mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-27 04:23:06 +01:00
llama : rename llama_reorder_outputs to llama_output_reorder
Also move it closer to llama_output_reserve. * llama : fix pooled embeddings when using batches with equal_seqs
This commit is contained in:
parent
5679a3bdbb
commit
cfd5a113e1
@ -14756,7 +14756,7 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_seqs; ++i) {
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
if (last_row[i] >= 0) {
|
||||
data[i] = last_row[i];
|
||||
}
|
||||
@ -14942,6 +14942,43 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
|
||||
return n_outputs_max;
|
||||
}
|
||||
|
||||
// make the outputs have the same order they had in the user-provided batch
|
||||
static void llama_output_reorder(struct llama_context * ctx) {
|
||||
std::vector<size_t> & out_ids = ctx->sbatch.out_ids;
|
||||
if (!out_ids.empty()) {
|
||||
uint32_t n_vocab = ctx->model.hparams.n_vocab;
|
||||
uint32_t n_embd = ctx->model.hparams.n_embd;
|
||||
int32_t n_outputs = ctx->n_outputs;
|
||||
GGML_ASSERT((size_t) n_outputs == out_ids.size());
|
||||
// TODO: is there something more efficient which also minimizes swaps?
|
||||
// selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
|
||||
for (int32_t i = 0; i < n_outputs - 1; ++i) {
|
||||
int32_t j_min = i;
|
||||
for (int32_t j = i + 1; j < n_outputs; ++j) {
|
||||
if (out_ids[j] < out_ids[j_min]) {
|
||||
j_min = j;
|
||||
}
|
||||
}
|
||||
if (j_min == i) { continue; }
|
||||
std::swap(out_ids[i], out_ids[j_min]);
|
||||
if (ctx->logits_size > 0) {
|
||||
for (uint32_t k = 0; k < n_vocab; k++) {
|
||||
std::swap(ctx->logits[i*n_vocab + k], ctx->logits[j_min*n_vocab + k]);
|
||||
}
|
||||
}
|
||||
if (ctx->embd_size > 0) {
|
||||
for (uint32_t k = 0; k < n_embd; k++) {
|
||||
std::swap(ctx->embd[i*n_embd + k], ctx->embd[j_min*n_embd + k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
std::fill(ctx->output_ids.begin(), ctx->output_ids.end(), -1);
|
||||
for (int32_t i = 0; i < n_outputs; ++i) {
|
||||
ctx->output_ids[out_ids[i]] = i;
|
||||
}
|
||||
out_ids.clear();
|
||||
}
|
||||
}
|
||||
|
||||
static void llama_graph_compute(
|
||||
llama_context & lctx,
|
||||
@ -15180,8 +15217,8 @@ static int llama_decode_internal(
|
||||
auto & embd_seq_out = lctx.embd_seq;
|
||||
embd_seq_out.clear();
|
||||
|
||||
for (uint32_t i = 0; i < n_tokens; i++) {
|
||||
const llama_seq_id seq_id = ubatch.seq_id[i][0];
|
||||
for (uint32_t s = 0; s < ubatch.n_seqs; ++s) {
|
||||
const llama_seq_id seq_id = ubatch.seq_id[s][0];
|
||||
if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
|
||||
continue;
|
||||
}
|
||||
@ -15631,44 +15668,6 @@ static void llama_kv_cache_update_internal(struct llama_context & lctx) {
|
||||
}
|
||||
}
|
||||
|
||||
// make the outputs have the same order they had in the user-provided batch
|
||||
static void llama_reorder_outputs(struct llama_context * ctx) {
|
||||
std::vector<size_t> & out_ids = ctx->sbatch.out_ids;
|
||||
if (!out_ids.empty()) {
|
||||
uint32_t n_vocab = ctx->model.hparams.n_vocab;
|
||||
uint32_t n_embd = ctx->model.hparams.n_embd;
|
||||
int32_t n_outputs = ctx->n_outputs;
|
||||
GGML_ASSERT((size_t) n_outputs == out_ids.size());
|
||||
// TODO: is there something more efficient which also minimizes swaps?
|
||||
// selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
|
||||
for (int32_t i = 0; i < n_outputs - 1; ++i) {
|
||||
int32_t j_min = i;
|
||||
for (int32_t j = i + 1; j < n_outputs; ++j) {
|
||||
if (out_ids[j] < out_ids[j_min]) {
|
||||
j_min = j;
|
||||
}
|
||||
}
|
||||
if (j_min == i) { continue; }
|
||||
std::swap(out_ids[i], out_ids[j_min]);
|
||||
if (ctx->logits_size > 0) {
|
||||
for (uint32_t k = 0; k < n_vocab; k++) {
|
||||
std::swap(ctx->logits[i*n_vocab + k], ctx->logits[j_min*n_vocab + k]);
|
||||
}
|
||||
}
|
||||
if (ctx->embd_size > 0) {
|
||||
for (uint32_t k = 0; k < n_embd; k++) {
|
||||
std::swap(ctx->embd[i*n_embd + k], ctx->embd[j_min*n_embd + k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
std::fill(ctx->output_ids.begin(), ctx->output_ids.end(), -1);
|
||||
for (int32_t i = 0; i < n_outputs; ++i) {
|
||||
ctx->output_ids[out_ids[i]] = i;
|
||||
}
|
||||
out_ids.clear();
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// quantization
|
||||
//
|
||||
@ -17855,7 +17854,7 @@ struct llama_data_write {
|
||||
}
|
||||
|
||||
void write_output_ids(struct llama_context * ctx) {
|
||||
llama_reorder_outputs(ctx);
|
||||
llama_output_reorder(ctx);
|
||||
|
||||
const uint32_t n_outputs = ctx->n_outputs;
|
||||
|
||||
@ -18891,7 +18890,7 @@ float * llama_get_logits(struct llama_context * ctx) {
|
||||
|
||||
// reorder logits for backward compatibility
|
||||
// TODO: maybe deprecate this
|
||||
llama_reorder_outputs(ctx);
|
||||
llama_output_reorder(ctx);
|
||||
|
||||
return ctx->logits;
|
||||
}
|
||||
@ -18939,7 +18938,7 @@ float * llama_get_embeddings(struct llama_context * ctx) {
|
||||
|
||||
// reorder embeddings for backward compatibility
|
||||
// TODO: maybe deprecate this
|
||||
llama_reorder_outputs(ctx);
|
||||
llama_output_reorder(ctx);
|
||||
|
||||
return ctx->embd;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user