From d34472c1241fdfd960ad40d31009eb27c9a403d7 Mon Sep 17 00:00:00 2001 From: Iwan Kawrakow Date: Sat, 26 Aug 2023 10:55:39 +0300 Subject: [PATCH] Fix HellaSwag --- examples/perplexity/perplexity.cpp | 20 +++++++++++++++++--- 1 file changed, 17 insertions(+), 3 deletions(-) diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index 18635932b..fd89852d6 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -351,6 +351,7 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) { fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count); const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; + fprintf(stderr, "================================= is_spm = %d\n", is_spm); // This is needed as usual for LLaMA models const bool add_bos = is_spm; @@ -406,6 +407,8 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) { double acc = 0.0f; const int n_vocab = llama_n_vocab(ctx); + std::vector> ending_tokens(4); + std::vector tok_logits(n_vocab); for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) { @@ -413,11 +416,21 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) { std::vector context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, add_bos); size_t context_size = context_embd.size(); + for (int i = 0; i < 4; ++i) { + ending_tokens[i] = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[i], add_bos); + for (int k = 0; k < int(context_size); ++k) { + if (ending_tokens[i][k] != context_embd[k]) { + fprintf(stderr, "Oops: ending %d of task %d differs from context at position %d\n",i,int(task_idx),k); + break; + } + } + } + // Do the 1st ending // In this case we include the context when evaluating - auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], add_bos); + //auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], add_bos); + auto query_embd = ending_tokens[0]; auto query_size = query_embd.size(); - //printf("First query: %d\n",(int)query_size); // Stop if query wont fit the ctx window if (query_size > (size_t)params.n_ctx) { @@ -462,7 +475,8 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) { for (size_t ending_idx = 1; ending_idx < 4; ending_idx++) { // Tokenize the query - query_embd = ::llama_tokenize(ctx, hs_data[task_idx].ending[ending_idx], false); + query_embd.resize(ending_tokens[ending_idx].size() - context_size); + std::memcpy(query_embd.data(), ending_tokens[ending_idx].data() + context_size, query_embd.size()*sizeof(int)); query_size = query_embd.size(); // Stop if query wont fit the ctx window