llama : remove MPI backend (#7395)

This commit is contained in:
slaren 2024-05-20 01:17:03 +02:00 committed by GitHub
parent 1ea2a0036e
commit d359f30921
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 2 additions and 425 deletions

View File

@ -214,7 +214,6 @@ effectiveStdenv.mkDerivation (
(cmakeBool "LLAMA_CUDA" useCuda) (cmakeBool "LLAMA_CUDA" useCuda)
(cmakeBool "LLAMA_HIPBLAS" useRocm) (cmakeBool "LLAMA_HIPBLAS" useRocm)
(cmakeBool "LLAMA_METAL" useMetalKit) (cmakeBool "LLAMA_METAL" useMetalKit)
(cmakeBool "LLAMA_MPI" useMpi)
(cmakeBool "LLAMA_VULKAN" useVulkan) (cmakeBool "LLAMA_VULKAN" useVulkan)
(cmakeBool "LLAMA_STATIC" enableStatic) (cmakeBool "LLAMA_STATIC" enableStatic)
] ]

View File

@ -306,40 +306,6 @@ jobs:
cd build cd build
ctest -L main --verbose --timeout 900 ctest -L main --verbose --timeout 900
ubuntu-latest-cmake-mpi:
runs-on: ubuntu-latest
continue-on-error: true
strategy:
matrix:
mpi_library: [mpich, libopenmpi-dev]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential ${{ matrix.mpi_library }}
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake -DLLAMA_MPI=ON ..
cmake --build . --config Release -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose
ubuntu-latest-cmake-rpc: ubuntu-latest-cmake-rpc:
runs-on: ubuntu-latest runs-on: ubuntu-latest

View File

@ -122,7 +122,6 @@ set(LLAMA_METAL_MACOSX_VERSION_MIN "" CACHE STRING
"llama: metal minimum macOS version") "llama: metal minimum macOS version")
set(LLAMA_METAL_STD "" CACHE STRING "llama: metal standard version (-std flag)") set(LLAMA_METAL_STD "" CACHE STRING "llama: metal standard version (-std flag)")
option(LLAMA_KOMPUTE "llama: use Kompute" OFF) option(LLAMA_KOMPUTE "llama: use Kompute" OFF)
option(LLAMA_MPI "llama: use MPI" OFF)
option(LLAMA_RPC "llama: use RPC" OFF) option(LLAMA_RPC "llama: use RPC" OFF)
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF) option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
option(LLAMA_SYCL "llama: use SYCL" OFF) option(LLAMA_SYCL "llama: use SYCL" OFF)
@ -466,35 +465,6 @@ if (LLAMA_CUDA)
endif() endif()
endif() endif()
if (LLAMA_MPI)
cmake_minimum_required(VERSION 3.10)
find_package(MPI)
if (MPI_C_FOUND)
message(STATUS "MPI found")
set(GGML_HEADERS_MPI ggml-mpi.h)
set(GGML_SOURCES_MPI ggml-mpi.c)
add_compile_definitions(GGML_USE_MPI)
add_compile_definitions(${MPI_C_COMPILE_DEFINITIONS})
if (NOT MSVC)
add_compile_options(-Wno-cast-qual)
endif()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${MPI_C_LIBRARIES})
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${MPI_C_INCLUDE_DIRS})
# Even if you're only using the C header, C++ programs may bring in MPI
# C++ functions, so more linkage is needed
if (MPI_CXX_FOUND)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${MPI_CXX_LIBRARIES})
endif()
else()
message(WARNING "MPI not found")
endif()
endif()
if (LLAMA_RPC) if (LLAMA_RPC)
add_compile_definitions(GGML_USE_RPC) add_compile_definitions(GGML_USE_RPC)
@ -1218,7 +1188,6 @@ add_library(ggml OBJECT
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA} ${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL} ${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL} ${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
${GGML_SOURCES_RPC} ${GGML_HEADERS_RPC} ${GGML_SOURCES_RPC} ${GGML_HEADERS_RPC}
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA} ${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL} ${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL}
@ -1306,7 +1275,7 @@ install(FILES ${CMAKE_CURRENT_BINARY_DIR}/LlamaConfig.cmake
set(GGML_PUBLIC_HEADERS "ggml.h" "ggml-alloc.h" "ggml-backend.h" set(GGML_PUBLIC_HEADERS "ggml.h" "ggml-alloc.h" "ggml-backend.h"
"${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}" "${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}"
"${GGML_HEADERS_METAL}" "${GGML_HEADERS_MPI}" "${GGML_HEADERS_EXTRA}") "${GGML_HEADERS_METAL}" "${GGML_HEADERS_EXTRA}")
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}") set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
install(TARGETS ggml PUBLIC_HEADER) install(TARGETS ggml PUBLIC_HEADER)

View File

@ -399,13 +399,6 @@ ifndef LLAMA_NO_ACCELERATE
endif endif
endif # LLAMA_NO_ACCELERATE endif # LLAMA_NO_ACCELERATE
ifdef LLAMA_MPI
MK_CPPFLAGS += -DGGML_USE_MPI
MK_CFLAGS += -Wno-cast-qual
MK_CXXFLAGS += -Wno-cast-qual
OBJS += ggml-mpi.o
endif # LLAMA_MPI
ifdef LLAMA_OPENBLAS ifdef LLAMA_OPENBLAS
MK_CPPFLAGS += -DGGML_USE_OPENBLAS $(shell pkg-config --cflags-only-I openblas) MK_CPPFLAGS += -DGGML_USE_OPENBLAS $(shell pkg-config --cflags-only-I openblas)
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas) MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas)
@ -629,11 +622,6 @@ ggml-metal-embed.o: ggml-metal.metal ggml-common.h
endif endif
endif # LLAMA_METAL endif # LLAMA_METAL
ifdef LLAMA_MPI
ggml-mpi.o: ggml-mpi.c ggml-mpi.h
$(CC) $(CFLAGS) -c $< -o $@
endif # LLAMA_MPI
ifndef LLAMA_NO_LLAMAFILE ifndef LLAMA_NO_LLAMAFILE
sgemm.o: sgemm.cpp sgemm.h ggml.h sgemm.o: sgemm.cpp sgemm.h ggml.h
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@

View File

@ -382,45 +382,6 @@ To disable the Metal build at compile time use the `LLAMA_NO_METAL=1` flag or th
When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers|-ngl 0` command-line When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers|-ngl 0` command-line
argument. argument.
### MPI Build
MPI lets you distribute the computation over a cluster of machines. Because of the serial nature of LLM prediction, this won't yield any end-to-end speed-ups, but it will let you run larger models than would otherwise fit into RAM on a single machine.
First you will need MPI libraries installed on your system. The two most popular (only?) options are [MPICH](https://www.mpich.org) and [OpenMPI](https://www.open-mpi.org). Either can be installed with a package manager (`apt`, Homebrew, MacPorts, etc).
Next you will need to build the project with `LLAMA_MPI` set to true on all machines; if you're building with `make`, you will also need to specify an MPI-capable compiler (when building with CMake, this is configured automatically):
- Using `make`:
```bash
make CC=mpicc CXX=mpicxx LLAMA_MPI=1
```
- Using `CMake`:
```bash
cmake -S . -B build -DLLAMA_MPI=ON
```
Once the programs are built, download/convert the weights on all of the machines in your cluster. The paths to the weights and programs should be identical on all machines.
Next, ensure password-less SSH access to each machine from the primary host, and create a `hostfile` with a list of the hostnames and their relative "weights" (slots). If you want to use localhost for computation, use its local subnet IP address rather than the loopback address or "localhost".
Here is an example hostfile:
```
192.168.0.1:2
malvolio.local:1
```
The above will distribute the computation across 2 processes on the first host and 1 process on the second host. Each process will use roughly an equal amount of RAM. Try to keep these numbers small, as inter-process (intra-host) communication is expensive.
Finally, you're ready to run a computation using `mpirun`:
```bash
mpirun -hostfile hostfile -n 3 ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
```
### BLAS Build ### BLAS Build
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS and CLBlast. There are currently several different BLAS implementations available for build and use: Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS and CLBlast. There are currently several different BLAS implementations available for build and use:

View File

@ -1,216 +0,0 @@
#include "ggml-mpi.h"
#include "ggml.h"
#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define UNUSED GGML_UNUSED
struct ggml_mpi_context {
int rank;
int size;
};
void ggml_mpi_backend_init(void) {
MPI_Init(NULL, NULL);
}
void ggml_mpi_backend_free(void) {
MPI_Finalize();
}
struct ggml_mpi_context * ggml_mpi_init(void) {
struct ggml_mpi_context * ctx = calloc(1, sizeof(struct ggml_mpi_context));
MPI_Comm_rank(MPI_COMM_WORLD, &ctx->rank);
MPI_Comm_size(MPI_COMM_WORLD, &ctx->size);
return ctx;
}
void ggml_mpi_free(struct ggml_mpi_context * ctx) {
free(ctx);
}
int ggml_mpi_rank(struct ggml_mpi_context * ctx) {
return ctx->rank;
}
void ggml_mpi_eval_init(
struct ggml_mpi_context * ctx_mpi,
int * n_tokens,
int * n_past,
int * n_threads) {
UNUSED(ctx_mpi);
// synchronize the worker node parameters with the root node
MPI_Barrier(MPI_COMM_WORLD);
MPI_Bcast(n_tokens, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(n_past, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(n_threads, 1, MPI_INT, 0, MPI_COMM_WORLD);
}
static int ggml_graph_get_node_idx(struct ggml_cgraph * gf, const char * name) {
struct ggml_tensor * t = ggml_graph_get_tensor(gf, name);
if (t == NULL) {
fprintf(stderr, "%s: tensor %s not found\n", __func__, name);
return -1;
}
for (int i = 0; i < gf->n_nodes; i++) {
if (gf->nodes[i] == t) {
return i;
}
}
fprintf(stderr, "%s: tensor %s not found in graph (should not happen)\n", __func__, name);
return -1;
}
static void ggml_mpi_tensor_send(struct ggml_tensor * t, int mpi_rank_dst) {
MPI_Datatype mpi_type;
switch (t->type) {
case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break;
case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break;
default: GGML_ASSERT(false && "not implemented");
}
const int retval = MPI_Send(t->data, ggml_nelements(t), mpi_type, mpi_rank_dst, 0, MPI_COMM_WORLD);
GGML_ASSERT(retval == MPI_SUCCESS);
}
static void ggml_mpi_tensor_recv(struct ggml_tensor * t, int mpi_rank_src) {
MPI_Datatype mpi_type;
switch (t->type) {
case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break;
case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break;
default: GGML_ASSERT(false && "not implemented");
}
MPI_Status status; UNUSED(status);
const int retval = MPI_Recv(t->data, ggml_nelements(t), mpi_type, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
GGML_ASSERT(retval == MPI_SUCCESS);
}
// TODO: there are many improvements that can be done to this implementation
void ggml_mpi_graph_compute_pre(
struct ggml_mpi_context * ctx_mpi,
struct ggml_cgraph * gf,
int n_layers) {
const int mpi_rank = ctx_mpi->rank;
const int mpi_size = ctx_mpi->size;
struct ggml_tensor * inp_tokens = ggml_graph_get_tensor(gf, "inp_tokens");
if (inp_tokens == NULL) {
fprintf(stderr, "%s: tensor 'inp_tokens' not found\n", __func__);
return;
}
struct ggml_tensor * inp0 = ggml_graph_get_tensor(gf, "layer_inp_0");
if (inp0 == NULL) {
fprintf(stderr, "%s: tensor 'inp0' not found\n", __func__);
return;
}
GGML_ASSERT(inp0 == gf->nodes[0]);
// distribute the compute graph into slices across the MPI nodes
//
// the main node (0) processes the last layers + the remainder of the compute graph
// and is responsible to pass the input tokens to the first node (1)
//
// node 1: [( 0) * n_per_node, ( 1) * n_per_node)
// node 2: [( 1) * n_per_node, ( 2) * n_per_node)
// ...
// node n-1: [(n-2) * n_per_node, (n-1) * n_per_node)
// node 0: [(n-1) * n_per_node, n_nodes)
//
if (mpi_rank > 0) {
if (mpi_rank == 1) {
// the first node (1) receives the input tokens from the main node (0)
ggml_mpi_tensor_recv(inp_tokens, 0);
} else {
// recv input data for each node into the "inp0" tensor (i.e. the first node in the compute graph)
ggml_mpi_tensor_recv(inp0, mpi_rank - 1);
}
} else if (mpi_size > 1) {
// node 0 sends the input tokens to node 1
ggml_mpi_tensor_send(inp_tokens, 1);
// recv the output data from the last node
ggml_mpi_tensor_recv(inp0, mpi_size - 1);
}
{
const int n_per_node = (n_layers + (mpi_size - 1)) / mpi_size;
const int mpi_idx = mpi_rank > 0 ? mpi_rank - 1 : mpi_size - 1;
const int il0 = (mpi_idx + 0) * n_per_node;
const int il1 = MIN(n_layers, (mpi_idx + 1) * n_per_node);
char name_l0[GGML_MAX_NAME];
char name_l1[GGML_MAX_NAME];
snprintf(name_l0, sizeof(name_l0), "layer_inp_%d", il0);
snprintf(name_l1, sizeof(name_l1), "layer_inp_%d", il1);
const int idx_l0 = ggml_graph_get_node_idx(gf, name_l0);
const int idx_l1 = mpi_rank > 0 ? ggml_graph_get_node_idx(gf, name_l1) + 1 : gf->n_nodes;
if (idx_l0 < 0 || idx_l1 < 0) {
fprintf(stderr, "%s: layer input nodes not found\n", __func__);
return;
}
// attach the input data to all nodes that need it
// TODO: not great - should be able to do this without modifying the compute graph (see next TODO below)
for (int i = idx_l0; i < idx_l1; i++) {
if (gf->nodes[i]->src[0] == gf->nodes[idx_l0]) {
gf->nodes[i]->src[0] = inp0;
}
if (gf->nodes[i]->src[1] == gf->nodes[idx_l0]) {
gf->nodes[i]->src[1] = inp0;
}
}
// TODO: instead of rearranging the nodes, we should be able to execute a subset of the compute graph
for (int i = 1; i < idx_l1 - idx_l0; i++) {
gf->nodes[i] = gf->nodes[idx_l0 + i];
gf->grads[i] = gf->grads[idx_l0 + i];
}
// the first node performs the "get_rows" operation, the rest of the nodes get the data from the previous node
if (mpi_idx != 0) {
gf->nodes[0]->op = GGML_OP_NONE;
}
gf->n_nodes = idx_l1 - idx_l0;
//fprintf(stderr, "%s: node %d: processing %d nodes [%d, %d)\n", __func__, mpi_rank, gf->n_nodes, il0, il1);
}
}
void ggml_mpi_graph_compute_post(
struct ggml_mpi_context * ctx_mpi,
struct ggml_cgraph * gf,
int n_layers) {
UNUSED(n_layers);
const int mpi_rank = ctx_mpi->rank;
const int mpi_size = ctx_mpi->size;
// send the output data to the next node
if (mpi_rank > 0) {
ggml_mpi_tensor_send(gf->nodes[gf->n_nodes - 1], (mpi_rank + 1) % mpi_size);
}
}

View File

@ -1,39 +0,0 @@
#pragma once
struct ggml_context;
struct ggml_tensor;
struct ggml_cgraph;
#ifdef __cplusplus
extern "C" {
#endif
struct ggml_mpi_context;
void ggml_mpi_backend_init(void);
void ggml_mpi_backend_free(void);
struct ggml_mpi_context * ggml_mpi_init(void);
void ggml_mpi_free(struct ggml_mpi_context * ctx);
int ggml_mpi_rank(struct ggml_mpi_context * ctx);
void ggml_mpi_eval_init(
struct ggml_mpi_context * ctx_mpi,
int * n_tokens,
int * n_past,
int * n_threads);
void ggml_mpi_graph_compute_pre(
struct ggml_mpi_context * ctx_mpi,
struct ggml_cgraph * gf,
int n_layers);
void ggml_mpi_graph_compute_post(
struct ggml_mpi_context * ctx_mpi,
struct ggml_cgraph * gf,
int n_layers);
#ifdef __cplusplus
}
#endif

View File

@ -26,9 +26,6 @@
#ifdef GGML_USE_METAL #ifdef GGML_USE_METAL
# include "ggml-metal.h" # include "ggml-metal.h"
#endif #endif
#ifdef GGML_USE_MPI
# include "ggml-mpi.h"
#endif
#ifndef QK_K #ifndef QK_K
# ifdef GGML_QKK_64 # ifdef GGML_QKK_64
# define QK_K 64 # define QK_K 64
@ -2270,10 +2267,6 @@ struct llama_context {
// control vectors // control vectors
struct llama_control_vector cvec; struct llama_control_vector cvec;
#ifdef GGML_USE_MPI
ggml_mpi_context * ctx_mpi = NULL;
#endif
}; };
static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) { static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
@ -6336,10 +6329,7 @@ static struct ggml_tensor * llm_build_inp_embd(
inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens); inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
} else { } else {
#ifdef GGML_USE_MPI lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
GGML_ASSERT(false && "not implemented");
#endif
lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
inpL = lctx.inp_embd; inpL = lctx.inp_embd;
ggml_set_input(lctx.inp_embd); ggml_set_input(lctx.inp_embd);
} }
@ -11351,11 +11341,6 @@ static void llama_graph_compute(
llama_context & lctx, llama_context & lctx,
ggml_cgraph * gf, ggml_cgraph * gf,
int n_threads) { int n_threads) {
#ifdef GGML_USE_MPI
const int64_t n_layer = lctx.model.hparams.n_layer;
ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
#endif
#ifdef GGML_USE_METAL #ifdef GGML_USE_METAL
if (ggml_backend_is_metal(lctx.backend_metal)) { if (ggml_backend_is_metal(lctx.backend_metal)) {
ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads); ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
@ -11370,10 +11355,6 @@ static void llama_graph_compute(
ggml_backend_sched_graph_compute_async(lctx.sched, gf); ggml_backend_sched_graph_compute_async(lctx.sched, gf);
// fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched)); // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
#ifdef GGML_USE_MPI
ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
#endif
} }
// decode a batch of tokens by evaluating the transformer // decode a batch of tokens by evaluating the transformer
@ -11411,12 +11392,6 @@ static int llama_decode_internal(
} }
lctx.n_queued_tokens += n_tokens_all; lctx.n_queued_tokens += n_tokens_all;
#ifdef GGML_USE_MPI
// TODO: needs fix after #3228
GGML_ASSERT(false && "not implemented");
//ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
#endif
auto & kv_self = lctx.kv_self; auto & kv_self = lctx.kv_self;
const int64_t n_embd = hparams.n_embd; const int64_t n_embd = hparams.n_embd;
@ -15546,10 +15521,6 @@ void llama_backend_init(void) {
struct ggml_context * ctx = ggml_init(params); struct ggml_context * ctx = ggml_init(params);
ggml_free(ctx); ggml_free(ctx);
} }
#ifdef GGML_USE_MPI
ggml_mpi_backend_init();
#endif
} }
void llama_numa_init(enum ggml_numa_strategy numa) { void llama_numa_init(enum ggml_numa_strategy numa) {
@ -15559,9 +15530,6 @@ void llama_numa_init(enum ggml_numa_strategy numa) {
} }
void llama_backend_free(void) { void llama_backend_free(void) {
#ifdef GGML_USE_MPI
ggml_mpi_backend_free();
#endif
ggml_quantize_free(); ggml_quantize_free();
} }
@ -15962,20 +15930,6 @@ struct llama_context * llama_new_context_with_model(
} }
} }
#ifdef GGML_USE_MPI
ctx->ctx_mpi = ggml_mpi_init();
if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
// Enter a blocking eval loop with dummy input, letting rank=0 drive the process
// TODO: needs fix after #3228
GGML_ASSERT(false && "not implemented");
//const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
//while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
llama_backend_free();
exit(1);
}
#endif
return ctx; return ctx;
} }

View File

@ -5,7 +5,6 @@ set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@)
set(LLAMA_BLAS @LLAMA_BLAS@) set(LLAMA_BLAS @LLAMA_BLAS@)
set(LLAMA_CUDA @LLAMA_CUDA@) set(LLAMA_CUDA @LLAMA_CUDA@)
set(LLAMA_METAL @LLAMA_METAL@) set(LLAMA_METAL @LLAMA_METAL@)
set(LLAMA_MPI @LLAMA_MPI@)
set(LLAMA_CLBLAST @LLAMA_CLBLAST@) set(LLAMA_CLBLAST @LLAMA_CLBLAST@)
set(LLAMA_HIPBLAS @LLAMA_HIPBLAS@) set(LLAMA_HIPBLAS @LLAMA_HIPBLAS@)
set(LLAMA_ACCELERATE @LLAMA_ACCELERATE@) set(LLAMA_ACCELERATE @LLAMA_ACCELERATE@)
@ -37,10 +36,6 @@ if (LLAMA_METAL)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED) find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
endif() endif()
if (LLAMA_MPI)
find_package(MPI REQUIRED)
endif()
if (LLAMA_CLBLAST) if (LLAMA_CLBLAST)
find_package(CLBlast REQUIRED) find_package(CLBlast REQUIRED)
endif() endif()