ggml-cuda : compute ptrs for cublasGemmBatchedEx in a kernel (#3891)

* ggml-cuda : compute ptrs for cublasGemmBatchedEx in a kernel

* fix warnings
This commit is contained in:
slaren 2023-11-01 23:10:09 +01:00 committed by GitHub
parent 898aeca90a
commit d02e98cde0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -6696,8 +6696,10 @@ inline void ggml_cuda_op_clamp(
GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32);
const float min = ((float *) dst->op_params)[0]; float min;
const float max = ((float *) dst->op_params)[1]; float max;
memcpy(&min, dst->op_params, sizeof(float));
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
clamp_f32_cuda(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream); clamp_f32_cuda(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
@ -7221,6 +7223,30 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream); ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
} }
__global__ void k_compute_batched_ptrs(
const half * src0_as_f16, const half * src1_as_f16, half * dst_f16,
void ** ptrs,
int ne12, int ne13,
int ne23,
int nb02, int nb03,
int nb12, int nb13,
int nb2, int nb3,
int r2, int r3) {
int i13 = blockIdx.x * blockDim.x + threadIdx.x;
int i12 = blockIdx.y * blockDim.y + threadIdx.y;
if (i13 >= ne13 || i12 >= ne12) {
return;
}
int i03 = i13 / r3;
int i02 = i12 / r2;
ptrs[0*ne23 + i12 + i13*ne12] = (char *) src0_as_f16 + i02*nb02 + i03*nb03;
ptrs[1*ne23 + i12 + i13*ne12] = (char *) src1_as_f16 + i12*nb12/2 + i13*nb13/2;
ptrs[2*ne23 + i12 + i13*ne12] = (char *) dst_f16 + i12* nb2/2 + i13* nb3/2;
}
static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(!ggml_is_transposed(src0)); GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1)); GGML_ASSERT(!ggml_is_transposed(src1));
@ -7322,49 +7348,35 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
CUBLAS_GEMM_DEFAULT_TENSOR_OP)); CUBLAS_GEMM_DEFAULT_TENSOR_OP));
} else { } else {
// use cublasGemmBatchedEx // use cublasGemmBatchedEx
// TODO: https://github.com/ggerganov/llama.cpp/pull/3749#discussion_r1369997000
const int ne23 = ne12*ne13; const int ne23 = ne12*ne13;
// TODO: avoid this alloc
void ** ptrs = (void **) malloc(3*ne23*sizeof(void *));
for (int i13 = 0; i13 < ne13; ++i13) {
for (int i12 = 0; i12 < ne12; ++i12) {
int i03 = i13 / r3;
int i02 = i12 / r2;
ptrs[0*ne23 + i12 + i13*ne12] = (char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3];
ptrs[1*ne23 + i12 + i13*ne12] = (char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2;
ptrs[2*ne23 + i12 + i13*ne12] = (char *) dst_f16 + i12* dst->nb[2]/2 + i13* dst->nb[3]/2;
}
}
// allocate device memory for pointers
void ** ptrs_as = nullptr; void ** ptrs_as = nullptr;
CUDA_CHECK(cudaMalloc(&ptrs_as, 3*ne23*sizeof(void *))); size_t ptrs_s = 0;
ptrs_as = (void **) ggml_cuda_pool_malloc(3*ne23*sizeof(void *), &ptrs_s);
// TODO: this does not work for some reason -- not sure why? dim3 block_dims(ne13, ne12);
//size_t ptrs_s = 0; k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
//ptrs_as = (void **) ggml_cuda_pool_malloc(3*ne23*sizeof(void *), &ptrs_s); src0_as_f16, src1_as_f16, dst_f16,
ptrs_as,
// copy pointers to device ne12, ne13,
CUDA_CHECK(cudaMemcpy(ptrs_as, ptrs, 3*ne23*sizeof(void *), cudaMemcpyHostToDevice)); ne23,
nb02, nb03,
free(ptrs); nb12, nb13,
dst->nb[2], dst->nb[3],
r2, r3);
CUDA_CHECK(cudaGetLastError());
CUBLAS_CHECK( CUBLAS_CHECK(
cublasGemmBatchedEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N, cublasGemmBatchedEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10, ne01, ne11, ne10,
&alpha_f16, (const void **) (ptrs_as + 0*ne23), CUDA_R_16F, nb01/sizeof(half), &alpha_f16, (const void * const *) (ptrs_as + 0*ne23), CUDA_R_16F, nb01/sizeof(half),
(const void **) (ptrs_as + 1*ne23), CUDA_R_16F, nb11/sizeof(float), (const void * const *) (ptrs_as + 1*ne23), CUDA_R_16F, nb11/sizeof(float),
&beta_f16, ( void ** ) (ptrs_as + 2*ne23), CUDA_R_16F, ne01, &beta_f16, ( void ** ) (ptrs_as + 2*ne23), CUDA_R_16F, ne01,
ne23, ne23,
CUBLAS_COMPUTE_16F, CUBLAS_COMPUTE_16F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP)); CUBLAS_GEMM_DEFAULT_TENSOR_OP));
// free device memory for pointers ggml_cuda_pool_free(ptrs_as, ptrs_s);
CUDA_CHECK(cudaFree(ptrs_as));
//ggml_cuda_pool_free(ptrs_as, ptrs_s);
} }
#endif #endif