mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-04 01:57:53 +01:00
allocator: cleanup, more comments
This commit is contained in:
parent
5141472e2b
commit
d273bfd2c9
@ -170,18 +170,21 @@ void ggml_allocator_default_free_buffer(struct ggml_backend_buffer * alloc) {
|
|||||||
free(allocator_ctx);
|
free(allocator_ctx);
|
||||||
}
|
}
|
||||||
|
|
||||||
static const size_t MAX_SIZE_INIT = (1ULL<<40)-1;
|
// address and size of the buffer when measuring
|
||||||
|
// it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers
|
||||||
|
static void * const MEASURE_BASE_ADDR = (void*) 0x1000;
|
||||||
|
static const size_t MEASURE_MAX_SIZE = 1ULL<<40; // 1 TB
|
||||||
|
|
||||||
void ggml_allocator_default_alloc_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
|
void ggml_allocator_default_alloc_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
|
||||||
struct ggml_allocator_default_context * allocator_ctx = (struct ggml_allocator_default_context *)alloc->context;
|
struct ggml_allocator_default_context * allocator_ctx = (struct ggml_allocator_default_context *)alloc->context;
|
||||||
|
|
||||||
/////
|
// TODO: this should be done during initialization, but we don't know if it is a measure buffer at that point
|
||||||
if (alloc->measure && allocator_ctx->size != MAX_SIZE_INIT) {
|
if (alloc->measure && allocator_ctx->size != MEASURE_MAX_SIZE) {
|
||||||
allocator_ctx->size = MAX_SIZE_INIT;
|
allocator_ctx->size = MEASURE_MAX_SIZE;
|
||||||
allocator_ctx->data = (void*) 0x1000;
|
allocator_ctx->data = MEASURE_BASE_ADDR;
|
||||||
allocator_ctx->free_blocks[0].size = MAX_SIZE_INIT;
|
allocator_ctx->free_blocks[0].size = MEASURE_MAX_SIZE;
|
||||||
allocator_ctx->free_blocks[0].addr = (void*) 0x1000;
|
allocator_ctx->free_blocks[0].addr = MEASURE_BASE_ADDR;
|
||||||
}
|
}
|
||||||
/////
|
|
||||||
|
|
||||||
size_t size = ggml_backend_buffer_get_alloc_size(alloc, tensor);
|
size_t size = ggml_backend_buffer_get_alloc_size(alloc, tensor);
|
||||||
size = aligned_offset(NULL, size, allocator_ctx->alignment);
|
size = aligned_offset(NULL, size, allocator_ctx->alignment);
|
||||||
@ -256,8 +259,8 @@ void ggml_allocator_default_free_tensor(struct ggml_backend_buffer * alloc, stru
|
|||||||
|
|
||||||
if (ptr < allocator_ctx->data || (char*)ptr >= (char*)allocator_ctx->data + alloc->max_size) {
|
if (ptr < allocator_ctx->data || (char*)ptr >= (char*)allocator_ctx->data + alloc->max_size) {
|
||||||
// the tensor was not allocated in this buffer
|
// the tensor was not allocated in this buffer
|
||||||
// this can happen because the allocator can try to free weights and other constants
|
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
|
||||||
// the easiest way to deal with this is to just ignore it
|
// the easiest way to deal with this is just to ignore it
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -302,7 +305,7 @@ void ggml_allocator_default_free_tensor(struct ggml_backend_buffer * alloc, stru
|
|||||||
}
|
}
|
||||||
// otherwise, add a new block
|
// otherwise, add a new block
|
||||||
GGML_ASSERT(allocator_ctx->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
|
GGML_ASSERT(allocator_ctx->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
|
||||||
// insert the new block in the correct position to keep the array sorted
|
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
|
||||||
int insert_pos = 0;
|
int insert_pos = 0;
|
||||||
while (insert_pos < allocator_ctx->n_free_blocks && allocator_ctx->free_blocks[insert_pos].addr < ptr) {
|
while (insert_pos < allocator_ctx->n_free_blocks && allocator_ctx->free_blocks[insert_pos].addr < ptr) {
|
||||||
insert_pos++;
|
insert_pos++;
|
||||||
@ -343,8 +346,10 @@ static const struct ggml_backend_buffer_interface ggml_allocator_default_interfa
|
|||||||
|
|
||||||
struct ggml_backend_buffer * ggml_allocator_default_init(void * data, size_t size, size_t alignment) {
|
struct ggml_backend_buffer * ggml_allocator_default_init(void * data, size_t size, size_t alignment) {
|
||||||
struct ggml_allocator_default_context * ctx = malloc(sizeof(struct ggml_allocator_default_context) /* + n_free_blocks * sizeof(struct free_block) */);
|
struct ggml_allocator_default_context * ctx = malloc(sizeof(struct ggml_allocator_default_context) /* + n_free_blocks * sizeof(struct free_block) */);
|
||||||
// debug
|
#ifdef GGML_ALLOCATOR_DEBUG
|
||||||
|
// clean the allocated_tensors array
|
||||||
memset(ctx, 0, sizeof(struct ggml_allocator_default_context));
|
memset(ctx, 0, sizeof(struct ggml_allocator_default_context));
|
||||||
|
#endif
|
||||||
|
|
||||||
ctx->data = data;
|
ctx->data = data;
|
||||||
ctx->size = size;
|
ctx->size = size;
|
||||||
@ -767,7 +772,7 @@ void ggml_graph_splits_compute(struct ggml_graph_splits * splits) {
|
|||||||
n_nodes += split->graph->n_nodes;
|
n_nodes += split->graph->n_nodes;
|
||||||
}
|
}
|
||||||
|
|
||||||
//printf("splits: %d, nodes: %d, copy: %.2fms, compute_cpu: %.2fms, compute_gpu: %.2fms\n", splits->n_splits, n_nodes, copy_us / 1000.0, compute_cpu_us / 1000.0, compute_gpu_us / 1000.0);
|
//printf("ggml_graph_splits_compute: n_splits: %d, nodes: %d, copy: %.2fms, compute_cpu: %.2fms, compute_gpu: %.2fms\n", splits->n_splits, n_nodes, copy_us / 1000.0, compute_cpu_us / 1000.0, compute_gpu_us / 1000.0);
|
||||||
//exit(0);
|
//exit(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -776,12 +781,12 @@ static bool ggml_is_view(struct ggml_tensor * t) {
|
|||||||
t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
|
t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor * view_parent(struct ggml_tensor * t) {
|
static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) {
|
||||||
switch (t->op) {
|
switch (t->op) {
|
||||||
case GGML_OP_RESHAPE:
|
|
||||||
case GGML_OP_VIEW:
|
|
||||||
case GGML_OP_TRANSPOSE:
|
|
||||||
case GGML_OP_PERMUTE:
|
case GGML_OP_PERMUTE:
|
||||||
|
case GGML_OP_RESHAPE:
|
||||||
|
case GGML_OP_TRANSPOSE:
|
||||||
|
case GGML_OP_VIEW:
|
||||||
return t->src[0];
|
return t->src[0];
|
||||||
case GGML_OP_CPY:
|
case GGML_OP_CPY:
|
||||||
return t->src[1];
|
return t->src[1];
|
||||||
@ -790,6 +795,14 @@ struct ggml_tensor * view_parent(struct ggml_tensor * t) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static struct ggml_tensor * get_view_source(struct ggml_tensor * t) {
|
||||||
|
struct ggml_tensor * parent = t;
|
||||||
|
do {
|
||||||
|
parent = get_view_parent(parent);
|
||||||
|
} while (ggml_is_view(parent));
|
||||||
|
return parent;
|
||||||
|
}
|
||||||
|
|
||||||
static void allocate_node(struct ggml_buffer * buffer, struct ggml_tensor * node) {
|
static void allocate_node(struct ggml_buffer * buffer, struct ggml_tensor * node) {
|
||||||
if (node->data == NULL) {
|
if (node->data == NULL) {
|
||||||
if (ggml_is_view(node)) {
|
if (ggml_is_view(node)) {
|
||||||
@ -799,9 +812,9 @@ static void allocate_node(struct ggml_buffer * buffer, struct ggml_tensor * node
|
|||||||
memcpy(&offset, node->op_params, sizeof(size_t));
|
memcpy(&offset, node->op_params, sizeof(size_t));
|
||||||
node->data = (char *) node->src[0]->data + offset;
|
node->data = (char *) node->src[0]->data + offset;
|
||||||
break;
|
break;
|
||||||
|
case GGML_OP_PERMUTE:
|
||||||
case GGML_OP_RESHAPE:
|
case GGML_OP_RESHAPE:
|
||||||
case GGML_OP_TRANSPOSE:
|
case GGML_OP_TRANSPOSE:
|
||||||
case GGML_OP_PERMUTE:
|
|
||||||
node->data = node->src[0]->data;
|
node->data = node->src[0]->data;
|
||||||
break;
|
break;
|
||||||
case GGML_OP_CPY:
|
case GGML_OP_CPY:
|
||||||
@ -821,19 +834,21 @@ static void allocate_node(struct ggml_buffer * buffer, struct ggml_tensor * node
|
|||||||
// TODO: make a list of operations that can be safely made inplace
|
// TODO: make a list of operations that can be safely made inplace
|
||||||
if (parent->data != NULL && parent->n_children == 1 && parent->n_views == 0 && ggml_are_same_layout(node, parent) && node->op != GGML_OP_MUL_MAT) {
|
if (parent->data != NULL && parent->n_children == 1 && parent->n_views == 0 && ggml_are_same_layout(node, parent) && node->op != GGML_OP_MUL_MAT) {
|
||||||
if (ggml_is_view(parent)) {
|
if (ggml_is_view(parent)) {
|
||||||
struct ggml_tensor * ancestor = parent;
|
struct ggml_tensor * view_src = get_view_source(parent);
|
||||||
do {
|
if (view_src->n_views == 1 && view_src->n_children == 0 && view_src->data == parent->data) {
|
||||||
ancestor = view_parent(ancestor);
|
// TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
|
||||||
} while (ggml_is_view(ancestor));
|
// the parent's data that it will need later (same layout requirement). the problem is that then
|
||||||
if (ancestor->n_views == 1 && ancestor->n_children == 0) {
|
// we cannot free the tensor because the original address of the allocation is lost.
|
||||||
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, ancestor->name, node->name);
|
// adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
|
||||||
node->data = ancestor->data;
|
// for now, we only reuse the parent's if the offset is zero (view_src->data == parent->data)
|
||||||
|
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
|
||||||
|
node->data = parent->data;
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
node->data = parent->data;
|
|
||||||
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
|
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
|
||||||
|
node->data = parent->data;
|
||||||
}
|
}
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
@ -873,11 +888,8 @@ static void ggml_graph_allocate_tensors_n(
|
|||||||
struct ggml_tensor * node = gf->nodes[i];
|
struct ggml_tensor * node = gf->nodes[i];
|
||||||
|
|
||||||
if (ggml_is_view(node)) {
|
if (ggml_is_view(node)) {
|
||||||
struct ggml_tensor * ancestor = node;
|
struct ggml_tensor * view_src = get_view_source(node);
|
||||||
do {
|
view_src->n_views += 1;
|
||||||
ancestor = view_parent(ancestor);
|
|
||||||
} while (ggml_is_view(ancestor));
|
|
||||||
ancestor->n_views += 1;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||||
@ -894,6 +906,7 @@ static void ggml_graph_allocate_tensors_n(
|
|||||||
for (int g = 0; g < n_graphs; g++) {
|
for (int g = 0; g < n_graphs; g++) {
|
||||||
struct ggml_cgraph * gf = graphs[g];
|
struct ggml_cgraph * gf = graphs[g];
|
||||||
AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
|
AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
|
||||||
|
// graph inputs are allocated first to ensure that they are never overwritten
|
||||||
if (inputs != NULL && inputs[g] != NULL) {
|
if (inputs != NULL && inputs[g] != NULL) {
|
||||||
for (int i = 0; inputs[g][i] != NULL; i++) {
|
for (int i = 0; inputs[g][i] != NULL; i++) {
|
||||||
struct ggml_tensor * input = inputs[g][i];
|
struct ggml_tensor * input = inputs[g][i];
|
||||||
@ -941,28 +954,23 @@ static void ggml_graph_allocate_tensors_n(
|
|||||||
|
|
||||||
if (parent->n_children == 0 && parent->n_views == 0) {
|
if (parent->n_children == 0 && parent->n_views == 0) {
|
||||||
if (ggml_is_view(parent)) {
|
if (ggml_is_view(parent)) {
|
||||||
struct ggml_tensor * ancestor = parent;
|
struct ggml_tensor * view_src = get_view_source(parent);
|
||||||
do {
|
view_src->n_views -= 1;
|
||||||
ancestor = view_parent(ancestor);
|
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src->n_children, view_src->n_views);
|
||||||
} while (ggml_is_view(ancestor));
|
if (view_src->n_views == 0 && view_src->n_children == 0 && view_src->data != node->data) {
|
||||||
ancestor->n_views -= 1;
|
ggml_backend_buffer_tensor_free(buffer->backend_buffer, view_src);
|
||||||
AT_PRINTF("ancestor %s: %d children, %d views\n", ancestor->name, ancestor->n_children, ancestor->n_views);
|
|
||||||
if (ancestor->n_views == 0 && ancestor->n_children == 0 && ancestor->data != node->data) {
|
|
||||||
//AT_PRINTF("free1\n");
|
|
||||||
ggml_backend_buffer_tensor_free(buffer->backend_buffer, ancestor);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
if (parent->data != node->data) {
|
if (parent->data != node->data) {
|
||||||
//AT_PRINTF("free2\n");
|
|
||||||
ggml_backend_buffer_tensor_free(buffer->backend_buffer, parent);
|
ggml_backend_buffer_tensor_free(buffer->backend_buffer, parent);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
AT_PRINTF("\n");
|
AT_PRINTF("\n");
|
||||||
}
|
}
|
||||||
|
// free graph outputs here that wouldn't be freed otherwise because they have no children
|
||||||
if (outputs != NULL && outputs[g] != NULL) {
|
if (outputs != NULL && outputs[g] != NULL) {
|
||||||
for (int i = 0; outputs[g][i] != NULL; i++) {
|
for (int i = 0; outputs[g][i] != NULL; i++) {
|
||||||
struct ggml_tensor * output = outputs[g][i];
|
struct ggml_tensor * output = outputs[g][i];
|
||||||
@ -978,6 +986,8 @@ void ggml_graph_allocate_tensors(struct ggml_cgraph * graph, struct ggml_context
|
|||||||
}
|
}
|
||||||
|
|
||||||
void ggml_graph_splits_allocate_tensors(struct ggml_graph_splits * splits) {
|
void ggml_graph_splits_allocate_tensors(struct ggml_graph_splits * splits) {
|
||||||
|
// splits of the same backend are allocated together to ensure that dependencies from one split to the next
|
||||||
|
// are not overwritten when there is another split from a different backend between them (e.g. inpSA in llama.cpp)
|
||||||
bool visited[GGML_MAX_SPLITS] = {false};
|
bool visited[GGML_MAX_SPLITS] = {false};
|
||||||
for (int i = 0; i < splits->n_splits; i++) {
|
for (int i = 0; i < splits->n_splits; i++) {
|
||||||
if (!visited[i]) {
|
if (!visited[i]) {
|
||||||
@ -997,7 +1007,7 @@ void ggml_graph_splits_allocate_tensors(struct ggml_graph_splits * splits) {
|
|||||||
n_graphs++;
|
n_graphs++;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
AT_PRINTF("allocating tensors for %s [%d graphs/%d splits]\n", ggml_backend_name(ggml_get_buffer(ctx)->backend_buffer->backend), n_graphs, splits->n_splits);
|
AT_PRINTF("allocating tensors for backend %s [%d/%d splits]\n", ggml_backend_name(ggml_get_buffer(ctx)->backend_buffer->backend), n_graphs, splits->n_splits);
|
||||||
ggml_graph_allocate_tensors_n(backend_graphs, n_graphs, graph_inputs, graph_outputs, ctx);
|
ggml_graph_allocate_tensors_n(backend_graphs, n_graphs, graph_inputs, graph_outputs, ctx);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user