINT + uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs; if(!src0_uma) { d_X = src0_buf_ctx->dev_buffer; x_buf_offset = vk_tensor_offset(src0) + src0->view_offs; @@ -5191,6 +5246,12 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co z_buf_offset = vk_tensor_offset(src2) + src2->view_offs; GGML_ASSERT(d_Z != nullptr); } + // Compute misalignment offset for descriptors and store it in in push constants, then align the descriptor offsets. + init_pushconst_tensor_offsets(ctx, pc, src0, src1, src2, dst); + x_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1); + y_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1); + z_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1); + d_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1); if (op_supports_incontiguous) { x_sz = ggml_nbytes(src0); @@ -5378,7 +5439,6 @@ static void ggml_vk_acc(ggml_backend_vk_context * ctx, vk_context& subctx, const const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); - const uint32_t d_offset = ((vk_tensor_offset(dst) + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size; int nb1 = dst->op_params[0] / 4; // 4 bytes of float32 int nb2 = dst->op_params[1] / 4; // 4 bytes of float32 @@ -5390,7 +5450,7 @@ static void ggml_vk_acc(ggml_backend_vk_context * ctx, vk_context& subctx, const (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t) dst->nb[3] / dst_type_size, - d_offset, + 0, 0.0f, 0.0f, offset, }, dryrun); } @@ -5474,8 +5534,8 @@ static void ggml_vk_op_f32_rwkv6(ggml_backend_vk_context * ctx, vk_context& subc ggml_vk_sync_buffers(subctx); - vk_buffer d_D, d_K, d_V, d_R, d_TF, d_TD, d_State; - uint64_t k_offset, v_offset, r_offset, tf_offset, td_offset, state_offset, dst_offset; + vk_buffer d_D = nullptr, d_K = nullptr, d_V = nullptr, d_R = nullptr, d_TF = nullptr, d_TD = nullptr, d_State = nullptr; + size_t k_offset = 0, v_offset = 0, r_offset = 0, tf_offset = 0, td_offset = 0, state_offset = 0, dst_offset = 0; bool K_uma = false, V_uma = false, R_uma = false, TF_uma = false, TD_uma = false, STATE_uma = false, DST_uma = false; if (ctx->device->uma) { @@ -5594,7 +5654,7 @@ static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, c const float sf3 = (float)dst->ne[3] / src0->ne[3]; ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UPSCALE, { - (uint32_t)ggml_nelements(dst), 0, + (uint32_t)ggml_nelements(dst), 0, 0, (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t)dst->ne[0], (uint32_t)dst->ne[1], (uint32_t)dst->ne[2],(uint32_t)dst->ne[3], sf0, sf1, sf2, sf3, @@ -5704,13 +5764,12 @@ static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, co static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); - const uint32_t d_offset = ((vk_tensor_offset(dst) + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size; ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, - d_offset, + 0, 0.0f, 0.0f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, dryrun); diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/acc.comp b/ggml/src/ggml-vulkan/vulkan-shaders/acc.comp index 4f5a04e71..d896f1ef0 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/acc.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/acc.comp @@ -21,9 +21,9 @@ void main() { get_indices(idx, i00, i01, i02, i03); if (ox < p.ne10 && oy < p.ne11 && oz < p.ne12) { - data_d[p.d_offset + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(i00, i01, i02, i03)]) + FLOAT_TYPE(data_b[ox + oy * p.ne10 + oz * p.ne10 * p.ne11])); + data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)]) + FLOAT_TYPE(data_b[get_boffset() + ox + oy * p.ne10 + oz * p.ne10 * p.ne11])); } else { - data_d[p.d_offset + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(i00, i01, i02, i03)])); + data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)])); } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/add.comp b/ggml/src/ggml-vulkan/vulkan-shaders/add.comp index da61b76df..2b4085c4f 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/add.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/add.comp @@ -22,7 +22,7 @@ void main() { uint i00, i01, i02, i03; get_indices(idx, i00, i01, i02, i03); - data_d[p.d_offset + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(i00, i01, i02, i03)]) + FLOAT_TYPE(data_b[src1_idx(i00, i01, i02, i03)])); + data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)]) + FLOAT_TYPE(data_b[get_boffset() + src1_idx(i00, i01, i02, i03)])); idx += num_threads; } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/clamp.comp b/ggml/src/ggml-vulkan/vulkan-shaders/clamp.comp index ae8fa8753..1e5cb8dae 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/clamp.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/clamp.comp @@ -12,6 +12,6 @@ void main() { return; } - const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(idx)]); - data_d[p.d_offset + dst_idx(idx)] = D_TYPE(val < p.param1 ? p.param1 : (val > p.param2 ? p.param2 : val)); + const FLOAT_TYPE val = FLOAT_TYPE(data_a[get_aoffset() + src0_idx(idx)]); + data_d[get_doffset() + dst_idx(idx)] = D_TYPE(val < p.param1 ? p.param1 : (val > p.param2 ? p.param2 : val)); } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/concat.comp b/ggml/src/ggml-vulkan/vulkan-shaders/concat.comp index 683f9ac3c..9ee2f1fae 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/concat.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/concat.comp @@ -30,12 +30,12 @@ void main() { const bool is_src0 = i0 < p.ne00 && i1 < p.ne01 && i2 < p.ne02 && i3 < p.ne03; #ifndef OPTIMIZATION_ERROR_WORKAROUND - data_d[p.d_offset + dst_idx] = D_TYPE(is_src0 ? data_a[src0_idx] : data_b[src1_idx]); + data_d[get_doffset() + dst_idx] = D_TYPE(is_src0 ? data_a[get_aoffset() + src0_idx] : data_b[get_boffset() + src1_idx]); #else if (is_src0) { - data_d[p.d_offset + dst_idx] = data_a[src0_idx]; + data_d[get_doffset() + dst_idx] = data_a[get_aoffset() + src0_idx]; } else { - data_d[p.d_offset + dst_idx] = data_b[src1_idx]; + data_d[get_doffset() + dst_idx] = data_b[get_boffset() + src1_idx]; } #endif } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/contig_copy.comp b/ggml/src/ggml-vulkan/vulkan-shaders/contig_copy.comp index 9acbdd3d2..dd828c232 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/contig_copy.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/contig_copy.comp @@ -19,9 +19,9 @@ void main() { if (idx + (num_iter-1)*num_threads < p.ne) { [[unroll]] for (uint i = 0; i < num_iter; ++i) { #ifndef OPTIMIZATION_ERROR_WORKAROUND - data_d[p.d_offset + idx] = D_TYPE(data_a[idx]); + data_d[get_doffset() + idx] = D_TYPE(data_a[get_aoffset() + idx]); #else - data_d[p.d_offset + idx] = data_a[idx]; + data_d[get_doffset() + idx] = data_a[get_aoffset() + idx]; #endif idx += num_threads; } @@ -32,9 +32,9 @@ void main() { } #ifndef OPTIMIZATION_ERROR_WORKAROUND - data_d[p.d_offset + idx] = D_TYPE(data_a[idx]); + data_d[get_doffset() + idx] = D_TYPE(data_a[get_aoffset() + idx]); #else - data_d[p.d_offset + idx] = data_a[idx]; + data_d[get_doffset() + idx] = data_a[get_aoffset() + idx]; #endif idx += num_threads; } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/copy.comp b/ggml/src/ggml-vulkan/vulkan-shaders/copy.comp index 2775068f9..29c906494 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/copy.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/copy.comp @@ -13,8 +13,8 @@ void main() { } #ifndef OPTIMIZATION_ERROR_WORKAROUND - data_d[p.d_offset + dst_idx(idx)] = D_TYPE(data_a[src0_idx(idx)]); + data_d[get_doffset() + dst_idx(idx)] = D_TYPE(data_a[get_aoffset() + src0_idx(idx)]); #else - data_d[p.d_offset + dst_idx(idx)] = data_a[src0_idx(idx)]; + data_d[get_doffset() + dst_idx(idx)] = data_a[get_aoffset() + src0_idx(idx)]; #endif } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/cos.comp b/ggml/src/ggml-vulkan/vulkan-shaders/cos.comp index fbd9d272c..0b8d02f58 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/cos.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/cos.comp @@ -12,6 +12,6 @@ void main() { return; } - const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(idx)]); - data_d[p.d_offset + dst_idx(idx)] = D_TYPE(cos(val)); + const FLOAT_TYPE val = FLOAT_TYPE(data_a[get_aoffset() + src0_idx(idx)]); + data_d[get_doffset() + dst_idx(idx)] = D_TYPE(cos(val)); } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/dequant_funcs_cm2.comp b/ggml/src/ggml-vulkan/vulkan-shaders/dequant_funcs_cm2.comp index a8707b621..94b78598e 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/dequant_funcs_cm2.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/dequant_funcs_cm2.comp @@ -10,9 +10,10 @@ float16_t dequantFuncQ4_0(const in decodeBufQ4_0 bl, const in uint blockCoords[2 const float16_t d = bl.block.d; const uint idx = coordInBlock[1]; const uint shift = (idx & 0x10) >> 2; - uint32_t qs = unpack8(uint32_t(bl.block.qs[(idx & 0xE) >> 1]))[idx & 1]; + uint32_t qs = uint32_t(bl.block.qs[(idx & 0xE) >> 1]); qs >>= shift; - qs &= 0xF; + qs &= 0x0F0F; + qs = unpack8(qs)[idx & 1]; float16_t ret = (float16_t(qs) - float16_t(8)) * d; return ret; } @@ -152,15 +153,17 @@ layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ4 block_q4_K block; }; +layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ4_K_packed16 { + block_q4_K_packed16 block; +}; + float16_t dequantFuncQ4_K(const in decodeBufQ4_K bl, const in uint blockCoords[2], const in uint coordInBlock[2]) { + decodeBufQ4_K_packed16 bl16 = decodeBufQ4_K_packed16(bl); const uint idx = coordInBlock[1]; - const uint iqs = idx; - const uint n = iqs / 64; // 0,1,2,3 - const uint b = (iqs % 64) / 32; // 0,1 + const uint b = (idx & 0x20) >> 5; // 0,1 const uint is = (idx & 0xE0) >> 5; // 0..7 - const uint qsi = n * 32 + (iqs % 32); // 0..127 const f16vec2 loadd = bl.block.d; @@ -184,9 +187,11 @@ float16_t dequantFuncQ4_K(const in decodeBufQ4_K bl, const in uint blockCoords[2 const float16_t d = loadd.x * float16_t(sc); const float16_t m = loadd.y * float16_t(mbyte); - uint32_t dmask = 0xF << (b * 4); + uint qs = uint32_t(bl16.block.qs[((idx & 0xC0) >> 2) + ((idx & 0x1E) >> 1)]); + qs = (qs >> (b * 4)) & 0x0F0F; + qs = unpack8(qs)[idx & 1]; - float16_t ret = d * float16_t((bl.block.qs[qsi ] & dmask) >> (b * 4)) - m; + float16_t ret = d * float16_t(qs) - m; return ret; } @@ -195,18 +200,19 @@ layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ5 block_q5_K block; }; +layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ5_K_packed16 { + block_q5_K_packed16 block; +}; + float16_t dequantFuncQ5_K(const in decodeBufQ5_K bl, const in uint blockCoords[2], const in uint coordInBlock[2]) { + decodeBufQ5_K_packed16 bl16 = decodeBufQ5_K_packed16(bl); const uint idx = coordInBlock[1]; - const uint iqs = idx; - const uint n = iqs / 64; // 0,1,2,3 - const uint b = (iqs % 64) / 32; // 0,1 + const uint b = (idx & 0x20) >> 5; // 0,1 const uint is = (idx & 0xE0) >> 5; // 0..7 - const uint qsi = n * 32 + (iqs % 32); // 0..127 - const uint qhi = (iqs % 32); // 0..31 - const uint8_t hm = uint8_t(1 << (iqs / 32)); + const uint32_t hm = 0x0101 << is; const f16vec2 loadd = bl.block.d; @@ -230,9 +236,15 @@ float16_t dequantFuncQ5_K(const in decodeBufQ5_K bl, const in uint blockCoords[2 const float16_t d = loadd.x * float16_t(sc); const float16_t m = loadd.y * float16_t(mbyte); - uint32_t dmask = 0xF << (b * 4); + uint qh = uint32_t(bl16.block.qh[(idx & 0x1E) >> 1]); + qh = qh & hm; + qh = unpack8(qh)[idx & 1]; - float16_t ret = d * (float16_t((bl.block.qs[qsi ] & dmask) >> (b * 4)) + float16_t((bl.block.qh[qhi ] & hm) != 0 ? 16 : 0)) - m; + uint qs = uint32_t(bl16.block.qs[((idx & 0xC0) >> 2) + ((idx & 0x1E) >> 1)]); + qs = (qs >> (b * 4)) & 0x0F0F; + qs = unpack8(qs)[idx & 1]; + + float16_t ret = d * (float16_t(qs) + (qh != 0 ? float16_t(16) : float16_t(0))) - m; return ret; } @@ -241,22 +253,30 @@ layout(buffer_reference, std430, buffer_reference_align = 2) buffer decodeBufQ6_ block_q6_K block; }; +layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ6_K_packed16 { + block_q6_K_packed16 block; +}; + float16_t dequantFuncQ6_K(const in decodeBufQ6_K bl, const in uint blockCoords[2], const in uint coordInBlock[2]) { + decodeBufQ6_K_packed16 bl16 = decodeBufQ6_K_packed16(bl); const uint idx = coordInBlock[1]; - const uint iqs = idx; - const uint n = iqs / 128; // 0,1 - const uint b = (iqs % 128) / 64; // 0,1 - const uint is_b = (iqs % 32) / 16; // 0,1 - const uint qhshift = ((iqs % 128) / 32) * 2;// 0,2,4,6 - const uint is = 8 * n + qhshift + is_b; // 0..15 - const uint qsi = n * 64 + (iqs % 64); // 0..127 - const uint qhi = n * 32 + (iqs % 32); // 0..63 + const uint b = (idx & 0x40) >> 6; // 0,1 + const uint qhshift = (idx & 0x60) >> 4; // 0,2,4,6 + const uint is = (idx & 0xF0) >> 4; // 0..15 const float16_t dscale = bl.block.d * float16_t(bl.block.scales[is]); - float16_t ret = dscale * float16_t(int8_t(((bl.block.ql[qsi ] >> (b * 4)) & 0xF) | (((bl.block.qh[qhi ] >> qhshift) & 3) << 4)) - 32); + uint ql = uint32_t(bl16.block.ql[((idx & 0x80) >> 2) + ((idx & 0x3E) >> 1)]); + ql = (ql >> (b * 4)) & 0x0F0F; + + uint qh = uint32_t(bl16.block.qh[((idx & 0x80) >> 3) + ((idx & 0x1E) >> 1)]); + qh = ((qh >> qhshift) & 0x0303) << 4; + + int q = unpack8(ql | qh)[idx & 1]; + + float16_t ret = dscale * float16_t(q - 32); return ret; } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/div.comp b/ggml/src/ggml-vulkan/vulkan-shaders/div.comp index e581905b3..9fb69c6c1 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/div.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/div.comp @@ -20,7 +20,7 @@ void main() { uint i00, i01, i02, i03; get_indices(idx, i00, i01, i02, i03); - data_d[p.d_offset + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(i00, i01, i02, i03)]) / FLOAT_TYPE(data_b[src1_idx(i00, i01, i02, i03)])); + data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)]) / FLOAT_TYPE(data_b[get_boffset() + src1_idx(i00, i01, i02, i03)])); idx += num_threads; } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/generic_binary_head.comp b/ggml/src/ggml-vulkan/vulkan-shaders/generic_binary_head.comp index a6555fa27..062e2a4cd 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/generic_binary_head.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/generic_binary_head.comp @@ -7,7 +7,7 @@ layout (push_constant) uniform parameter uint ne00; uint ne01; uint ne02; uint ne03; uint nb00; uint nb01; uint nb02; uint nb03; uint ne10; uint ne11; uint ne12; uint ne13; uint nb10; uint nb11; uint nb12; uint nb13; uint ne20; uint ne21; uint ne22; uint ne23; uint nb20; uint nb21; uint nb22; uint nb23; - uint d_offset; + uint misalign_offsets; float param1; float param2; int param3; } p; @@ -22,6 +22,10 @@ uint get_idx() { return gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; } +uint get_aoffset() { return p.misalign_offsets >> 16; } +uint get_boffset() { return (p.misalign_offsets >> 8) & 0xFF; } +uint get_doffset() { return p.misalign_offsets & 0xFF; } + // mod and div are expensive and coordinates/dimensions are often power of 2 or equal to 1 uint fastmod(uint a, uint b) { if ((b & (b-1)) == 0) { diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/generic_unary_head.comp b/ggml/src/ggml-vulkan/vulkan-shaders/generic_unary_head.comp index ab7c9d7eb..68d1bc9f1 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/generic_unary_head.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/generic_unary_head.comp @@ -6,7 +6,7 @@ layout (push_constant) uniform parameter uint ne; uint ne00; uint ne01; uint ne02; uint ne03; uint nb00; uint nb01; uint nb02; uint nb03; uint ne10; uint ne11; uint ne12; uint ne13; uint nb10; uint nb11; uint nb12; uint nb13; - uint d_offset; + uint misalign_offsets; float param1; float param2; uint ne0_012mp; uint ne0_012L; @@ -24,6 +24,9 @@ uint get_idx() { return gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x; } +uint get_aoffset() { return p.misalign_offsets >> 16; } +uint get_doffset() { return p.misalign_offsets & 0xFFFF; } + // see init_fastdiv_values in ggml-vulkan.cpp uint fastdiv(uint n, uint mp, uint L) { uint msbs, lsbs; diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/get_rows.comp b/ggml/src/ggml-vulkan/vulkan-shaders/get_rows.comp index a7b81e52c..e877ed779 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/get_rows.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/get_rows.comp @@ -15,10 +15,10 @@ void main() { return; } - const uint i01 = data_b[i10*p.nb10 + i11*p.nb11 + i12*p.nb12]; + const uint i01 = data_b[get_boffset() + i10*p.nb10 + i11*p.nb11 + i12*p.nb12]; - const uint a_offset = i01*p.nb01 + i11*p.nb02 + i12*p.nb03; - const uint d_offset = i10*p.nb21 + i11*p.nb22 + i12*p.nb23; + const uint a_offset = get_aoffset() + i01*p.nb01 + i11*p.nb02 + i12*p.nb03; + const uint d_offset = get_doffset() + i10*p.nb21 + i11*p.nb22 + i12*p.nb23; #ifndef OPTIMIZATION_ERROR_WORKAROUND data_d[d_offset + i00] = D_TYPE(data_a[a_offset + i00]); diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/im2col.comp b/ggml/src/ggml-vulkan/vulkan-shaders/im2col.comp index 966fedf8f..122b1e93f 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/im2col.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/im2col.comp @@ -2,6 +2,7 @@ #extension GL_EXT_shader_16bit_storage : require #extension GL_EXT_spirv_intrinsics: enable +#extension GL_EXT_control_flow_attributes : require #if RTE16 spirv_execution_mode(capabilities = [4467], 4462, 16); // RoundingModeRTE, 16 bits @@ -23,40 +24,64 @@ layout (push_constant) uniform parameter #include "types.comp" -#define BLOCK_SIZE 256 +layout(constant_id = 0) const uint BLOCK_SIZE = 32; -layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in; +const uint NUM_ITER = 512 / BLOCK_SIZE; + +layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (binding = 0) readonly buffer X {A_TYPE data_a[];}; layout (binding = 1) writeonly buffer D {D_TYPE data_d[];}; void main() { - const uint i = gl_GlobalInvocationID.x; - if (i >= p.pelements) { - return; - } - - const uint ksize = p.OW * (p.KH > 1 ? p.KW : 1); - const uint kx = i / ksize; - const uint kd = kx * ksize; - const uint ky = (i - kd) / p.OW; - const uint ix = i % p.OW; + const uint gidx = gl_GlobalInvocationID.x; const uint oh = gl_GlobalInvocationID.y; const uint batch = gl_GlobalInvocationID.z / p.IC; const uint ic = gl_GlobalInvocationID.z % p.IC; - const uint iiw = ix * p.s0 + kx * p.d0 - p.p0; - const uint iih = oh * p.s1 + ky * p.d1 - p.p1; - - const uint offset_dst = - ((batch * p.OH + oh) * p.OW + ix) * p.CHW + - (ic * (p.KW * p.KH) + ky * p.KW + kx); - - if (iih < 0 || iih >= p.IH || iiw < 0 || iiw >= p.IW) { - data_d[offset_dst] = D_TYPE(0.0f); - } else { - const uint offset_src = ic * p.offset_delta + batch * p.batch_offset; - data_d[offset_dst] = D_TYPE(data_a[offset_src + iih * p.IW + iiw]); + A_TYPE values[NUM_ITER]; + uint offset_dst[NUM_ITER]; + [[unroll]] for (uint idx = 0; idx < NUM_ITER; ++idx) { + values[idx] = A_TYPE(0); } + + [[unroll]] for (uint idx = 0; idx < NUM_ITER; ++idx) { + + const uint i = gidx * NUM_ITER + idx; + + const uint ksize = p.OW * (p.KH > 1 ? p.KW : 1); + const uint kx = i / ksize; + const uint kd = kx * ksize; + const uint ky = (i - kd) / p.OW; + const uint ix = i % p.OW; + + const uint iiw = ix * p.s0 + kx * p.d0 - p.p0; + const uint iih = oh * p.s1 + ky * p.d1 - p.p1; + + offset_dst[idx] = + ((batch * p.OH + oh) * p.OW + ix) * p.CHW + + (ic * (p.KW * p.KH) + ky * p.KW + kx); + + if (i >= p.pelements) { + continue; + } + + if (iih < p.IH && iiw < p.IW) { + const uint offset_src = ic * p.offset_delta + batch * p.batch_offset; + values[idx] = data_a[offset_src + iih * p.IW + iiw]; + } + } + + [[unroll]] for (uint idx = 0; idx < NUM_ITER; ++idx) { + + const uint i = gidx * NUM_ITER + idx; + + if (i >= p.pelements) { + continue; + } + + data_d[offset_dst[idx]] = D_TYPE(values[idx]); + } + } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul.comp index 5ce57cbcf..43de19df8 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul.comp @@ -20,7 +20,7 @@ void main() { uint i00, i01, i02, i03; get_indices(idx, i00, i01, i02, i03); - data_d[p.d_offset + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(i00, i01, i02, i03)]) * FLOAT_TYPE(data_b[src1_idx(i00, i01, i02, i03)])); + data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)]) * FLOAT_TYPE(data_b[get_boffset() + src1_idx(i00, i01, i02, i03)])); idx += num_threads; } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp index 1a5350d99..138ad0184 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp @@ -6,21 +6,15 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (constant_id = 0) const uint BLOCK_SIZE = 32; +layout (constant_id = 1) const uint NUM_ROWS = 1; -shared FLOAT_TYPE tmp[BLOCK_SIZE]; - -void main() { - const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; - - if (row >= p.stride_d) { - return; - } +shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE]; +void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); const uint num_blocks_per_row = p.ncols / QUANT_K; - const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; // 16 threads are used to process each block const uint it_size = gl_WorkGroupSize.x/16; @@ -38,15 +32,15 @@ void main() { const uint s_offset = 8*v_im; const uint y_offset = 128*v_im + l0; - FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp + FLOAT_TYPE temp[NUM_ROWS]; + + [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { + temp[i] = FLOAT_TYPE(0); + } [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { const uint y_idx = i * QUANT_K + y_offset; - f16vec2 d = data_a[ib0 + i].d; - const FLOAT_TYPE dall = d.x; - const FLOAT_TYPE dmin = d.y; - B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0]; B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8]; B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16]; @@ -56,58 +50,84 @@ void main() { B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48]; B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56]; - uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0]; - uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1]; + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; + f16vec2 d = data_a[ib0 + i].d; + const FLOAT_TYPE dall = d.x; + const FLOAT_TYPE dmin = d.y; - uint32_t s0_lo4_u32 = s0_u32 & 0x0F0F0F0F; - uint32_t s0_hi4_u32 = (s0_u32 >> 4) & 0x0F0F0F0F; - uint32_t s4_lo4_u32 = s4_u32 & 0x0F0F0F0F; - uint32_t s4_hi4_u32 = (s4_u32 >> 4) & 0x0F0F0F0F; + uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0]; + uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1]; - uvec4 s0_lo4 = uvec4(unpack8(s0_lo4_u32)); - uvec4 s4_lo4 = uvec4(unpack8(s4_lo4_u32)); - uvec4 s0_hi4 = uvec4(unpack8(s0_hi4_u32)); - uvec4 s4_hi4 = uvec4(unpack8(s4_hi4_u32)); + uint32_t s0_lo4_u32 = s0_u32 & 0x0F0F0F0F; + uint32_t s0_hi4_u32 = (s0_u32 >> 4) & 0x0F0F0F0F; + uint32_t s4_lo4_u32 = s4_u32 & 0x0F0F0F0F; + uint32_t s4_hi4_u32 = (s4_u32 >> 4) & 0x0F0F0F0F; - uint16_t qs0_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 0]; - uint16_t qs16_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]; - uvec2 qs0 = uvec2(unpack8(qs0_u16)); - uvec2 qs16 = uvec2(unpack8(qs16_u16)); + uvec4 s0_lo4 = uvec4(unpack8(s0_lo4_u32)); + uvec4 s4_lo4 = uvec4(unpack8(s4_lo4_u32)); + uvec4 s0_hi4 = uvec4(unpack8(s0_hi4_u32)); + uvec4 s4_hi4 = uvec4(unpack8(s4_hi4_u32)); - FLOAT_TYPE sum1 = FLOAT_TYPE(0.0); - FLOAT_TYPE sum2 = FLOAT_TYPE(0.0); - [[unroll]] for (int l = 0; l < 2; ++l) { - sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3), - fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3), - fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3), - fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_lo4[3]) * FLOAT_TYPE((qs16[l] >> 2) & 3), - fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_lo4[0]) * FLOAT_TYPE((qs0[l] >> 4) & 3), - fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_lo4[1]) * FLOAT_TYPE((qs16[l] >> 4) & 3), - fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_lo4[2]) * FLOAT_TYPE((qs0[l] >> 6) & 3), - fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_lo4[3]) * FLOAT_TYPE((qs16[l] >> 6) & 3), sum1)))))))); - sum2 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_hi4[0]), - fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_hi4[1]), - fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_hi4[2]), - fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_hi4[3]), - fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_hi4[0]), - fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_hi4[1]), - fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]), - fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2)))))))); + uint16_t qs0_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 0]; + uint16_t qs16_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]; + uvec2 qs0 = uvec2(unpack8(qs0_u16)); + uvec2 qs16 = uvec2(unpack8(qs16_u16)); + + FLOAT_TYPE sum1 = FLOAT_TYPE(0.0); + FLOAT_TYPE sum2 = FLOAT_TYPE(0.0); + [[unroll]] for (int l = 0; l < 2; ++l) { + sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3), + fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3), + fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3), + fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_lo4[3]) * FLOAT_TYPE((qs16[l] >> 2) & 3), + fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_lo4[0]) * FLOAT_TYPE((qs0[l] >> 4) & 3), + fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_lo4[1]) * FLOAT_TYPE((qs16[l] >> 4) & 3), + fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_lo4[2]) * FLOAT_TYPE((qs0[l] >> 6) & 3), + fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_lo4[3]) * FLOAT_TYPE((qs16[l] >> 6) & 3), sum1)))))))); + sum2 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_hi4[0]), + fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_hi4[1]), + fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_hi4[2]), + fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_hi4[3]), + fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_hi4[0]), + fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_hi4[1]), + fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]), + fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2)))))))); + } + temp[n] = fma(dall, sum1, fma(-dmin, sum2, temp[n])); } - temp = fma(dall, sum1, fma(-dmin, sum2, temp)); } - tmp[gl_LocalInvocationID.x] = temp; - // sum up partial sums and write back result + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] = temp[n]; + } barrier(); - [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { + [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { if (tid < s) { - tmp[tid] += tmp[tid + s]; + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] += tmpsh[n][tid + s]; + } } barrier(); } if (tid == 0) { - data_d[d_offset + row] = D_TYPE(tmp[0]); + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]); + } + } +} + +void main() { + const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); + + // do NUM_ROWS at a time, unless there aren't enough remaining rows + if (first_row + NUM_ROWS <= p.stride_d) { + compute_outputs(first_row, NUM_ROWS); + } else { + if (first_row >= p.stride_d) { + return; + } + compute_outputs(first_row, p.stride_d - first_row); } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp index b19c38111..82ec42d25 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp @@ -6,21 +6,15 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (constant_id = 0) const uint BLOCK_SIZE = 32; +layout (constant_id = 1) const uint NUM_ROWS = 1; -shared FLOAT_TYPE tmp[BLOCK_SIZE]; - -void main() { - const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; - - if (row >= p.stride_d) { - return; - } +shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE]; +void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); const uint num_blocks_per_row = p.ncols / QUANT_K; - const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; // 16 threads are used to process each block const uint it_size = gl_WorkGroupSize.x/16; @@ -35,19 +29,21 @@ void main() { const uint8_t m = uint8_t(1 << (4 * v_im)); - const uint l0 = 2*v_in; // 0...15 + const uint l0 = 2*v_in; // 0...15 const uint q_offset = 32*v_im + l0; const uint y_offset = 128*v_im + l0; - FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp + FLOAT_TYPE temp[NUM_ROWS]; + + [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { + temp[i] = FLOAT_TYPE(0); + } const uint s_shift = 4 * v_im; [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { const uint y_idx = i * QUANT_K + y_offset; - const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); - B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0]; B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8]; B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16]; @@ -57,44 +53,68 @@ void main() { B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48]; B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56]; - uint16_t s0_16 = data_a_packed16[ib0 + i].scales[0]; - uint16_t s2_16 = data_a_packed16[ib0 + i].scales[1]; - uint16_t s4_16 = data_a_packed16[ib0 + i].scales[2]; - uint16_t s6_16 = data_a_packed16[ib0 + i].scales[3]; - uint16_t s8_16 = data_a_packed16[ib0 + i].scales[4]; - uint16_t s10_16 = data_a_packed16[ib0 + i].scales[5]; - u8vec2 s0 = unpack8(s0_16); - u8vec2 s2 = unpack8(s2_16); - u8vec2 s4 = unpack8(s4_16); - u8vec2 s6 = unpack8(s6_16); - u8vec2 s8 = unpack8(s8_16); - u8vec2 s10 = unpack8(s10_16); + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; + const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); - FLOAT_TYPE sum = FLOAT_TYPE(0.0); - [[unroll]] for (int l = 0; l < 2; ++l) { - sum = fma(FLOAT_TYPE(b0[l]) * FLOAT_TYPE(int8_t(((s0[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 0)) != 0) ? 0 : 4)), - fma(FLOAT_TYPE(b32[l]) * FLOAT_TYPE(int8_t(((s2[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 1)) != 0) ? 0 : 4)), - fma(FLOAT_TYPE(b64[l]) * FLOAT_TYPE(int8_t(((s4[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 2)) != 0) ? 0 : 4)), - fma(FLOAT_TYPE(b96[l]) * FLOAT_TYPE(int8_t(((s6[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 3)) != 0) ? 0 : 4)), - fma(FLOAT_TYPE(b16[l]) * FLOAT_TYPE(int8_t(((s0[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 0)) != 0) ? 0 : 4)), - fma(FLOAT_TYPE(b48[l]) * FLOAT_TYPE(int8_t(((s2[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 1)) != 0) ? 0 : 4)), - fma(FLOAT_TYPE(b80[l]) * FLOAT_TYPE(int8_t(((s4[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)), - fma(FLOAT_TYPE(b112[l]) * FLOAT_TYPE(int8_t(((s6[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)), sum)))))))); + uint16_t s0_16 = data_a_packed16[ib0 + i].scales[0]; + uint16_t s2_16 = data_a_packed16[ib0 + i].scales[1]; + uint16_t s4_16 = data_a_packed16[ib0 + i].scales[2]; + uint16_t s6_16 = data_a_packed16[ib0 + i].scales[3]; + uint16_t s8_16 = data_a_packed16[ib0 + i].scales[4]; + uint16_t s10_16 = data_a_packed16[ib0 + i].scales[5]; + u8vec2 s0 = unpack8(s0_16); + u8vec2 s2 = unpack8(s2_16); + u8vec2 s4 = unpack8(s4_16); + u8vec2 s6 = unpack8(s6_16); + u8vec2 s8 = unpack8(s8_16); + u8vec2 s10 = unpack8(s10_16); + + FLOAT_TYPE sum = FLOAT_TYPE(0.0); + [[unroll]] for (int l = 0; l < 2; ++l) { + sum = fma(FLOAT_TYPE(b0[l]) * FLOAT_TYPE(int8_t(((s0[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 0)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(b32[l]) * FLOAT_TYPE(int8_t(((s2[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 1)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(b64[l]) * FLOAT_TYPE(int8_t(((s4[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 2)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(b96[l]) * FLOAT_TYPE(int8_t(((s6[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 3)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(b16[l]) * FLOAT_TYPE(int8_t(((s0[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 0)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(b48[l]) * FLOAT_TYPE(int8_t(((s2[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 1)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(b80[l]) * FLOAT_TYPE(int8_t(((s4[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)), + fma(FLOAT_TYPE(b112[l]) * FLOAT_TYPE(int8_t(((s6[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)), sum)))))))); + } + temp[n] = fma(d, sum, temp[n]); } - temp = fma(d, sum, temp); } - tmp[gl_LocalInvocationID.x] = temp; - // sum up partial sums and write back result + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] = temp[n]; + } barrier(); - [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { + [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { if (tid < s) { - tmp[tid] += tmp[tid + s]; + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] += tmpsh[n][tid + s]; + } } barrier(); } if (tid == 0) { - data_d[d_offset + row] = D_TYPE(tmp[0]); + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]); + } + } +} + +void main() { + const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); + + // do NUM_ROWS at a time, unless there aren't enough remaining rows + if (first_row + NUM_ROWS <= p.stride_d) { + compute_outputs(first_row, NUM_ROWS); + } else { + if (first_row >= p.stride_d) { + return; + } + compute_outputs(first_row, p.stride_d - first_row); } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp index b86d28589..677c207a8 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp @@ -7,21 +7,15 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (constant_id = 0) const uint BLOCK_SIZE = 32; +layout (constant_id = 1) const uint NUM_ROWS = 1; -shared FLOAT_TYPE tmp[BLOCK_SIZE]; - -void main() { - const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; - - if (row >= p.stride_d) { - return; - } +shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE]; +void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); const uint num_blocks_per_row = p.ncols / QUANT_K; - const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; // 16 threads are used to process each block const uint it_size = gl_WorkGroupSize.x/16; @@ -31,8 +25,8 @@ void main() { const uint step = 4; - const uint il = itid/step; // 0...3 - const uint ir = itid - step*il; // 0...7 or 0...3 + const uint il = itid/step; // 0...3 + const uint ir = itid - step*il; // 0...7 or 0...3 const uint n = 4; const uint v_im = il / 2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 @@ -42,90 +36,116 @@ void main() { const uint q_offset = 32*v_im + l0; const uint y_offset = 64*v_im + l0; - FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp + FLOAT_TYPE temp[NUM_ROWS]; + + [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { + temp[i] = FLOAT_TYPE(0); + } [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { const uint y1_idx = i * QUANT_K + y_offset; const uint y2_idx = y1_idx + 128; - f16vec2 d = data_a[ib0 + i].d; - const FLOAT_TYPE dall = FLOAT_TYPE(d.x); - const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); - - uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ]; - uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2]; - uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4]; - uvec4 scale0 = uvec4(unpack8(scale0_u32)); - uvec4 scale4 = uvec4(unpack8(scale4_u32)); - uvec4 scale8 = uvec4(unpack8(scale8_u32)); - - const uint32_t sc0 = ( scale0.x & 0x3f); - const uint32_t sc1 = ( scale0.y & 0x3f); - const uint32_t sc2 = ( scale4.x & 0x3f); - const uint32_t sc3 = ( scale4.y & 0x3f); - const uint32_t sc4 = (( scale8.x & 0x0f) | ((scale0.x & 0xc0) >> 2)); - const uint32_t sc5 = (( scale8.y & 0x0f) | ((scale0.y & 0xc0) >> 2)); - const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2)); - const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2)); - - uint32_t qs0_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4]; - uint32_t qs64_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4 + 16]; - - uint32_t qs0_u32_lo4 = qs0_u32 & 0x0F0F0F0F; - uint32_t qs0_u32_hi4 = (qs0_u32 >> 4) & 0x0F0F0F0F; - uint32_t qs64_u32_lo4 = qs64_u32 & 0x0F0F0F0F; - uint32_t qs64_u32_hi4 = (qs64_u32 >> 4) & 0x0F0F0F0F; - - uvec4 qs0_lo4 = uvec4(unpack8(qs0_u32_lo4)); - uvec4 qs64_lo4 = uvec4(unpack8(qs64_u32_lo4)); - uvec4 qs0_hi4 = uvec4(unpack8(qs0_u32_hi4)); - uvec4 qs64_hi4 = uvec4(unpack8(qs64_u32_hi4)); - - const uint32_t q4_0 = qs0_lo4.x; - const uint32_t q4_1 = qs0_lo4.y; - const uint32_t q4_2 = qs0_lo4.z; - const uint32_t q4_3 = qs0_lo4.w; - const uint32_t q4_4 = qs0_hi4.x; - const uint32_t q4_5 = qs0_hi4.y; - const uint32_t q4_6 = qs0_hi4.z; - const uint32_t q4_7 = qs0_hi4.w; - const uint32_t q4_8 = qs64_lo4.x; - const uint32_t q4_9 = qs64_lo4.y; - const uint32_t q4_10 = qs64_lo4.z; - const uint32_t q4_11 = qs64_lo4.w; - const uint32_t q4_12 = qs64_hi4.x; - const uint32_t q4_13 = qs64_hi4.y; - const uint32_t q4_14 = qs64_hi4.z; - const uint32_t q4_15 = qs64_hi4.w; - B_TYPE_VEC4 by10 = data_b_v4[(b_offset + y1_idx) / 4]; B_TYPE_VEC4 by132 = data_b_v4[(b_offset + y1_idx) / 4 + 8]; B_TYPE_VEC4 by20 = data_b_v4[(b_offset + y2_idx) / 4]; B_TYPE_VEC4 by232 = data_b_v4[(b_offset + y2_idx) / 4 + 8]; - const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x), q4_0, fma(FLOAT_TYPE(by10.y), q4_1, fma(FLOAT_TYPE(by10.z), q4_2, FLOAT_TYPE(by10.w) * q4_3))); - const FLOAT_TYPE sy = fma(FLOAT_TYPE(by132.x), q4_4, fma(FLOAT_TYPE(by132.y), q4_5, fma(FLOAT_TYPE(by132.z), q4_6, FLOAT_TYPE(by132.w) * q4_7))); - const FLOAT_TYPE sz = fma(FLOAT_TYPE(by20.x), q4_8, fma(FLOAT_TYPE(by20.y), q4_9, fma(FLOAT_TYPE(by20.z), q4_10, FLOAT_TYPE(by20.w) * q4_11))); - const FLOAT_TYPE sw = fma(FLOAT_TYPE(by232.x), q4_12, fma(FLOAT_TYPE(by232.y), q4_13, fma(FLOAT_TYPE(by232.z), q4_14, FLOAT_TYPE(by232.w) * q4_15))); - const FLOAT_TYPE smin = - fma(FLOAT_TYPE(by10.x), sc2, fma(FLOAT_TYPE(by132.x), sc3, fma(FLOAT_TYPE(by20.x), sc6, fma(FLOAT_TYPE(by232.x), sc7, - fma(FLOAT_TYPE(by10.y), sc2, fma(FLOAT_TYPE(by132.y), sc3, fma(FLOAT_TYPE(by20.y), sc6, fma(FLOAT_TYPE(by232.y), sc7, - fma(FLOAT_TYPE(by10.z), sc2, fma(FLOAT_TYPE(by132.z), sc3, fma(FLOAT_TYPE(by20.z), sc6, fma(FLOAT_TYPE(by232.z), sc7, - fma(FLOAT_TYPE(by10.w), sc2, fma(FLOAT_TYPE(by132.w), sc3, fma(FLOAT_TYPE(by20.w), sc6, FLOAT_TYPE(by232.w) * sc7))))))))))))))); - temp = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp)); + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; + f16vec2 d = data_a[ib0 + i].d; + const FLOAT_TYPE dall = FLOAT_TYPE(d.x); + const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); + + uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ]; + uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2]; + uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4]; + uvec4 scale0 = uvec4(unpack8(scale0_u32)); + uvec4 scale4 = uvec4(unpack8(scale4_u32)); + uvec4 scale8 = uvec4(unpack8(scale8_u32)); + + const uint32_t sc0 = ( scale0.x & 0x3f); + const uint32_t sc1 = ( scale0.y & 0x3f); + const uint32_t sc2 = ( scale4.x & 0x3f); + const uint32_t sc3 = ( scale4.y & 0x3f); + const uint32_t sc4 = (( scale8.x & 0x0f) | ((scale0.x & 0xc0) >> 2)); + const uint32_t sc5 = (( scale8.y & 0x0f) | ((scale0.y & 0xc0) >> 2)); + const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2)); + const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2)); + + uint32_t qs0_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4]; + uint32_t qs64_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4 + 16]; + + uint32_t qs0_u32_lo4 = qs0_u32 & 0x0F0F0F0F; + uint32_t qs0_u32_hi4 = (qs0_u32 >> 4) & 0x0F0F0F0F; + uint32_t qs64_u32_lo4 = qs64_u32 & 0x0F0F0F0F; + uint32_t qs64_u32_hi4 = (qs64_u32 >> 4) & 0x0F0F0F0F; + + uvec4 qs0_lo4 = uvec4(unpack8(qs0_u32_lo4)); + uvec4 qs64_lo4 = uvec4(unpack8(qs64_u32_lo4)); + uvec4 qs0_hi4 = uvec4(unpack8(qs0_u32_hi4)); + uvec4 qs64_hi4 = uvec4(unpack8(qs64_u32_hi4)); + + const uint32_t q4_0 = qs0_lo4.x; + const uint32_t q4_1 = qs0_lo4.y; + const uint32_t q4_2 = qs0_lo4.z; + const uint32_t q4_3 = qs0_lo4.w; + const uint32_t q4_4 = qs0_hi4.x; + const uint32_t q4_5 = qs0_hi4.y; + const uint32_t q4_6 = qs0_hi4.z; + const uint32_t q4_7 = qs0_hi4.w; + const uint32_t q4_8 = qs64_lo4.x; + const uint32_t q4_9 = qs64_lo4.y; + const uint32_t q4_10 = qs64_lo4.z; + const uint32_t q4_11 = qs64_lo4.w; + const uint32_t q4_12 = qs64_hi4.x; + const uint32_t q4_13 = qs64_hi4.y; + const uint32_t q4_14 = qs64_hi4.z; + const uint32_t q4_15 = qs64_hi4.w; + + const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x), q4_0, fma(FLOAT_TYPE(by10.y), q4_1, fma(FLOAT_TYPE(by10.z), q4_2, FLOAT_TYPE(by10.w) * q4_3))); + const FLOAT_TYPE sy = fma(FLOAT_TYPE(by132.x), q4_4, fma(FLOAT_TYPE(by132.y), q4_5, fma(FLOAT_TYPE(by132.z), q4_6, FLOAT_TYPE(by132.w) * q4_7))); + const FLOAT_TYPE sz = fma(FLOAT_TYPE(by20.x), q4_8, fma(FLOAT_TYPE(by20.y), q4_9, fma(FLOAT_TYPE(by20.z), q4_10, FLOAT_TYPE(by20.w) * q4_11))); + const FLOAT_TYPE sw = fma(FLOAT_TYPE(by232.x), q4_12, fma(FLOAT_TYPE(by232.y), q4_13, fma(FLOAT_TYPE(by232.z), q4_14, FLOAT_TYPE(by232.w) * q4_15))); + const FLOAT_TYPE smin = + fma(FLOAT_TYPE(by10.x), sc2, fma(FLOAT_TYPE(by132.x), sc3, fma(FLOAT_TYPE(by20.x), sc6, fma(FLOAT_TYPE(by232.x), sc7, + fma(FLOAT_TYPE(by10.y), sc2, fma(FLOAT_TYPE(by132.y), sc3, fma(FLOAT_TYPE(by20.y), sc6, fma(FLOAT_TYPE(by232.y), sc7, + fma(FLOAT_TYPE(by10.z), sc2, fma(FLOAT_TYPE(by132.z), sc3, fma(FLOAT_TYPE(by20.z), sc6, fma(FLOAT_TYPE(by232.z), sc7, + fma(FLOAT_TYPE(by10.w), sc2, fma(FLOAT_TYPE(by132.w), sc3, fma(FLOAT_TYPE(by20.w), sc6, FLOAT_TYPE(by232.w) * sc7))))))))))))))); + temp[n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[n])); + } } - tmp[gl_LocalInvocationID.x] = temp; - // sum up partial sums and write back result + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] = temp[n]; + } barrier(); - [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { + [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { if (tid < s) { - tmp[tid] += tmp[tid + s]; + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] += tmpsh[n][tid + s]; + } } barrier(); } if (tid == 0) { - data_d[d_offset + row] = D_TYPE(tmp[0]); + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]); + } + } +} + +void main() { + const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); + + // do NUM_ROWS at a time, unless there aren't enough remaining rows + if (first_row + NUM_ROWS <= p.stride_d) { + compute_outputs(first_row, NUM_ROWS); + } else { + if (first_row >= p.stride_d) { + return; + } + compute_outputs(first_row, p.stride_d - first_row); } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp index fd243cf91..ed3c25d89 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp @@ -7,21 +7,15 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (constant_id = 0) const uint BLOCK_SIZE = 32; +layout (constant_id = 1) const uint NUM_ROWS = 1; -shared FLOAT_TYPE tmp[BLOCK_SIZE]; - -void main() { - const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; - - if (row >= p.stride_d) { - return; - } +shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE]; +void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); const uint num_blocks_per_row = p.ncols / QUANT_K; - const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; // 16 threads are used to process each block const uint it_size = gl_WorkGroupSize.x/16; @@ -39,74 +33,16 @@ void main() { const uint q_offset = 32*v_im + l0; const uint y_offset = 64*v_im + l0; - FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp + FLOAT_TYPE temp[NUM_ROWS]; + + [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { + temp[i] = FLOAT_TYPE(0); + } [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { const uint y1_idx = i * QUANT_K + y_offset; const uint y2_idx = y1_idx + 128; - f16vec2 d = data_a[ib0 + i].d; - const FLOAT_TYPE dall = FLOAT_TYPE(d.x); - const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); - - uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ]; - uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2]; - uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4]; - uvec4 scale0 = uvec4(unpack8(scale0_u32)); - uvec4 scale4 = uvec4(unpack8(scale4_u32)); - uvec4 scale8 = uvec4(unpack8(scale8_u32)); - - const uint32_t sc0 = ( scale0.x & 0x3f); - const uint32_t sc1 = ( scale0.y & 0x3f); - const uint32_t sc2 = ( scale4.x & 0x3f); - const uint32_t sc3 = ( scale4.y & 0x3f); - const uint32_t sc4 = (( scale8.x & 0x0f) | ((scale0.x & 0xc0) >> 2)); - const uint32_t sc5 = (( scale8.y & 0x0f) | ((scale0.y & 0xc0) >> 2)); - const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2)); - const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2)); - - uint32_t qs0_16_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]) << 16); - uint32_t qs64_80_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 32]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 40]) << 16); - - uint32_t qs0_16_u32_lo4 = qs0_16_u32 & 0x0F0F0F0F; - uint32_t qs0_16_u32_hi4 = (qs0_16_u32 >> 4) & 0x0F0F0F0F; - uint32_t qs64_80_u32_lo4 = qs64_80_u32 & 0x0F0F0F0F; - uint32_t qs64_80_u32_hi4 = (qs64_80_u32 >> 4) & 0x0F0F0F0F; - - uint32_t qh = pack32(u16vec2(data_a_packed16[ib0 + i].qh[l0 / 2], data_a_packed16[ib0 + i].qh[l0 / 2 + 8])); - - uint32_t qs0_16_lo4_offset16 = ((qh >> (2*v_im)) & 0x01010101) << 4; - uint32_t qs0_16_hi4_offset16 = ((qh >> (2*v_im)) & 0x02020202) << 3; - uint32_t qs64_80_lo4_offset16 = ((qh >> (2*v_im)) & 0x10101010) << 0; - uint32_t qs64_80_hi4_offset16 = ((qh >> (2*v_im)) & 0x20202020) >> 1; - - qs0_16_u32_lo4 += qs0_16_lo4_offset16; - qs0_16_u32_hi4 += qs0_16_hi4_offset16; - qs64_80_u32_lo4 += qs64_80_lo4_offset16; - qs64_80_u32_hi4 += qs64_80_hi4_offset16; - - uvec4 qs0_16_lo4 = uvec4(unpack8(qs0_16_u32_lo4)); - uvec4 qs64_80_lo4 = uvec4(unpack8(qs64_80_u32_lo4)); - uvec4 qs0_16_hi4 = uvec4(unpack8(qs0_16_u32_hi4)); - uvec4 qs64_80_hi4 = uvec4(unpack8(qs64_80_u32_hi4)); - - const uint32_t q4_0 = qs0_16_lo4.x; - const uint32_t q4_1 = qs0_16_lo4.y; - const uint32_t q4_2 = qs0_16_lo4.z; - const uint32_t q4_3 = qs0_16_lo4.w; - const uint32_t q4_4 = qs0_16_hi4.x; - const uint32_t q4_5 = qs0_16_hi4.y; - const uint32_t q4_6 = qs0_16_hi4.z; - const uint32_t q4_7 = qs0_16_hi4.w; - const uint32_t q4_8 = qs64_80_lo4.x; - const uint32_t q4_9 = qs64_80_lo4.y; - const uint32_t q4_10 = qs64_80_lo4.z; - const uint32_t q4_11 = qs64_80_lo4.w; - const uint32_t q4_12 = qs64_80_hi4.x; - const uint32_t q4_13 = qs64_80_hi4.y; - const uint32_t q4_14 = qs64_80_hi4.z; - const uint32_t q4_15 = qs64_80_hi4.w; - B_TYPE_VEC2 by10 = data_b_v2[(b_offset + y1_idx) / 2]; B_TYPE_VEC2 by116 = data_b_v2[(b_offset + y1_idx) / 2 + 8]; B_TYPE_VEC2 by132 = data_b_v2[(b_offset + y1_idx) / 2 + 16]; @@ -116,45 +52,129 @@ void main() { B_TYPE_VEC2 by232 = data_b_v2[(b_offset + y2_idx) / 2 + 16]; B_TYPE_VEC2 by248 = data_b_v2[(b_offset + y2_idx) / 2 + 24]; - const FLOAT_TYPE sx = - fma(FLOAT_TYPE(by10.x), q4_0, - fma(FLOAT_TYPE(by10.y), q4_1, - fma(FLOAT_TYPE(by116.x), q4_2, - FLOAT_TYPE(by116.y) * q4_3))); - const FLOAT_TYPE sy = - fma(FLOAT_TYPE(by132.x), q4_4, - fma(FLOAT_TYPE(by132.y), q4_5, - fma(FLOAT_TYPE(by148.x), q4_6, - FLOAT_TYPE(by148.y) * q4_7))); - const FLOAT_TYPE sz = - fma(FLOAT_TYPE(by20.x), q4_8, - fma(FLOAT_TYPE(by20.y), q4_9, - fma(FLOAT_TYPE(by216.x), q4_10, - FLOAT_TYPE(by216.y) * q4_11))); - const FLOAT_TYPE sw = - fma(FLOAT_TYPE(by232.x), q4_12, - fma(FLOAT_TYPE(by232.y), q4_13, - fma(FLOAT_TYPE(by248.x), q4_14, - FLOAT_TYPE(by248.y) * q4_15))); - const FLOAT_TYPE smin = - fma(FLOAT_TYPE(by10.x) + FLOAT_TYPE(by10.y) + FLOAT_TYPE(by116.x) + FLOAT_TYPE(by116.y), sc2, - fma(FLOAT_TYPE(by132.x) + FLOAT_TYPE(by132.y) + FLOAT_TYPE(by148.x) + FLOAT_TYPE(by148.y), sc3, - fma(FLOAT_TYPE(by20.x) + FLOAT_TYPE(by20.y) + FLOAT_TYPE(by216.x) + FLOAT_TYPE(by216.y), sc6, - (FLOAT_TYPE(by232.x) + FLOAT_TYPE(by232.y) + FLOAT_TYPE(by248.x) + FLOAT_TYPE(by248.y)) * sc7))); - temp = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp)); + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; + f16vec2 d = data_a[ib0 + i].d; + const FLOAT_TYPE dall = FLOAT_TYPE(d.x); + const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); + + uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ]; + uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2]; + uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4]; + uvec4 scale0 = uvec4(unpack8(scale0_u32)); + uvec4 scale4 = uvec4(unpack8(scale4_u32)); + uvec4 scale8 = uvec4(unpack8(scale8_u32)); + + const uint32_t sc0 = ( scale0.x & 0x3f); + const uint32_t sc1 = ( scale0.y & 0x3f); + const uint32_t sc2 = ( scale4.x & 0x3f); + const uint32_t sc3 = ( scale4.y & 0x3f); + const uint32_t sc4 = (( scale8.x & 0x0f) | ((scale0.x & 0xc0) >> 2)); + const uint32_t sc5 = (( scale8.y & 0x0f) | ((scale0.y & 0xc0) >> 2)); + const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2)); + const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2)); + + uint32_t qs0_16_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]) << 16); + uint32_t qs64_80_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 32]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 40]) << 16); + + uint32_t qs0_16_u32_lo4 = qs0_16_u32 & 0x0F0F0F0F; + uint32_t qs0_16_u32_hi4 = (qs0_16_u32 >> 4) & 0x0F0F0F0F; + uint32_t qs64_80_u32_lo4 = qs64_80_u32 & 0x0F0F0F0F; + uint32_t qs64_80_u32_hi4 = (qs64_80_u32 >> 4) & 0x0F0F0F0F; + + uint32_t qh = pack32(u16vec2(data_a_packed16[ib0 + i].qh[l0 / 2], data_a_packed16[ib0 + i].qh[l0 / 2 + 8])); + + uint32_t qs0_16_lo4_offset16 = ((qh >> (2*v_im)) & 0x01010101) << 4; + uint32_t qs0_16_hi4_offset16 = ((qh >> (2*v_im)) & 0x02020202) << 3; + uint32_t qs64_80_lo4_offset16 = ((qh >> (2*v_im)) & 0x10101010) << 0; + uint32_t qs64_80_hi4_offset16 = ((qh >> (2*v_im)) & 0x20202020) >> 1; + + qs0_16_u32_lo4 += qs0_16_lo4_offset16; + qs0_16_u32_hi4 += qs0_16_hi4_offset16; + qs64_80_u32_lo4 += qs64_80_lo4_offset16; + qs64_80_u32_hi4 += qs64_80_hi4_offset16; + + uvec4 qs0_16_lo4 = uvec4(unpack8(qs0_16_u32_lo4)); + uvec4 qs64_80_lo4 = uvec4(unpack8(qs64_80_u32_lo4)); + uvec4 qs0_16_hi4 = uvec4(unpack8(qs0_16_u32_hi4)); + uvec4 qs64_80_hi4 = uvec4(unpack8(qs64_80_u32_hi4)); + + const uint32_t q4_0 = qs0_16_lo4.x; + const uint32_t q4_1 = qs0_16_lo4.y; + const uint32_t q4_2 = qs0_16_lo4.z; + const uint32_t q4_3 = qs0_16_lo4.w; + const uint32_t q4_4 = qs0_16_hi4.x; + const uint32_t q4_5 = qs0_16_hi4.y; + const uint32_t q4_6 = qs0_16_hi4.z; + const uint32_t q4_7 = qs0_16_hi4.w; + const uint32_t q4_8 = qs64_80_lo4.x; + const uint32_t q4_9 = qs64_80_lo4.y; + const uint32_t q4_10 = qs64_80_lo4.z; + const uint32_t q4_11 = qs64_80_lo4.w; + const uint32_t q4_12 = qs64_80_hi4.x; + const uint32_t q4_13 = qs64_80_hi4.y; + const uint32_t q4_14 = qs64_80_hi4.z; + const uint32_t q4_15 = qs64_80_hi4.w; + + const FLOAT_TYPE sx = + fma(FLOAT_TYPE(by10.x), q4_0, + fma(FLOAT_TYPE(by10.y), q4_1, + fma(FLOAT_TYPE(by116.x), q4_2, + FLOAT_TYPE(by116.y) * q4_3))); + const FLOAT_TYPE sy = + fma(FLOAT_TYPE(by132.x), q4_4, + fma(FLOAT_TYPE(by132.y), q4_5, + fma(FLOAT_TYPE(by148.x), q4_6, + FLOAT_TYPE(by148.y) * q4_7))); + const FLOAT_TYPE sz = + fma(FLOAT_TYPE(by20.x), q4_8, + fma(FLOAT_TYPE(by20.y), q4_9, + fma(FLOAT_TYPE(by216.x), q4_10, + FLOAT_TYPE(by216.y) * q4_11))); + const FLOAT_TYPE sw = + fma(FLOAT_TYPE(by232.x), q4_12, + fma(FLOAT_TYPE(by232.y), q4_13, + fma(FLOAT_TYPE(by248.x), q4_14, + FLOAT_TYPE(by248.y) * q4_15))); + const FLOAT_TYPE smin = + fma(FLOAT_TYPE(by10.x) + FLOAT_TYPE(by10.y) + FLOAT_TYPE(by116.x) + FLOAT_TYPE(by116.y), sc2, + fma(FLOAT_TYPE(by132.x) + FLOAT_TYPE(by132.y) + FLOAT_TYPE(by148.x) + FLOAT_TYPE(by148.y), sc3, + fma(FLOAT_TYPE(by20.x) + FLOAT_TYPE(by20.y) + FLOAT_TYPE(by216.x) + FLOAT_TYPE(by216.y), sc6, + (FLOAT_TYPE(by232.x) + FLOAT_TYPE(by232.y) + FLOAT_TYPE(by248.x) + FLOAT_TYPE(by248.y)) * sc7))); + temp[n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[n])); + } } - tmp[gl_LocalInvocationID.x] = temp; - // sum up partial sums and write back result + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] = temp[n]; + } barrier(); - [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { + [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { if (tid < s) { - tmp[tid] += tmp[tid + s]; + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] += tmpsh[n][tid + s]; + } } barrier(); } if (tid == 0) { - data_d[d_offset + row] = D_TYPE(tmp[0]); + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]); + } + } +} + +void main() { + const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); + + // do NUM_ROWS at a time, unless there aren't enough remaining rows + if (first_row + NUM_ROWS <= p.stride_d) { + compute_outputs(first_row, NUM_ROWS); + } else { + if (first_row >= p.stride_d) { + return; + } + compute_outputs(first_row, p.stride_d - first_row); } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q6_k.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q6_k.comp index 760aff854..fab4ff5ff 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q6_k.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q6_k.comp @@ -7,21 +7,15 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (constant_id = 0) const uint BLOCK_SIZE = 32; +layout (constant_id = 1) const uint NUM_ROWS = 1; -shared FLOAT_TYPE tmp[BLOCK_SIZE]; - -void main() { - const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; - - if (row >= p.stride_d) { - return; - } +shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE]; +void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); const uint num_blocks_per_row = p.ncols / QUANT_K; - const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; // 16 threads are used to process each block const uint it_size = gl_WorkGroupSize.x/16; @@ -42,69 +36,95 @@ void main() { const uint s_offset = 8*v_im + is; const uint y_offset = 128*v_im + l0; - FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp + FLOAT_TYPE temp[NUM_ROWS]; + + [[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) { + temp[i] = FLOAT_TYPE(0); + } [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) { - const uint y_idx = i * QUANT_K + y_offset; - - const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); - - FLOAT_TYPE scales[4]; - scales[0] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]); - scales[1] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]); - scales[2] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]); - scales[3] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]); - - uint32_t ql0_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 1]) << 16); - uint32_t ql32_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 16]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 17]) << 16); - - uint32_t ql0_u32_lo4 = ql0_u32 & 0x0F0F0F0F; - uint32_t ql0_u32_hi4 = (ql0_u32 >> 4) & 0x0F0F0F0F; - uint32_t ql32_u32_lo4 = ql32_u32 & 0x0F0F0F0F; - uint32_t ql32_u32_hi4 = (ql32_u32 >> 4) & 0x0F0F0F0F; - - uint32_t qh_u32 = uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2 + 1]) << 16); - uint32_t qh0_u32 = (qh_u32 & 0x03030303) << 4; - uint32_t qh2_u32 = (qh_u32 & 0x0C0C0C0C) << 2; - uint32_t qh4_u32 = (qh_u32 & 0x30303030) << 0; - uint32_t qh6_u32 = (qh_u32 & 0xC0C0C0C0) >> 2; - - uint32_t q0_u32 = ql0_u32_lo4 | qh0_u32; - uint32_t q1_u32 = ql32_u32_lo4 | qh2_u32; - uint32_t q2_u32 = ql0_u32_hi4 | qh4_u32; - uint32_t q3_u32 = ql32_u32_hi4 | qh6_u32; - - uvec4 q0 = uvec4(unpack8(q0_u32)); - uvec4 q1 = uvec4(unpack8(q1_u32)); - uvec4 q2 = uvec4(unpack8(q2_u32)); - uvec4 q3 = uvec4(unpack8(q3_u32)); + const uint y_idx = i * QUANT_K + y_offset; B_TYPE_VEC4 by0 = data_b_v4[(b_offset + y_idx) / 4]; B_TYPE_VEC4 by32 = data_b_v4[(b_offset + y_idx) / 4 + 8]; B_TYPE_VEC4 by64 = data_b_v4[(b_offset + y_idx) / 4 + 16]; B_TYPE_VEC4 by96 = data_b_v4[(b_offset + y_idx) / 4 + 24]; - FLOAT_TYPE sum = FLOAT_TYPE(0.0); - [[unroll]] for (int l = 0; l < 4; ++l) { - sum = fma(FLOAT_TYPE(by0[l]) * scales[0], FLOAT_TYPE(int8_t(q0[l]) - 32), - fma(FLOAT_TYPE(by32[l]) * scales[1], FLOAT_TYPE(int8_t(q1[l]) - 32), - fma(FLOAT_TYPE(by64[l]) * scales[2], FLOAT_TYPE(int8_t(q2[l]) - 32), - fma(FLOAT_TYPE(by96[l]) * scales[3], FLOAT_TYPE(int8_t(q3[l]) - 32), sum)))); + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row; + const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); + + FLOAT_TYPE scales[4]; + scales[0] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]); + scales[1] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]); + scales[2] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]); + scales[3] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]); + + uint32_t ql0_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 1]) << 16); + uint32_t ql32_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 16]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 17]) << 16); + + uint32_t ql0_u32_lo4 = ql0_u32 & 0x0F0F0F0F; + uint32_t ql0_u32_hi4 = (ql0_u32 >> 4) & 0x0F0F0F0F; + uint32_t ql32_u32_lo4 = ql32_u32 & 0x0F0F0F0F; + uint32_t ql32_u32_hi4 = (ql32_u32 >> 4) & 0x0F0F0F0F; + + uint32_t qh_u32 = uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2 + 1]) << 16); + uint32_t qh0_u32 = (qh_u32 & 0x03030303) << 4; + uint32_t qh2_u32 = (qh_u32 & 0x0C0C0C0C) << 2; + uint32_t qh4_u32 = (qh_u32 & 0x30303030) << 0; + uint32_t qh6_u32 = (qh_u32 & 0xC0C0C0C0) >> 2; + + uint32_t q0_u32 = ql0_u32_lo4 | qh0_u32; + uint32_t q1_u32 = ql32_u32_lo4 | qh2_u32; + uint32_t q2_u32 = ql0_u32_hi4 | qh4_u32; + uint32_t q3_u32 = ql32_u32_hi4 | qh6_u32; + + uvec4 q0 = uvec4(unpack8(q0_u32)); + uvec4 q1 = uvec4(unpack8(q1_u32)); + uvec4 q2 = uvec4(unpack8(q2_u32)); + uvec4 q3 = uvec4(unpack8(q3_u32)); + + FLOAT_TYPE sum = FLOAT_TYPE(0.0); + [[unroll]] for (int l = 0; l < 4; ++l) { + sum = fma(FLOAT_TYPE(by0[l]) * scales[0], FLOAT_TYPE(int8_t(q0[l]) - 32), + fma(FLOAT_TYPE(by32[l]) * scales[1], FLOAT_TYPE(int8_t(q1[l]) - 32), + fma(FLOAT_TYPE(by64[l]) * scales[2], FLOAT_TYPE(int8_t(q2[l]) - 32), + fma(FLOAT_TYPE(by96[l]) * scales[3], FLOAT_TYPE(int8_t(q3[l]) - 32), sum)))); + } + temp[n] += sum * d; } - temp += sum * d; } - tmp[gl_LocalInvocationID.x] = temp; // sum up partial sums and write back result - + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] = temp[n]; + } barrier(); - [[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) { + [[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) { if (tid < s) { - tmp[tid] += tmp[tid + s]; + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + tmpsh[n][tid] += tmpsh[n][tid + s]; + } } barrier(); } if (tid == 0) { - data_d[d_offset + row] = D_TYPE(tmp[0]); + [[unroll]] for (uint n = 0; n < num_rows; ++n) { + data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]); + } + } +} + +void main() { + const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); + + // do NUM_ROWS at a time, unless there aren't enough remaining rows + if (first_row + NUM_ROWS <= p.stride_d) { + compute_outputs(first_row, NUM_ROWS); + } else { + if (first_row >= p.stride_d) { + return; + } + compute_outputs(first_row, p.stride_d - first_row); } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/pad.comp b/ggml/src/ggml-vulkan/vulkan-shaders/pad.comp index e87d8b18b..450b67fc5 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/pad.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/pad.comp @@ -24,5 +24,5 @@ void main() { const bool is_src0 = i0 < p.ne00 && i1 < p.ne01 && i2 < p.ne02 && i3 < p.ne03; - data_d[p.d_offset + dst_idx] = D_TYPE(is_src0 ? data_a[src0_idx] : 0.0f); + data_d[get_doffset() + dst_idx] = D_TYPE(is_src0 ? data_a[get_aoffset() + src0_idx] : 0.0f); } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/repeat.comp b/ggml/src/ggml-vulkan/vulkan-shaders/repeat.comp index c03f737cc..1568b141d 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/repeat.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/repeat.comp @@ -22,5 +22,5 @@ void main() { return; } - data_d[p.d_offset + dst_idx(idx)] = D_TYPE(data_a[src0_idx_mod(idx)]); + data_d[get_doffset() + dst_idx(idx)] = D_TYPE(data_a[get_aoffset() + src0_idx_mod(idx)]); } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/scale.comp b/ggml/src/ggml-vulkan/vulkan-shaders/scale.comp index 5cfee8c3b..4663428de 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/scale.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/scale.comp @@ -18,7 +18,7 @@ void main() { continue; } - data_d[p.d_offset + idx] = D_TYPE(FLOAT_TYPE(data_a[idx]) * FLOAT_TYPE(p.param1)); + data_d[get_doffset() + idx] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + idx]) * FLOAT_TYPE(p.param1)); idx += num_threads; } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/sin.comp b/ggml/src/ggml-vulkan/vulkan-shaders/sin.comp index 67c48fb9a..d7c15a169 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/sin.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/sin.comp @@ -12,6 +12,6 @@ void main() { return; } - const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(idx)]); - data_d[p.d_offset + dst_idx(idx)] = D_TYPE(sin(val)); + const FLOAT_TYPE val = FLOAT_TYPE(data_a[get_aoffset() + src0_idx(idx)]); + data_d[get_doffset() + dst_idx(idx)] = D_TYPE(sin(val)); } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/square.comp b/ggml/src/ggml-vulkan/vulkan-shaders/square.comp index 2ff48ddc5..ef43598ba 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/square.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/square.comp @@ -12,6 +12,6 @@ void main() { return; } - const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(idx)]); - data_d[p.d_offset + dst_idx(idx)] = D_TYPE(val * val); + const FLOAT_TYPE val = FLOAT_TYPE(data_a[get_aoffset() + src0_idx(idx)]); + data_d[get_doffset() + dst_idx(idx)] = D_TYPE(val * val); } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/upscale.comp b/ggml/src/ggml-vulkan/vulkan-shaders/upscale.comp index 511a086ea..6f607380d 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/upscale.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/upscale.comp @@ -2,7 +2,7 @@ layout (push_constant) uniform parameter { - uint ne; uint d_offset; + uint ne; uint a_offset; uint d_offset; uint nb00; uint nb01; uint nb02; uint nb03; uint ne10; uint ne11; uint ne12; uint ne13; float sf0; float sf1; float sf2; float sf3; @@ -32,5 +32,5 @@ void main() { const uint i02 = uint(i12 / p.sf2); const uint i03 = uint(i13 / p.sf3); - data_d[p.d_offset + idx] = D_TYPE(data_a[i03 * p.nb03 + i02 * p.nb02 + i01 * p.nb01 + i00 * p.nb00]); + data_d[p.d_offset + idx] = D_TYPE(data_a[p.a_offset + i03 * p.nb03 + i02 * p.nb02 + i01 * p.nb01 + i00 * p.nb00]); } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp index 7a0d7285d..8111c0638 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp @@ -78,7 +78,8 @@ void execute_command(const std::string& command, std::string& stdout_str, std::s } PROCESS_INFORMATION pi; - STARTUPINFOA si = { sizeof(STARTUPINFOA) }; + STARTUPINFOA si = {}; + si.cb = sizeof(STARTUPINFOA); si.dwFlags = STARTF_USESTDHANDLES; si.hStdOutput = stdout_write; si.hStdError = stderr_write; diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index a40df974d..273370370 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -221,6 +221,7 @@ class GGUFType: class MODEL_ARCH(IntEnum): LLAMA = auto() + DECI = auto() FALCON = auto() BAICHUAN = auto() GROK = auto() @@ -402,6 +403,7 @@ class MODEL_TENSOR(IntEnum): MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.LLAMA: "llama", + MODEL_ARCH.DECI: "deci", MODEL_ARCH.FALCON: "falcon", MODEL_ARCH.BAICHUAN: "baichuan", MODEL_ARCH.GROK: "grok", @@ -602,6 +604,26 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN_EXP, MODEL_TENSOR.FFN_UP_EXP, ], + MODEL_ARCH.DECI: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.ATTN_ROT_EMBD, + MODEL_TENSOR.FFN_GATE_INP, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.FFN_GATE_EXP, + MODEL_TENSOR.FFN_DOWN_EXP, + MODEL_TENSOR.FFN_UP_EXP, + ], MODEL_ARCH.GROK: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, @@ -1448,6 +1470,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, ], + MODEL_ARCH.DECI: [ + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_ROT_EMBD, + ], MODEL_ARCH.BAICHUAN: [ MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 82cdb121a..7009a11d4 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -198,6 +198,7 @@ class TensorNameMap: "transformer.h.{bid}.self_attention.dense", # falcon "h.{bid}.self_attention.dense", # bloom "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 + "model.layers.{bid}.self_attn.linear_attn", # deci "layers.{bid}.attention.wo", # llama-pth "encoder.layer.{bid}.attention.output.dense", # bert "transformer.h.{bid}.attn.out_proj", # gpt-j diff --git a/scripts/compare-llama-bench.py b/scripts/compare-llama-bench.py index 5069ae638..239c458d8 100755 --- a/scripts/compare-llama-bench.py +++ b/scripts/compare-llama-bench.py @@ -126,6 +126,8 @@ connection = sqlite3.connect(input_file) cursor = connection.cursor() builds = cursor.execute("SELECT DISTINCT build_commit FROM test;").fetchall() +commit_short_len = len(builds[0][0]) + try: repo = git.Repo(".", search_parent_directories=True) except git.InvalidGitRepositoryError: @@ -138,11 +140,11 @@ def find_parent_in_data(commit: git.Commit): seen_hexsha8 = set() while heap: depth, current_commit = heapq.heappop(heap) - current_hexsha8 = commit.hexsha[:8] + current_hexsha8 = commit.hexsha[:commit_short_len] if (current_hexsha8,) in builds: return current_hexsha8 for parent in commit.parents: - parent_hexsha8 = parent.hexsha[:8] + parent_hexsha8 = parent.hexsha[:commit_short_len] if parent_hexsha8 not in seen_hexsha8: seen_hexsha8.add(parent_hexsha8) heapq.heappush(heap, (depth + 1, parent)) @@ -156,9 +158,9 @@ def get_all_parent_hexsha8s(commit: git.Commit): while unvisited: current_commit = unvisited.pop(0) - visited.append(current_commit.hexsha[:8]) + visited.append(current_commit.hexsha[:commit_short_len]) for parent in current_commit.parents: - if parent.hexsha[:8] not in visited: + if parent.hexsha[:commit_short_len] not in visited: unvisited.append(parent) return visited @@ -169,10 +171,10 @@ def get_commit_name(hexsha8): if repo is None: return hexsha8 for h in repo.heads: - if h.commit.hexsha[:8] == hexsha8: + if h.commit.hexsha[:commit_short_len] == hexsha8: return h.name for t in repo.tags: - if t.commit.hexsha[:8] == hexsha8: + if t.commit.hexsha[:commit_short_len] == hexsha8: return t.name return hexsha8 @@ -183,13 +185,13 @@ def get_commit_hexsha8(name): return None for h in repo.heads: if h.name == name: - return h.commit.hexsha[:8] + return h.commit.hexsha[:commit_short_len] for t in repo.tags: if t.name == name: - return t.commit.hexsha[:8] + return t.commit.hexsha[:commit_short_len] for c in repo.iter_commits("--all"): - if c.hexsha[:8] == name[:8]: - return c.hexsha[:8] + if c.hexsha[:commit_short_len] == name[:commit_short_len]: + return c.hexsha[:commit_short_len] return None diff --git a/scripts/hf.sh b/scripts/hf.sh index 85c2c4d9a..b251925fa 100755 --- a/scripts/hf.sh +++ b/scripts/hf.sh @@ -26,7 +26,7 @@ function has_cmd { } if has_cmd wget; then - cmd="wget -q --show-progress -c -O %s/%s %s" + cmd="wget -q -c -O %s/%s %s" elif has_cmd curl; then cmd="curl -C - -f --output-dir %s -o %s -L %s" else diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index 7f2725f94..0a477d6dd 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -1657,7 +1657,7 @@ bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token t } llama_token llama_token_bos_impl(const struct llama_vocab & vocab) { - return vocab.special_bos_id; + return vocab.type != LLAMA_VOCAB_TYPE_WPM ? vocab.special_bos_id : vocab.special_cls_id; } llama_token llama_token_eos_impl(const struct llama_vocab & vocab) { diff --git a/src/llama-vocab.h b/src/llama-vocab.h index 4bb16d2e4..a9b0da5ef 100644 --- a/src/llama-vocab.h +++ b/src/llama-vocab.h @@ -45,7 +45,7 @@ struct llama_vocab { id special_unk_id = 0; id special_sep_id = LLAMA_TOKEN_NULL; id special_pad_id = LLAMA_TOKEN_NULL; - id special_cls_id = LLAMA_TOKEN_NULL; + id special_cls_id = LLAMA_TOKEN_NULL; // TODO: revisit if this is really needed https://github.com/ggerganov/llama.cpp/pull/10930 id special_mask_id = LLAMA_TOKEN_NULL; id linefeed_id = 13; diff --git a/src/llama.cpp b/src/llama.cpp index b442781a0..4d41602fe 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -146,6 +146,7 @@ static std::string format(const char * fmt, ...) { enum llm_arch { LLM_ARCH_LLAMA, + LLM_ARCH_DECI, LLM_ARCH_FALCON, LLM_ARCH_BAICHUAN, LLM_ARCH_GROK, @@ -203,6 +204,7 @@ enum llm_arch { static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_LLAMA, "llama" }, + { LLM_ARCH_DECI, "deci" }, { LLM_ARCH_FALCON, "falcon" }, { LLM_ARCH_GROK, "grok" }, { LLM_ARCH_GPT2, "gpt2" }, @@ -674,6 +676,32 @@ static const std::map> LLM_TENSOR_N { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, }, }, + { + LLM_ARCH_DECI, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, + { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, + { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + }, + }, { LLM_ARCH_BAICHUAN, { @@ -1673,6 +1701,7 @@ enum llm_chat_template { LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN, LLM_CHAT_TEMPLATE_MISTRAL_V7, LLM_CHAT_TEMPLATE_PHI_3, + LLM_CHAT_TEMPLATE_FALCON_3, LLM_CHAT_TEMPLATE_ZEPHYR, LLM_CHAT_TEMPLATE_MONARCH, LLM_CHAT_TEMPLATE_GEMMA, @@ -1691,6 +1720,7 @@ enum llm_chat_template { LLM_CHAT_TEMPLATE_RWKV_WORLD, LLM_CHAT_TEMPLATE_GRANITE, LLM_CHAT_TEMPLATE_GIGACHAT, + LLM_CHAT_TEMPLATE_MEGREZ, LLM_CHAT_TEMPLATE_UNKNOWN, }; @@ -1705,6 +1735,7 @@ static const std::map LLM_CHAT_TEMPLATES = { { "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN }, { "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 }, { "phi3", LLM_CHAT_TEMPLATE_PHI_3 }, + { "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 }, { "zephyr", LLM_CHAT_TEMPLATE_ZEPHYR }, { "monarch", LLM_CHAT_TEMPLATE_MONARCH }, { "gemma", LLM_CHAT_TEMPLATE_GEMMA }, @@ -1723,6 +1754,7 @@ static const std::map LLM_CHAT_TEMPLATES = { { "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD }, { "granite", LLM_CHAT_TEMPLATE_GRANITE }, { "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT }, + { "megrez", LLM_CHAT_TEMPLATE_MEGREZ }, }; static llm_arch llm_arch_from_string(const std::string & name) { @@ -5692,7 +5724,7 @@ static void llm_load_hparams( ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false); - if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) { + if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_DECI || model.arch == LLM_ARCH_FALCON) { if (hparams.n_rot != hparams.n_embd_head_k) { throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k)); } @@ -5732,6 +5764,15 @@ static void llm_load_hparams( } } } break; + case LLM_ARCH_DECI: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 80: model.type = e_model::MODEL_70B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; case LLM_ARCH_MINICPM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); @@ -6562,7 +6603,8 @@ static void llm_load_vocab( } else if ( tokenizer_pre == "llama3" || tokenizer_pre == "llama-v3" || - tokenizer_pre == "llama-bpe") { + tokenizer_pre == "llama-bpe"|| + tokenizer_pre == "falcon3") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3; vocab.tokenizer_ignore_merges = true; vocab.tokenizer_add_bos = true; @@ -6663,6 +6705,9 @@ static void llm_load_vocab( } else if ( tokenizer_pre == "minerva-7b") { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MINERVA; + } else if ( + tokenizer_pre == "megrez") { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2; } else { throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str())); } @@ -7936,6 +7981,68 @@ static bool llm_load_tensors( } } } break; + case LLM_ARCH_DECI: + { + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + + // output + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); + } + + for (int i = 0; i < n_layer; ++i) { + auto & layer = model.layers[i]; + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i); + const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i); + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i); + const int64_t n_ff = hparams.n_ff(i); + const int64_t n_head = hparams.n_head(i); + const int64_t n_head_kv = hparams.n_head_kv(i); + + if (n_head_kv == 0 && n_head > 0) { + // linear attention for DeciLMCausalModel + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); + } + else if (n_head_kv > 0) { + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); + } + + // optional bias tensors + layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + + if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) { + layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); + layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); + } + else { + layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); + } + + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + + // optional MLP bias + layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + } + } break; case LLM_ARCH_MINICPM3: { const int64_t n_embd_head_qk_rope = hparams.n_rot; @@ -11305,6 +11412,167 @@ struct llm_build_context { return gf; } + struct ggml_cgraph * build_deci() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); + + // mutable variable, needed during the last layer of the computation to skip unused tokens + int32_t n_tokens = this->n_tokens; + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale; + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + const int64_t n_head_kv = hparams.n_head_kv(il); + const int64_t n_head = hparams.n_head(il); + + if (n_head == 0) { + // attention-free layer of Llama-3_1-Nemotron-51B + cur = inpL; + } else { + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + } + + if (n_head > 0 && n_head_kv == 0) { + // "linear attention" of Llama-3_1-Nemotron-51B + cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur); + cb(cur, "wo", il); + } else if (n_head > 0) { + // self-attention + // rope freq factors for llama3; may return nullptr for llama2 and other models + struct ggml_tensor * rope_factors = build_rope_factors(il); + + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_ext( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors, + n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, lctx, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + n_tokens = n_outputs; + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + // For Granite architecture + if (hparams.f_residual_scale) { + cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); + } + + // modified to support attention-free layer of Llama-3_1-Nemotron-51B + struct ggml_tensor * ffn_inp = cur; + if (n_head > 0) { + ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + } + + // feed-forward network + if (model.layers[il].ffn_gate_inp == nullptr) { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, lctx, cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, + model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } + + // For Granite architecture + if (hparams.f_residual_scale) { + cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "ffn_out", il); + + cur = lctx.cvec.apply_to(ctx0, cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = llm_build_lora_mm(lctx, ctx0, model.output, cur); + + // For Granite architecture + if (hparams.f_logit_scale) { + cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale); + } + + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + struct ggml_cgraph * build_baichuan() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); @@ -17419,6 +17687,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_llama(); } break; + case LLM_ARCH_DECI: + { + result = llm.build_deci(); + } break; case LLM_ARCH_BAICHUAN: { result = llm.build_baichuan(); @@ -20794,6 +21066,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { // use what we call a normal RoPE, operating on pairs of consecutive head values case LLM_ARCH_LLAMA: + case LLM_ARCH_DECI: case LLM_ARCH_BAICHUAN: case LLM_ARCH_STARCODER: case LLM_ARCH_PLAMO: @@ -22615,6 +22888,8 @@ static llm_chat_template llama_chat_detect_template(const std::string & tmpl) { } } else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) { return LLM_CHAT_TEMPLATE_PHI_3; + } else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) { + return LLM_CHAT_TEMPLATE_FALCON_3; } else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) { return LLM_CHAT_TEMPLATE_ZEPHYR; } else if (tmpl_contains("bos_token + message['role']")) { @@ -22661,6 +22936,8 @@ static llm_chat_template llama_chat_detect_template(const std::string & tmpl) { return LLM_CHAT_TEMPLATE_GRANITE; } else if (tmpl_contains("message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1]")) { return LLM_CHAT_TEMPLATE_GIGACHAT; + } else if (tmpl_contains("<|role_start|>")) { + return LLM_CHAT_TEMPLATE_MEGREZ; } return LLM_CHAT_TEMPLATE_UNKNOWN; } @@ -22767,6 +23044,15 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "<|assistant|>\n"; } + } else if (tmpl == LLM_CHAT_TEMPLATE_FALCON_3) { + // Falcon 3 + for (auto message : chat) { + std::string role(message->role); + ss << "<|" << role << "|>\n" << message->content << "\n"; + } + if (add_ass) { + ss << "<|assistant|>\n"; + } } else if (tmpl == LLM_CHAT_TEMPLATE_ZEPHYR) { // zephyr template for (auto message : chat) { @@ -23010,6 +23296,16 @@ static int32_t llama_chat_apply_template_internal( if (add_ass) { ss << "assistant<|role_sep|>"; } + } else if (tmpl == LLM_CHAT_TEMPLATE_MEGREZ) { + // Megrez template + for (auto message : chat) { + std::string role(message->role); + ss << "<|role_start|>" << role << "<|role_end|>" << message->content << "<|turn_end|>"; + } + + if (add_ass) { + ss << "<|role_start|>assistant<|role_end|>"; + } } else { // template not supported return -1; diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index ccdd3fb57..c79acffd2 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -3945,6 +3945,18 @@ static std::vector> make_test_cases_perf() { } } + for (int K : {3, 5}) { + for (int IC : {256, 2560}) { + for (int IW_IH : {32, 64, 256}) { + if (IC == 2560 && IW_IH == 256) { + // too big + continue; + } + test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true)); + } + } + } + return test_cases; } diff --git a/tests/test-chat-template.cpp b/tests/test-chat-template.cpp index 30a910ad5..51bfb155b 100644 --- a/tests/test-chat-template.cpp +++ b/tests/test-chat-template.cpp @@ -77,6 +77,8 @@ int main(void) { "{{ bos_token }}{% for message in messages %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + '[/INST]' }}{% elif message['role'] == 'system' %}{{ '[SYSTEM_PROMPT] ' + message['content'] + '[/SYSTEM_PROMPT]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + message['content'] + eos_token }}{% else %}{{ raise_exception('Only user, system and assistant roles are supported!') }}{% endif %}{% endfor %}", // ai-sage/GigaChat-20B-A3B-instruct "{% if messages[0]['role'] == 'system' -%}\n {%- set loop_messages = messages[1:] -%}\n {%- set system_message = bos_token + messages[0]['content'] + additional_special_tokens[1] -%}\n{%- else -%}\n {%- set loop_messages = messages -%}\n {%- set system_message = bos_token + '' -%}\n{%- endif -%}\n{%- for message in loop_messages %}\n {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}\n {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}\n {% endif %}\n \n {%- if loop.index0 == 0 -%}\n {{ system_message -}}\n {%- endif -%}\n {%- if message['role'] == 'user' -%}\n {{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}\n {{ 'available functions' + additional_special_tokens[0] + additional_special_tokens[2] + additional_special_tokens[3] + additional_special_tokens[1] -}}\n {%- endif -%}\n {%- if message['role'] == 'assistant' -%}\n {{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}\n {%- endif -%}\n {%- if loop.last and add_generation_prompt -%}\n {{ 'assistant' + additional_special_tokens[0] -}}\n {%- endif -%}\n{%- endfor %}", + // Infinigence/Megrez-3B-Instruct + u8"{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|role_start|>system<|role_end|>你是Megrez-3B-Instruct,将针对用户的问题给出详细的、积极的回答。<|turn_end|>' }}{% endif %}{{ '<|role_start|>' + message['role'] + '<|role_end|>' + message['content'] + '<|turn_end|>' }}{% endfor %}{% if add_generation_prompt %}{{ '<|role_start|>assistant<|role_end|>' }}{% endif %}" }; std::vector expected_output = { // teknium/OpenHermes-2.5-Mistral-7B @@ -133,6 +135,8 @@ int main(void) { "[SYSTEM_PROMPT] You are a helpful assistant[/SYSTEM_PROMPT][INST] Hello[/INST] Hi there[INST] Who are you[/INST] I am an assistant [INST] Another question[/INST]", // ai-sage/GigaChat-20B-A3B-instruct "You are a helpful assistant<|message_sep|>user<|role_sep|>Hello<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|>Hi there<|message_sep|>user<|role_sep|>Who are you<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|> I am an assistant <|message_sep|>user<|role_sep|>Another question<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|>", + // Infinigence/Megrez-3B-Instruct + "<|role_start|>system<|role_end|>You are a helpful assistant<|turn_end|><|role_start|>user<|role_end|>Hello<|turn_end|><|role_start|>assistant<|role_end|>Hi there<|turn_end|><|role_start|>user<|role_end|>Who are you<|turn_end|><|role_start|>assistant<|role_end|> I am an assistant <|turn_end|><|role_start|>user<|role_end|>Another question<|turn_end|><|role_start|>assistant<|role_end|>", }; std::vector formatted_chat(1024); int32_t res;