llama : fix embeddings

ggml-ci
This commit is contained in:
Georgi Gerganov 2024-02-29 15:39:10 +02:00
parent a0fc62661f
commit d0347840c1
No known key found for this signature in database
GPG Key ID: BF970631944C16B7
6 changed files with 127 additions and 62 deletions

View File

@ -1299,7 +1299,7 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch; cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
cparams.seed = params.seed; cparams.seed = params.seed;
cparams.logits_all = params.logits_all; cparams.logits_all = params.logits_all;
cparams.embedding = params.embedding; cparams.embeddings = params.embedding;
cparams.rope_scaling_type = params.rope_scaling_type; cparams.rope_scaling_type = params.rope_scaling_type;
cparams.rope_freq_base = params.rope_freq_base; cparams.rope_freq_base = params.rope_freq_base;
cparams.rope_freq_scale = params.rope_freq_scale; cparams.rope_freq_scale = params.rope_freq_scale;

View File

@ -19,7 +19,7 @@ static std::vector<std::string> split_lines(const std::string & s) {
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) { static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
for (size_t i = 0; i < tokens.size(); i++) { for (size_t i = 0; i < tokens.size(); i++) {
llama_batch_add(batch, tokens[i], i, { seq_id }, false); llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
} }
} }
@ -45,9 +45,13 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
} }
// normalize on copy // normalize on copy
for (int k = 0; k < n_seq; k++) { for (int i = 0; i < batch.n_tokens; i++) {
float * emb = llama_get_embeddings_ith(ctx, k); if (!batch.logits[i]) {
float * out = output + k * n_embd; continue;
}
float * emb = llama_get_embeddings_ith(ctx, i);
float * out = output + batch.seq_id[i][0] * n_embd;
normalize(emb, out, n_embd); normalize(emb, out, n_embd);
} }
} }
@ -145,6 +149,7 @@ int main(int argc, char ** argv) {
for (int k = 0; k < n_prompts; k++) { for (int k = 0; k < n_prompts; k++) {
// clamp to n_batch tokens // clamp to n_batch tokens
auto & inp = inputs[k]; auto & inp = inputs[k];
const uint64_t n_toks = inp.size(); const uint64_t n_toks = inp.size();
// encode if at capacity // encode if at capacity

34
examples/server-embd.py Normal file
View File

@ -0,0 +1,34 @@
import asyncio
import requests
import numpy as np
n = 8
result = []
async def requests_post_async(*args, **kwargs):
return await asyncio.to_thread(requests.post, *args, **kwargs)
async def main():
model_url = "http://127.0.0.1:6900"
responses: list[requests.Response] = await asyncio.gather(*[requests_post_async(
url= f"{model_url}/embedding",
json= {"content": str(i)*32}
) for i in range(n)])
for response in responses:
embedding = response.json()["embedding"]
print(embedding[-8:])
result.append(embedding)
asyncio.run(main())
# compute cosine similarity
for i in range(n-1):
for j in range(i+1, n):
embedding1 = np.array(result[i])
embedding2 = np.array(result[j])
similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
print(f"Similarity between {i} and {j}: {similarity:.2f}")

View File

@ -1210,7 +1210,7 @@ struct llama_server_context
queue_results.send(res); queue_results.send(res);
} }
void send_embedding(server_slot &slot) void send_embedding(server_slot & slot, const llama_batch & batch)
{ {
task_result res; task_result res;
res.id = slot.task_id; res.id = slot.task_id;
@ -1219,6 +1219,7 @@ struct llama_server_context
res.stop = true; res.stop = true;
const int n_embd = llama_n_embd(model); const int n_embd = llama_n_embd(model);
if (!params.embedding) if (!params.embedding)
{ {
LOG_WARNING("embedding disabled", {{"params.embedding", params.embedding}}); LOG_WARNING("embedding disabled", {{"params.embedding", params.embedding}});
@ -1229,13 +1230,20 @@ struct llama_server_context
} }
else else
{ {
const float *data = llama_get_embeddings(ctx); for (int i = 0; i < batch.n_tokens; ++i) {
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
continue;
}
const float * data = llama_get_embeddings_ith(ctx, i);
std::vector<float> embedding(data, data + n_embd); std::vector<float> embedding(data, data + n_embd);
res.result_json = json res.result_json = json
{ {
{"embedding", embedding}, {"embedding", embedding },
}; };
} }
}
queue_results.send(res); queue_results.send(res);
} }
@ -1845,7 +1853,7 @@ struct llama_server_context
ga_i += ga_w/ga_n; ga_i += ga_w/ga_n;
} }
} }
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false); llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id }, false);
slot_npast++; slot_npast++;
} }
@ -1881,7 +1889,7 @@ struct llama_server_context
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
{ {
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
for (auto & slot : slots) for (auto & slot : slots)
{ {
@ -1954,7 +1962,7 @@ struct llama_server_context
// prompt evaluated for embedding // prompt evaluated for embedding
if (slot.embedding) if (slot.embedding)
{ {
send_embedding(slot); send_embedding(slot, batch_view);
slot.release(); slot.release();
slot.i_batch = -1; slot.i_batch = -1;
continue; continue;
@ -2330,7 +2338,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
break; break;
} }
params.n_batch = std::stoi(argv[i]); params.n_batch = std::stoi(argv[i]);
params.n_batch = std::min(512, params.n_batch);
} }
else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
{ {

View File

@ -1682,7 +1682,9 @@ struct llama_cparams {
float yarn_beta_slow; float yarn_beta_slow;
float defrag_thold; float defrag_thold;
bool embeddings;
bool offload_kqv; bool offload_kqv;
enum llama_pooling_type pooling_type; enum llama_pooling_type pooling_type;
ggml_backend_sched_eval_callback cb_eval; ggml_backend_sched_eval_callback cb_eval;
@ -1972,7 +1974,7 @@ struct llama_context {
int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
int32_t n_eval = 0; // number of eval calls int32_t n_eval = 0; // number of eval calls
// decode output (2-dimensional array: [n_tokens][n_vocab]) // logits output (2-dimensional array: [n_tokens][n_vocab])
std::vector<float> logits; std::vector<float> logits;
#ifndef NDEBUG #ifndef NDEBUG
// guard against access to unset logits // guard against access to unset logits
@ -1980,8 +1982,8 @@ struct llama_context {
#endif #endif
bool logits_all = false; bool logits_all = false;
// input embedding (1-dimensional array: [n_embd]) // embeddings output (2-dimensional array: [n_tokens][n_embd])
std::vector<float> embedding; std::vector<float> embeddings;
// memory buffers used to evaluate the model // memory buffers used to evaluate the model
std::vector<uint8_t> buf_compute_meta; std::vector<uint8_t> buf_compute_meta;
@ -5092,6 +5094,7 @@ static struct ggml_tensor * llm_build_kv(
llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il); llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il);
struct ggml_tensor * cur; struct ggml_tensor * cur;
cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b, cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b,
q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il); q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
@ -6085,6 +6088,7 @@ struct llm_build_context {
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
struct ggml_tensor * cur; struct ggml_tensor * cur;
@ -6092,6 +6096,7 @@ struct llm_build_context {
// get input vectors with right size // get input vectors with right size
const size_t stride1 = n_tokens * ggml_type_size(lctx.inp_tokens->type); const size_t stride1 = n_tokens * ggml_type_size(lctx.inp_tokens->type);
struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
struct ggml_tensor * inp_mean = ggml_view_2d(ctx0, lctx.inp_mean, n_tokens, n_tokens, stride1, 0); struct ggml_tensor * inp_mean = ggml_view_2d(ctx0, lctx.inp_mean, n_tokens, n_tokens, stride1, 0);
struct ggml_tensor * inp_cls = ggml_view_1d(ctx0, lctx.inp_cls, n_tokens, 0); struct ggml_tensor * inp_cls = ggml_view_1d(ctx0, lctx.inp_cls, n_tokens, 0);
@ -8196,16 +8201,16 @@ static int llama_decode_internal(
// the output is always the last tensor in the graph // the output is always the last tensor in the graph
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2]; struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
if (strcmp(res->name, "result_output") == 0) { if (strcmp(res->name, "result_output") == 0) {
// the embeddings could be the second to last tensor, or the third to last tensor // the embeddings could be the second to last tensor, or the third to last tensor
if (strcmp(embeddings->name, "result_norm") != 0) { if (strcmp(embd->name, "result_norm") != 0) {
embeddings = gf->nodes[gf->n_nodes - 3]; embd = gf->nodes[gf->n_nodes - 3];
GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0); GGML_ASSERT(strcmp(embd->name, "result_norm") == 0);
} }
} else if (strcmp(res->name, "result_embd") == 0) { } else if (strcmp(res->name, "result_embd") == 0) {
embeddings = res; embd = res;
res = nullptr; res = nullptr;
} else { } else {
GGML_ASSERT(false); GGML_ASSERT(false);
@ -8275,46 +8280,57 @@ static int llama_decode_internal(
logits_out.clear(); logits_out.clear();
#endif #endif
ggml_backend_t res_backend = ggml_backend_sched_get_node_backend(lctx.sched, res); ggml_backend_t backend_res = ggml_backend_sched_get_node_backend(lctx.sched, res);
GGML_ASSERT(res_backend != nullptr); GGML_ASSERT(backend_res != nullptr);
if (batch.logits) { if (batch.logits) {
logits_out.resize(n_vocab * n_tokens); logits_out.resize(n_vocab * n_tokens);
for (uint32_t i = 0; i < n_tokens; i++) { for (uint32_t i = 0; i < n_tokens; i++) {
if (batch.logits[i] == 0) { if (batch.logits[i] == 0) {
continue; continue;
} }
ggml_backend_tensor_get_async(res_backend, res, logits_out.data() + (n_vocab*i), (n_vocab*i)*sizeof(float), n_vocab*sizeof(float)); ggml_backend_tensor_get_async(backend_res, res, logits_out.data() + (n_vocab*i), (n_vocab*i)*sizeof(float), n_vocab*sizeof(float));
#ifndef NDEBUG #ifndef NDEBUG
logits_valid[i] = true; logits_valid[i] = true;
#endif #endif
} }
} else if (lctx.logits_all) { } else if (lctx.logits_all) {
logits_out.resize(n_vocab * n_tokens); logits_out.resize(n_vocab * n_tokens);
ggml_backend_tensor_get_async(res_backend, res, logits_out.data(), 0, n_vocab*n_tokens*sizeof(float)); ggml_backend_tensor_get_async(backend_res, res, logits_out.data(), 0, n_vocab*n_tokens*sizeof(float));
#ifndef NDEBUG #ifndef NDEBUG
std::fill(logits_valid.begin(), logits_valid.end(), true); std::fill(logits_valid.begin(), logits_valid.end(), true);
#endif #endif
} else { } else {
logits_out.resize(n_vocab); logits_out.resize(n_vocab);
ggml_backend_tensor_get_async(res_backend, res, logits_out.data(), (n_vocab*(n_tokens - 1))*sizeof(float), n_vocab*sizeof(float)); ggml_backend_tensor_get_async(backend_res, res, logits_out.data(), (n_vocab*(n_tokens - 1))*sizeof(float), n_vocab*sizeof(float));
#ifndef NDEBUG #ifndef NDEBUG
logits_valid[0] = true; logits_valid[0] = true;
#endif #endif
} }
ggml_backend_synchronize(res_backend); ggml_backend_synchronize(backend_res);
} }
// extract embeddings // extract embeddings
if (!lctx.embedding.empty()) { if (cparams.embeddings && embd) {
auto & embedding_out = lctx.embedding; auto & embeddings_out = lctx.embeddings;
const int64_t embd_pos = res ? n_embd * (n_tokens-1) : 0; ggml_backend_t backend_embd = ggml_backend_sched_get_node_backend(lctx.sched, embd);
const int64_t embd_size = res ? n_embd : n_embd * n_tokens; GGML_ASSERT(backend_embd != nullptr);
embedding_out.resize(embd_size); if (batch.logits) {
ggml_backend_t embeddings_backend = ggml_backend_sched_get_node_backend(lctx.sched, embeddings); embeddings_out.resize(n_embd * n_tokens);
ggml_backend_tensor_get_async(embeddings_backend, embeddings, embedding_out.data(), embd_pos*sizeof(float), embd_size*sizeof(float)); for (uint32_t i = 0; i < n_tokens; i++) {
ggml_backend_synchronize(embeddings_backend); if (batch.logits[i] == 0) {
continue;
}
if (hparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
ggml_backend_tensor_get_async(backend_embd, embd, embeddings_out.data() + (n_embd*i), (n_embd*batch.seq_id[i][0])*sizeof(float), n_embd*sizeof(float));
} else {
ggml_backend_tensor_get_async(backend_embd, embd, embeddings_out.data() + (n_embd*i), (n_embd*i)*sizeof(float), n_embd*sizeof(float));
}
}
}
ggml_backend_synchronize(backend_embd);
} }
// measure the performance only for the single-token evals // measure the performance only for the single-token evals
@ -11864,7 +11880,7 @@ struct llama_context_params llama_context_default_params() {
/*.type_k =*/ GGML_TYPE_F16, /*.type_k =*/ GGML_TYPE_F16,
/*.type_v =*/ GGML_TYPE_F16, /*.type_v =*/ GGML_TYPE_F16,
/*.logits_all =*/ false, /*.logits_all =*/ false,
/*.embedding =*/ false, /*.embeddings =*/ false,
/*.offload_kqv =*/ true, /*.offload_kqv =*/ true,
/*.abort_callback =*/ nullptr, /*.abort_callback =*/ nullptr,
/*.abort_callback_data =*/ nullptr, /*.abort_callback_data =*/ nullptr,
@ -12015,6 +12031,7 @@ struct llama_context * llama_new_context_with_model(
cparams.yarn_beta_fast = params.yarn_beta_fast; cparams.yarn_beta_fast = params.yarn_beta_fast;
cparams.yarn_beta_slow = params.yarn_beta_slow; cparams.yarn_beta_slow = params.yarn_beta_slow;
cparams.defrag_thold = params.defrag_thold; cparams.defrag_thold = params.defrag_thold;
cparams.embeddings = params.embeddings;
cparams.offload_kqv = params.offload_kqv; cparams.offload_kqv = params.offload_kqv;
cparams.pooling_type = params.pooling_type; cparams.pooling_type = params.pooling_type;
@ -12192,8 +12209,8 @@ struct llama_context * llama_new_context_with_model(
// resized during inference, reserve maximum // resized during inference, reserve maximum
ctx->logits.reserve(hparams.n_vocab*cparams.n_batch); ctx->logits.reserve(hparams.n_vocab*cparams.n_batch);
if (params.embedding) { if (params.embeddings) {
ctx->embedding.resize(hparams.n_embd); ctx->embeddings.reserve(hparams.n_embd*cparams.n_batch);
} }
// graph inputs // graph inputs
@ -12628,7 +12645,7 @@ size_t llama_get_state_size(const struct llama_context * ctx) {
// assume worst case for logits although only currently set ones are serialized // assume worst case for logits although only currently set ones are serialized
const size_t s_logits = ctx->logits.capacity() * sizeof(float); const size_t s_logits = ctx->logits.capacity() * sizeof(float);
const size_t s_embedding_size = sizeof(size_t); const size_t s_embedding_size = sizeof(size_t);
const size_t s_embedding = ctx->embedding.size() * sizeof(float); const size_t s_embedding = ctx->embeddings.capacity() * sizeof(float);
const size_t s_kv_buf_size = sizeof(size_t); const size_t s_kv_buf_size = sizeof(size_t);
const size_t s_kv_head = sizeof(uint32_t); const size_t s_kv_head = sizeof(uint32_t);
const size_t s_kv_size = sizeof(uint32_t); const size_t s_kv_size = sizeof(uint32_t);
@ -12737,12 +12754,12 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
// copy embeddings // copy embeddings
{ {
const size_t embedding_size = ctx->embedding.size(); const size_t embeddings_size = ctx->embeddings.size();
data_ctx->write(&embedding_size, sizeof(embedding_size)); data_ctx->write(&embeddings_size, sizeof(embeddings_size));
if (embedding_size) { if (embeddings_size) {
data_ctx->write(ctx->embedding.data(), embedding_size * sizeof(float)); data_ctx->write(ctx->embeddings.data(), embeddings_size * sizeof(float));
} }
} }
@ -12846,15 +12863,17 @@ size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
// set embeddings // set embeddings
{ {
size_t embedding_size; size_t embeddings_size;
memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size); memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
GGML_ASSERT(ctx->embedding.capacity() == embedding_size); GGML_ASSERT(ctx->embeddings.capacity() == embeddings_size);
if (embedding_size) { if (embeddings_size) {
memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float)); ctx->embeddings.resize(embeddings_size);
inp += embedding_size * sizeof(float);
memcpy(ctx->embeddings.data(), inp, embeddings_size * sizeof(float));
inp += embeddings_size * sizeof(float);
} }
} }
@ -13104,11 +13123,11 @@ float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
} }
float * llama_get_embeddings(struct llama_context * ctx) { float * llama_get_embeddings(struct llama_context * ctx) {
return ctx->embedding.data(); return ctx->embeddings.data();
} }
float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) { float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
return ctx->embedding.data() + i*ctx->model.hparams.n_embd; return ctx->embeddings.data() + i*ctx->model.hparams.n_embd;
} }
const char * llama_token_get_text(const struct llama_model * model, llama_token token) { const char * llama_token_get_text(const struct llama_model * model, llama_token token) {

View File

@ -163,7 +163,7 @@ extern "C" {
// - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL) // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
// - pos : the positions of the respective token in the sequence // - pos : the positions of the respective token in the sequence
// - seq_id : the sequence to which the respective token belongs // - seq_id : the sequence to which the respective token belongs
// - logits : if zero, the logits for the respective token will not be output // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
// //
typedef struct llama_batch { typedef struct llama_batch {
int32_t n_tokens; int32_t n_tokens;
@ -173,7 +173,7 @@ extern "C" {
llama_pos * pos; llama_pos * pos;
int32_t * n_seq_id; int32_t * n_seq_id;
llama_seq_id ** seq_id; llama_seq_id ** seq_id;
int8_t * logits; int8_t * logits; // TODO: rename this to "output"
// NOTE: helpers for smooth API transition - can be deprecated in the future // NOTE: helpers for smooth API transition - can be deprecated in the future
// for future-proof code, use the above fields instead and ignore everything below // for future-proof code, use the above fields instead and ignore everything below
@ -260,7 +260,7 @@ extern "C" {
// Keep the booleans together to avoid misalignment during copy-by-value. // Keep the booleans together to avoid misalignment during copy-by-value.
bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead) bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
bool embedding; // embedding mode only bool embeddings; // if true, extract embeddings (together with logits)
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
// Abort callback // Abort callback
@ -659,7 +659,7 @@ extern "C" {
// shape: [n_embd] (1-dimensional) // shape: [n_embd] (1-dimensional)
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx); LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
// Get the embeddings for the ith sequence // Get the embeddings for the ith token
// llama_get_embeddings(ctx) + i*n_embd // llama_get_embeddings(ctx) + i*n_embd
LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i); LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);