From d4f220a5ccdc6308173c1a31fad21d7c3fbc96c1 Mon Sep 17 00:00:00 2001 From: Neo Zhang Jianyu Date: Sun, 7 Apr 2024 10:55:59 +0800 Subject: [PATCH] support/fix OPs GGML_TYPE_IQ4_NL, GGML_TYPE_IQ4_XS, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ3_S, GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M (#6521) --- README-sycl.md | 40 +- ggml-sycl.cpp | 1088 +++++++++++++++++++++++++++++++++++++++--------- 2 files changed, 903 insertions(+), 225 deletions(-) diff --git a/README-sycl.md b/README-sycl.md index 1324f632d..4aa5a1c00 100644 --- a/README-sycl.md +++ b/README-sycl.md @@ -3,7 +3,7 @@ - [Background](#background) - [News](#news) - [OS](#os) -- [Supported Devices](#supported-devices) +- [Hardware](#hardware) - [Docker](#docker) - [Linux](#linux) - [Windows](#windows) @@ -24,19 +24,20 @@ - **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets. ### Llama.cpp + SYCL -This SYCL "backend" follows the same design found in other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, CLBlast etc..*. The oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [IntelĀ® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose. -The llama.cpp SYCL backend supports: -- Intel GPUs. -- Nvidia GPUs. +The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it could support other vendor GPUs: Nvidia GPU (*AMD GPU coming*). -*Upcoming support: AMD GPUs*. +When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneMKL](README.md#intel-onemkl) backend. -When targetting **Intel CPUs**, it is recommended to use llama.cpp for [x86_64](README.md#intel-onemkl) approach. +It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, CLBlast etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [IntelĀ® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose. ## News +- 2024.4 + - Support data types: GGML_TYPE_IQ4_NL, GGML_TYPE_IQ4_XS, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ3_S, GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M. + - 2024.3 + - Release binary files of Windows. - A blog is published: **Run LLM on all Intel GPUs Using llama.cpp**: [intel.com](https://www.intel.com/content/www/us/en/developer/articles/technical/run-llm-on-all-gpus-using-llama-cpp-artical.html) or [medium.com](https://medium.com/@jianyu_neo/run-llm-on-all-intel-gpus-using-llama-cpp-fd2e2dcbd9bd). - New base line is ready: [tag b2437](https://github.com/ggerganov/llama.cpp/tree/b2437). - Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing. @@ -59,16 +60,11 @@ When targetting **Intel CPUs**, it is recommended to use llama.cpp for [x86_64] |Windows|Support|Windows 11| -## Supported devices +## Hardware -### Intel GPUs +### Intel GPU -The oneAPI Math Kernel Library, which the oneAPI base-toolkit includes, supports intel GPUs. In order to make it "visible", simply run the following: -```sh -source /opt/intel/oneapi/setvars.sh -``` - -- **Tested devices** +**Verified devices** |Intel GPU| Status | Verified Model| |-|-|-| @@ -80,16 +76,18 @@ source /opt/intel/oneapi/setvars.sh *Notes:* -- Device memory can be a limitation when running a large model on an intel GPU. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/main`. +- **Memory** + - The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/main`. -- Please make sure the GPU shared memory from the host is large enough to account for the model's size. For e.g. the *llama-2-7b.Q4_0* requires at least 8.0GB for integrated GPUs and 4.0GB for discrete GPUs. + - Please make sure the GPU shared memory from the host is large enough to account for the model's size. For e.g. the *llama-2-7b.Q4_0* requires at least 8.0GB for integrated GPU and 4.0GB for discrete GPU. -- If the iGPU has less than 80 EUs *(Execution Unit)*, the inference speed will likely be too slow for practical use. +- **Execution Unit (EU)** + - If the iGPU has less than 80 EUs, the inference speed will likely be too slow for practical use. -### Nvidia GPUs -The BLAS acceleration on Nvidia GPUs through oneAPI can be obtained using the Nvidia plugins for oneAPI and the cuBLAS backend of the upstream oneMKL library. Details and instructions on how to setup the runtime and library can be found in [this section](#i-setup-environment) +### Nvidia GPU +The BLAS acceleration on Nvidia GPU through oneAPI can be obtained using the Nvidia plugins for oneAPI and the cuBLAS backend of the upstream oneMKL library. Details and instructions on how to setup the runtime and library can be found in [this section](#i-setup-environment) -- **Tested devices** +**Verified devices** |Nvidia GPU| Status | Verified Model| |-|-|-| diff --git a/ggml-sycl.cpp b/ggml-sycl.cpp index db3c24f60..b83881496 100644 --- a/ggml-sycl.cpp +++ b/ggml-sycl.cpp @@ -3038,6 +3038,10 @@ typedef float dfloat; // dequantize float typedef sycl::float2 dfloat2; #endif //GGML_SYCL_F16 +#define MMVQ_MAX_BATCH_SIZE 8 + +static const int8_t kvalues_iq4nl[16]={-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; + bool ggml_sycl_loaded(void); void * ggml_sycl_host_malloc(size_t size); void ggml_sycl_host_free(void * ptr); @@ -4473,6 +4477,32 @@ static void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __rest } +template +__dpct_inline__ static void +dequantize_block_iq2_s(const void *__restrict__ vx, dst_t *__restrict__ yy, + const sycl::nd_item<3> &item_ct1) { + + const int i = item_ct1.get_group(2); + const block_iq2_s * x = (const block_iq2_s *) vx; + + const int tid = item_ct1.get_local_id(2); +#if QK_K == 256 + const int il = tid/8; // 0...3 + const int ib = tid%8; // 0...7 + dst_t * y = yy + i*QK_K + 32*ib + 8*il; + const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300))); + const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f; + const uint8_t signs = x[i].qs[QK_K/8+4*ib+il]; +#pragma unroll + for (int j = 0; j < 8; ++j) + y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); +#else + assert(false); + +#endif + +} + template static void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy, const sycl::nd_item<3> &item_ct1, @@ -4505,26 +4535,26 @@ static void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __res } -template -static void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy, - const sycl::nd_item<3> &item_ct1, - const uint32_t *iq3s_grid, - const uint8_t *ksigns_iq2xs, - const uint8_t *kmask_iq2xs) { +template +__dpct_inline__ static void +dequantize_block_iq3_s(const void *__restrict__ vx, dst_t *__restrict__ yy, + const sycl::nd_item<3> &item_ct1, + const uint8_t *kmask_iq2xs, const uint32_t *iq3s_grid) { const int i = item_ct1.get_group(2); - const block_iq3_s * x = (const block_iq3_s *) vx; + const block_iq3_s * x = (const block_iq3_s *) vx; const int tid = item_ct1.get_local_id(2); #if QK_K == 256 const int il = tid/8; // 0...3 const int ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; - const uint8_t * qs = x[i].qs + 8*ib; - const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + qs[2*il+0]); - const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + qs[2*il+1]); + const uint8_t * qs = x[i].qs + 8*ib; + const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256))); + const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256))); const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf)); const uint8_t signs = x[i].signs[4*ib + il]; +#pragma unroll for (int j = 0; j < 4; ++j) { y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f); y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f); @@ -4535,12 +4565,12 @@ static void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restr } -template -static void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy, - const sycl::nd_item<3> &item_ct1, - const uint32_t *iq1s_grid, - const uint8_t *ksigns_iq2xs, - const uint8_t *kmask_iq2xs) { +template +__dpct_inline__ static void +dequantize_block_iq1_s(const void *__restrict__ vx, dst_t *__restrict__ yy, + const sycl::nd_item<3> &item_ct1, + const uint32_t *iq1s_grid_gpu) { + const int i = item_ct1.get_group(2); const block_iq1_s * x = (const block_iq1_s *) vx; @@ -4549,14 +4579,15 @@ static void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restr const int il = tid/8; // 0...3 const int ib = tid%8; // 0...7 dst_t * y = yy + i*QK_K + 32*ib + 8*il; - const uint8_t * qs = x[i].qs + 8*ib; - const uint8_t * grid1 = (const uint8_t *)(iq1s_grid + qs[2*il+0]); - const uint8_t * grid2 = (const uint8_t *)(iq1s_grid + qs[2*il+1]); - const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 0xf) + 1); - const uint8_t signs = ksigns_iq2xs[(x[i].qh[ib] >> 3*il) & 7]; - for (int j = 0; j < 4; ++j) { - y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f); - y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f); + const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA; + const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1); + uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32; + grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[ib] >> 3*il) & 7) << 8)]; + grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f; + grid32[0] &= 0x0f0f0f0f; +#pragma unroll + for (int j = 0; j < 8; ++j) { + y[j] = d * (q[j] + delta); } #else assert(false); @@ -4564,6 +4595,85 @@ static void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restr } +template +__dpct_inline__ static void +dequantize_block_iq1_m(const void *__restrict__ vx, dst_t *__restrict__ yy, + const sycl::nd_item<3> &item_ct1, + const uint32_t *iq1s_grid_gpu) { + + const int i = item_ct1.get_group(2); + const block_iq1_m * x = (const block_iq1_m *) vx; + + const int tid = item_ct1.get_local_id(2); +#if QK_K == 256 + const int il = tid/8; // 0...3 + const int ib = tid%8; // 0...7 + dst_t * y = yy + i*QK_K + 32*ib + 8*il; + const uint16_t * sc = (const uint16_t *)x[i].scales; + iq1m_scale_t scale; + scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); + const int ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4); + const float d = (float)scale.f16 * (2*((sc[ib16/4] >> 3*(ib16%4)) & 0x7) + 1); + const float delta = x[i].qh[2*ib+il/2] & (0x08 << 4*(il%2)) ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA; + uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32; + grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[2*ib+il/2] >> 4*(il%2)) & 7) << 8)]; + grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f; + grid32[0] &= 0x0f0f0f0f; +#pragma unroll + for (int j = 0; j < 8; ++j) { + y[j] = d * (q[j] + delta); + } +#else + assert(false); +#endif + +} + +template +__dpct_inline__ static void +dequantize_block_iq4_nl(const void *__restrict__ vx, dst_t *__restrict__ yy, + const sycl::nd_item<3> &item_ct1) { + + const int i = item_ct1.get_group(2); + const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL); + + const int tid = item_ct1.get_local_id(2); + const int il = tid/8; // 0...3 + const int ib = tid%8; // 0...7 + dst_t * y = yy + i*QK_K + 32*ib + 4*il; + const uint8_t * q4 = x[ib].qs + 4*il; + const float d = (float)x[ib].d; +#pragma unroll + for (int j = 0; j < 4; ++j) { + y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf]; + y[j+16] = d * kvalues_iq4nl[q4[j] >> 4]; + } + +} + + +template +__dpct_inline__ static void +dequantize_block_iq4_xs(const void *__restrict__ vx, dst_t *__restrict__ yy, + const sycl::nd_item<3> &item_ct1) { + const int i = item_ct1.get_group(2); + const block_iq4_xs * x = (const block_iq4_xs *)vx; + + const int tid = item_ct1.get_local_id(2); + const int il = tid/8; // 0...3 + const int ib = tid%8; // 0...7 + dst_t * y = yy + i*QK_K + 32*ib + 4*il; + const uint8_t * q4 = x[i].qs + 16*ib + 4*il; + const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32); +#pragma unroll + for (int j = 0; j < 4; ++j) { + y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf]; + y[j+16] = d * kvalues_iq4nl[q4[j] >> 4]; + } +} + + + /* DPCT1110:4: The total declared local variable size in device function dequantize_mul_mat_vec_q2_k exceeds 128 bytes and may cause high register @@ -7370,6 +7480,58 @@ vec_dot_iq2_xs_q8_1(const void *__restrict__ vbq, #endif } +static __dpct_inline__ float +vec_dot_iq2_s_q8_1(const void *__restrict__ vbq, + const block_q8_1 *__restrict__ bq8_1, const int &iqs) { +#if QK_K == 256 + const block_iq2_s * bq2 = (const block_iq2_s *) vbq; + + const int ib32 = iqs; + const int8_t * q8 = bq8_1[ib32].qs; + const uint8_t * signs = bq2->qs + QK_K/8 + 4*ib32; + const uint8_t ls1 = bq2->scales[ib32] & 0xf; + const uint8_t ls2 = bq2->scales[ib32] >> 4; + int sumi1 = 0; + for (int l = 0; l < 2; ++l) { + const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300))); + const uint32_t signs0 = dpct::vectorized_binary( + ((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201, + std::equal_to<>()); + const uint32_t signs1 = dpct::vectorized_binary( + ((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201, + std::equal_to<>()); + const int grid_l = dpct::vectorized_binary( + grid[0] ^ signs0, signs0, std::minus<>()); + const int grid_h = dpct::vectorized_binary( + grid[1] ^ signs1, signs1, std::minus<>()); + sumi1 = dpct::dp4a(grid_l, *((const int *)q8 + 0), sumi1); + sumi1 = dpct::dp4a(grid_h, *((const int *)q8 + 1), sumi1); + q8 += 8; + } + int sumi2 = 0; + for (int l = 2; l < 4; ++l) { + const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300))); + const uint32_t signs0 = dpct::vectorized_binary( + ((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201, + std::equal_to<>()); + const uint32_t signs1 = dpct::vectorized_binary( + ((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201, + std::equal_to<>()); + const int grid_l = dpct::vectorized_binary( + grid[0] ^ signs0, signs0, std::minus<>()); + const int grid_h = dpct::vectorized_binary( + grid[1] ^ signs1, signs1, std::minus<>()); + sumi2 = dpct::dp4a(grid_l, *((const int *)q8 + 0), sumi2); + sumi2 = dpct::dp4a(grid_h, *((const int *)q8 + 1), sumi2); + q8 += 8; + } + const float d = (float)bq2->d * bq8_1[ib32].ds[0] * 0.25f; + return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2); +#else + assert(false); +#endif +} + static __dpct_inline__ float vec_dot_iq3_xxs_q8_1(const void *__restrict__ vbq, const block_q8_1 *__restrict__ bq8_1, const int &iqs, @@ -7412,10 +7574,8 @@ vec_dot_iq3_xxs_q8_1(const void *__restrict__ vbq, static __dpct_inline__ float vec_dot_iq3_s_q8_1(const void *__restrict__ vbq, - const block_q8_1 *__restrict__ bq8_1, const int &iqs, - const uint32_t *iq3s_grid, const uint64_t *ksigns64) { -#if DPCT_COMPATIBILITY_TEMP >= \ - MIN_CC_DP4A // lowest compute capability for integer intrinsics + const block_q8_1 *__restrict__ bq8_1, const int &iqs, + const uint32_t *iq3s_grid) { #if QK_K == 256 const block_iq3_s * bq2 = (const block_iq3_s *) vbq; @@ -7427,9 +7587,11 @@ vec_dot_iq3_s_q8_1(const void *__restrict__ vbq, const uint32_t * grid1 = iq3s_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256)); const uint32_t * grid2 = iq3s_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256)); uint32_t signs0 = dpct::vectorized_binary( - ((bq2->signs[4*ib32+l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201, std::equal_to<>()); + ((bq2->signs[4 * ib32 + l] & 0xf) * 0x01010101) & 0x08040201, + 0x08040201, std::equal_to<>()); uint32_t signs1 = dpct::vectorized_binary( - ((bq2->signs[4*ib32+l] >> 4) * 0x01010101) & 0x08040201, 0x08040201, std::equal_to<>()); + ((bq2->signs[4 * ib32 + l] >> 4) * 0x01010101) & 0x08040201, + 0x08040201, std::equal_to<>()); const int grid_l = dpct::vectorized_binary( grid1[0] ^ signs0, signs0, std::minus<>()); const int grid_h = dpct::vectorized_binary( @@ -7438,45 +7600,142 @@ vec_dot_iq3_s_q8_1(const void *__restrict__ vbq, sumi = dpct::dp4a(grid_h, *((int *)q8 + 1), sumi); q8 += 8; } - const float d = (float)bq2->d * (1 + 2*((bq2->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * bq8_1[ib32].ds[0]; + const float d = + (float)bq2->d * + (1 + 2 * ((bq2->scales[ib32 / 2] >> 4 * (ib32 % 2)) & 0xf)) * + bq8_1[ib32].ds[0]; return d * sumi; #else assert(false); - return 0.f; -#endif -#else - assert(false); - return 0.f; #endif } static __dpct_inline__ float vec_dot_iq1_s_q8_1(const void *__restrict__ vbq, - const block_q8_1 *__restrict__ bq8_1, const int &iqs, - const uint32_t *iq1s_grid, const uint64_t *ksigns64) { + const block_q8_1 *__restrict__ bq8_1, const int &iqs, + const uint32_t *iq1s_grid_gpu) { #if QK_K == 256 const block_iq1_s * bq1 = (const block_iq1_s *) vbq; const int ib32 = iqs; - const uint8_t * qs = bq1->qs + 4*ib32; - const int8_t * q8 = bq8_1[ib32].qs; int sumi = 0; + const int * q8 = (const int *)bq8_1[ib32].qs; for (int l = 0; l < 4; ++l) { - const uint32_t * grid = (const uint32_t *)(iq1s_grid + qs[l]); - const uint32_t * signs = (const uint32_t *)(ksigns64 + (qs[l] >> 8)); - const int grid_l = dpct::vectorized_binary( - grid[0] ^ signs[0], signs[0], std::minus<>()); - const int grid_h = dpct::vectorized_binary( - grid[1] ^ signs[1], signs[1], std::minus<>()); - sumi = dpct::dp4a(grid_l, *((int *)q8 + 0), sumi); - sumi = dpct::dp4a(grid_h, *((int *)q8 + 1), sumi); - q8 += 8; + const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8))); + int grid0 = grid[0] & 0x0f0f0f0f; + int grid1 = (grid[0] >> 4) & 0x0f0f0f0f; + sumi = dpct::dp4a(q8[2 * l + 1], grid1, + dpct::dp4a(q8[2 * l + 0], grid0, sumi)); } - const float d = (float)bq1->d * bq8_1[ib32].ds[0] * 0.25f; - return d * sumi; + + const float delta = bq1->qh[ib32] & 0x8000 ? -1-IQ1S_DELTA : -1+IQ1S_DELTA; + const float d1q = (float)bq1->d * (2*((bq1->qh[ib32] >> 12) & 7) + 1); + const float d = d1q * bq8_1[ib32].ds[0]; + const float m = d1q * bq8_1[ib32].ds[1]; + return d * sumi + m * delta; +#else + assert(false); +#endif +} + +static __dpct_inline__ float +vec_dot_iq1_m_q8_1(const void *__restrict__ vbq, + const block_q8_1 *__restrict__ bq8_1, const int &iqs) { +#if QK_K == 256 + const block_iq1_m * bq1 = (const block_iq1_m *) vbq; + + const int ib32 = iqs; + int sumi[2] = {0, 0}; + float sumf[2] = {0.f, 0.f}; + + const int * q8 = (const int *)bq8_1[ib32].qs; + for (int l = 0; l < 4; ++l) { + const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 7) << 8))); + int grid0 = grid[0] & 0x0f0f0f0f; + int grid1 = (grid[0] >> 4) & 0x0f0f0f0f; + sumi[l / 2] = dpct::dp4a(q8[2 * l + 1], grid1, + dpct::dp4a(q8[2 * l + 0], grid0, sumi[l / 2])); + const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA; + const int sumy = dpct::dp4a(q8[2 * l + 1], 0x01010101, + dpct::dp4a(q8[2 * l + 0], 0x01010101, 0)); + sumf[l/2] += delta*sumy; + } + + iq1m_scale_t scale; + const uint16_t * sc = (const uint16_t *)bq1->scales; + scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); + const float d = (float)scale.f16 * bq8_1[ib32].ds[0]; + return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1)); +#else + assert(false); +#endif +} + +static __dpct_inline__ void get_int_from_table_16(const uint32_t &q4, + const uint8_t *values, + int &val1, int &val2) { + + uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32; + aux32 = q4 & 0x0f0f0f0f; + uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8); + uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8); + val1 = v1 | (v2 << 16); + aux32 = (q4 >> 4) & 0x0f0f0f0f; + v1 = values[q8[0]] | (values[q8[1]] << 8); + v2 = values[q8[2]] | (values[q8[3]] << 8); + val2 = v1 | (v2 << 16); +} + + +static __dpct_inline__ float +vec_dot_iq4_nl_q8_1(const void *__restrict__ vbq, + const block_q8_1 *__restrict__ bq8_1, const int &iqs) { + + const block_iq4_nl * bq = (const block_iq4_nl *) vbq; + + const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs; + const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs; + + const uint8_t * values = (const uint8_t *)kvalues_iq4nl; + + int v1, v2; + int sumi1 = 0, sumi2 = 0; + for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) { + const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16); + get_int_from_table_16(aux, values, v1, v2); + sumi1 = dpct::dp4a(v1, q8[l + 0], sumi1); + sumi2 = dpct::dp4a(v2, q8[l + 4], sumi2); + } + + const float d = (float)bq->d * bq8_1->ds[0]; + return d * (sumi1 + sumi2); +} + + +static __dpct_inline__ float +vec_dot_iq4_xs_q8_1(const void *__restrict__ vbq, + const block_q8_1 *__restrict__ bq8_1, const int &iqs) { + +#if QK_K == 256 + const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq; + const uint8_t * values = (const uint8_t *)kvalues_iq4nl; + + // iqs is 0...7 + const int ib32 = iqs; + const int32_t * q8 = (const int *)bq8_1[ib32].qs; + const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32; + const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4); + const float d = (float)bq4->d * (ls - 32) * bq8_1[ib32].ds[0]; + int v1, v2; + int sumi1 = 0, sumi2 = 0; + for (int j = 0; j < 4; ++j) { + get_int_from_table_16(q4[j], values, v1, v2); + sumi1 = dpct::dp4a(v1, q8[j + 0], sumi1); + sumi2 = dpct::dp4a(v2, q8[j + 4], sumi2); + } + return d * (sumi1 + sumi2); #else assert(false); - return 0.f; #endif } @@ -8061,8 +8320,7 @@ template static void template static void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows, - const sycl::nd_item<3> &item_ct1, - const uint32_t *iq3xxs_grid_ptr=nullptr, const uint64_t *ksigns64_ptr=nullptr) { + const sycl::nd_item<3> &item_ct1) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); @@ -8106,10 +8364,11 @@ static void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict_ } template -static void mul_mat_vec_q_iq2_xxs_q8_1(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows, - const sycl::nd_item<3> &item_ct1, - const uint64_t *iq2xxs_grid_ptr, const uint8_t *ksigns_iq2xs_ptr, - const uint8_t *kmask_iq2xs_ptr ) { +static void mul_mat_vec_q_iq2_xxs_q8_1(const void *__restrict__ vx, + const void *__restrict__ vy, + float *__restrict__ dst, const int ncols, + const int nrows, + const sycl::nd_item<3> &item_ct1) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); @@ -8137,7 +8396,7 @@ static void mul_mat_vec_q_iq2_xxs_q8_1(const void * __restrict__ vx, const void (item_ct1.get_local_id(2) % (qi / vdr)); // x block quant index when casting the quants to int - tmp += vec_dot_iq2_xxs_q8_1(&x[ibx], &y[iby], iqs, iq2xxs_grid_ptr, ksigns_iq2xs_ptr, kmask_iq2xs_ptr); + tmp += vec_dot_iq2_xxs_q8_1(&x[ibx], &y[iby], iqs, iq2xxs_grid, ksigns_iq2xs, kmask_iq2xs); } // sum up partial sums and write back result @@ -8153,9 +8412,11 @@ static void mul_mat_vec_q_iq2_xxs_q8_1(const void * __restrict__ vx, const void } template -static void mul_mat_vec_q_iq2_xs_q8_1(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows, - const sycl::nd_item<3> &item_ct1, - const uint64_t *iq2xs_grid_ptr, const uint64_t *ksigns64_ptr ) { +static void mul_mat_vec_q_iq2_xs_q8_1(const void *__restrict__ vx, + const void *__restrict__ vy, + float *__restrict__ dst, const int ncols, + const int nrows, + const sycl::nd_item<3> &item_ct1) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); @@ -8183,7 +8444,7 @@ static void mul_mat_vec_q_iq2_xs_q8_1(const void * __restrict__ vx, const void * (item_ct1.get_local_id(2) % (qi / vdr)); // x block quant index when casting the quants to int - tmp += vec_dot_iq2_xs_q8_1(&x[ibx], &y[iby], iqs, iq2xs_grid_ptr, ksigns64_ptr); + tmp += vec_dot_iq2_xs_q8_1(&x[ibx], &y[iby], iqs, iq2xs_grid, ksigns64); } // sum up partial sums and write back result @@ -8199,9 +8460,11 @@ static void mul_mat_vec_q_iq2_xs_q8_1(const void * __restrict__ vx, const void * } template -static void mul_mat_vec_q_iq3_xxs_q8_1(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows, - const sycl::nd_item<3> &item_ct1, - const uint32_t *iq3xxs_grid_ptr, const uint64_t *ksigns64_ptr ) { +static void mul_mat_vec_q_iq2_s_q8_1(const void *__restrict__ vx, + const void *__restrict__ vy, + float *__restrict__ dst, const int ncols, + const int nrows, + const sycl::nd_item<3> &item_ct1) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); @@ -8229,7 +8492,7 @@ static void mul_mat_vec_q_iq3_xxs_q8_1(const void * __restrict__ vx, const void (item_ct1.get_local_id(2) % (qi / vdr)); // x block quant index when casting the quants to int - tmp += vec_dot_iq3_xxs_q8_1(&x[ibx], &y[iby], iqs, iq3xxs_grid_ptr, ksigns64_ptr); + tmp += vec_dot_iq2_s_q8_1(&x[ibx], &y[iby], iqs); } // sum up partial sums and write back result @@ -8245,9 +8508,11 @@ static void mul_mat_vec_q_iq3_xxs_q8_1(const void * __restrict__ vx, const void } template -static void mul_mat_vec_q_iq3_s_q8_1(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows, - const sycl::nd_item<3> &item_ct1, - const uint32_t *iq3s_grid_ptr, const uint64_t *ksigns64_ptr ) { +static void mul_mat_vec_q_iq3_xxs_q8_1(const void *__restrict__ vx, + const void *__restrict__ vy, + float *__restrict__ dst, const int ncols, + const int nrows, + const sycl::nd_item<3> &item_ct1) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); @@ -8275,7 +8540,7 @@ static void mul_mat_vec_q_iq3_s_q8_1(const void * __restrict__ vx, const void * (item_ct1.get_local_id(2) % (qi / vdr)); // x block quant index when casting the quants to int - tmp += vec_dot_iq3_s_q8_1(&x[ibx], &y[iby], iqs, iq3s_grid_ptr, ksigns64_ptr); + tmp += vec_dot_iq3_xxs_q8_1(&x[ibx], &y[iby], iqs, iq3xxs_grid, ksigns64); } // sum up partial sums and write back result @@ -8291,9 +8556,11 @@ static void mul_mat_vec_q_iq3_s_q8_1(const void * __restrict__ vx, const void * } template -static void mul_mat_vec_q_iq1_s_q8_1(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows, - const sycl::nd_item<3> &item_ct1, - const uint32_t *iq1s_grid_ptr, const uint64_t *ksigns64_ptr ) { +static void mul_mat_vec_q_iq3_s_q8_1(const void *__restrict__ vx, + const void *__restrict__ vy, + float *__restrict__ dst, const int ncols, + const int nrows, + const sycl::nd_item<3> &item_ct1) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); @@ -8321,7 +8588,7 @@ static void mul_mat_vec_q_iq1_s_q8_1(const void * __restrict__ vx, const void * (item_ct1.get_local_id(2) % (qi / vdr)); // x block quant index when casting the quants to int - tmp += vec_dot_iq1_s_q8_1(&x[ibx], &y[iby], iqs, iq1s_grid_ptr, ksigns64_ptr); + tmp += vec_dot_iq3_s_q8_1(&x[ibx], &y[iby], iqs, iq3s_grid); } // sum up partial sums and write back result @@ -8336,6 +8603,200 @@ static void mul_mat_vec_q_iq1_s_q8_1(const void * __restrict__ vx, const void * } } +template +static void mul_mat_vec_q_iq1_s_q8_1(const void *__restrict__ vx, + const void *__restrict__ vy, + float *__restrict__ dst, const int ncols, + const int nrows, + const sycl::nd_item<3> &item_ct1) { + const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + + item_ct1.get_local_id(1); + + if (row >= nrows) { + return; + } + + const int blocks_per_row = ncols / qk; + const int blocks_per_warp = vdr * WARP_SIZE / qi; + +// partial sum for each thread + float tmp = 0.0f; + + const block_q_t * x = (const block_q_t *) vx; + const block_q8_1 * y = (const block_q8_1 *) vy; + + for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; + i += blocks_per_warp) { + const int ibx = row*blocks_per_row + i; // x block index + + const int iby = i * (qk/QK8_1); // y block index that aligns with ibx + + const int iqs = + vdr * + (item_ct1.get_local_id(2) % + (qi / vdr)); // x block quant index when casting the quants to int + + tmp += vec_dot_iq1_s_q8_1(&x[ibx], &y[iby], iqs, iq1s_grid_gpu); + } + + // sum up partial sums and write back result +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + tmp += + dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); + } + + if (item_ct1.get_local_id(2) == 0) { + dst[row] = tmp; + } +} + +template +static void mul_mat_vec_q_iq1_m_q8_1(const void *__restrict__ vx, + const void *__restrict__ vy, + float *__restrict__ dst, const int ncols, + const int nrows, + const sycl::nd_item<3> &item_ct1) { + const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + + item_ct1.get_local_id(1); + + if (row >= nrows) { + return; + } + + const int blocks_per_row = ncols / qk; + const int blocks_per_warp = vdr * WARP_SIZE / qi; + +// partial sum for each thread + float tmp = 0.0f; + + const block_q_t * x = (const block_q_t *) vx; + const block_q8_1 * y = (const block_q8_1 *) vy; + + for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; + i += blocks_per_warp) { + const int ibx = row*blocks_per_row + i; // x block index + + const int iby = i * (qk/QK8_1); // y block index that aligns with ibx + + const int iqs = + vdr * + (item_ct1.get_local_id(2) % + (qi / vdr)); // x block quant index when casting the quants to int + + tmp += vec_dot_iq1_m_q8_1(&x[ibx], &y[iby], iqs); + } + + // sum up partial sums and write back result +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + tmp += + dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); + } + + if (item_ct1.get_local_id(2) == 0) { + dst[row] = tmp; + } +} + +template +static void mul_mat_vec_q_iq4_nl_q8_1(const void *__restrict__ vx, + const void *__restrict__ vy, + float *__restrict__ dst, const int ncols, + const int nrows, + const sycl::nd_item<3> &item_ct1) { + const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + + item_ct1.get_local_id(1); + + if (row >= nrows) { + return; + } + + const int blocks_per_row = ncols / qk; + const int blocks_per_warp = vdr * WARP_SIZE / qi; + +// partial sum for each thread + float tmp = 0.0f; + + const block_q_t * x = (const block_q_t *) vx; + const block_q8_1 * y = (const block_q8_1 *) vy; + + for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; + i += blocks_per_warp) { + const int ibx = row*blocks_per_row + i; // x block index + + const int iby = i * (qk/QK8_1); // y block index that aligns with ibx + + const int iqs = + vdr * + (item_ct1.get_local_id(2) % + (qi / vdr)); // x block quant index when casting the quants to int + + tmp += vec_dot_iq4_nl_q8_1(&x[ibx], &y[iby], iqs); + } + + // sum up partial sums and write back result +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + tmp += + dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); + } + + if (item_ct1.get_local_id(2) == 0) { + dst[row] = tmp; + } +} + + +template +static void mul_mat_vec_q_iq4_xs_q8_1(const void *__restrict__ vx, + const void *__restrict__ vy, + float *__restrict__ dst, const int ncols, + const int nrows, + const sycl::nd_item<3> &item_ct1) { + const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + + item_ct1.get_local_id(1); + + if (row >= nrows) { + return; + } + + const int blocks_per_row = ncols / qk; + const int blocks_per_warp = vdr * WARP_SIZE / qi; + +// partial sum for each thread + float tmp = 0.0f; + + const block_q_t * x = (const block_q_t *) vx; + const block_q8_1 * y = (const block_q8_1 *) vy; + + for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; + i += blocks_per_warp) { + const int ibx = row*blocks_per_row + i; // x block index + + const int iby = i * (qk/QK8_1); // y block index that aligns with ibx + + const int iqs = + vdr * + (item_ct1.get_local_id(2) % + (qi / vdr)); // x block quant index when casting the quants to int + + tmp += vec_dot_iq4_xs_q8_1(&x[ibx], &y[iby], iqs); + } + + // sum up partial sums and write back result +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + tmp += + dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); + } + + if (item_ct1.get_local_id(2) == 0) { + dst[row] = tmp; + } +} + + template static void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows, const sycl::nd_item<3> &item_ct1) { @@ -8897,64 +9358,71 @@ static void k_sum_rows_f32(const float * x, float * dst, const int ncols, } } + template -static inline void swap(T & a, T & b) { +static inline void ggml_sycl_swap(T & a, T & b) { T tmp = a; a = b; b = tmp; } -template -static void k_argsort_f32_i32(const float * x, int * dst, const int ncols, - const sycl::nd_item<3> &item_ct1) { +template +__dpct_inline__ static void +k_argsort_f32_i32(const float *x, int *dst, const int ncols, int ncols_pad, + const sycl::nd_item<3> &item_ct1, uint8_t *dpct_local) { // bitonic sort int col = item_ct1.get_local_id(2); int row = item_ct1.get_group(1); - if (col >= ncols) return; + if (col >= ncols_pad) { + return; + } const float * x_row = x + row * ncols; - int * dst_row = dst + row * ncols; + auto dst_row = (int *)dpct_local; // initialize indices - if (col < ncols) { - dst_row[col] = col; - } - /* - DPCT1065:58: Consider replacing sycl::nd_item::barrier() with - sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better - performance if there is no access to global memory. - */ - item_ct1.barrier(); + dst_row[col] = col; - for (int k = 2; k <= ncols; k *= 2) { + item_ct1.barrier(sycl::access::fence_space::local_space); + + for (int k = 2; k <= ncols_pad; k *= 2) { for (int j = k / 2; j > 0; j /= 2) { int ixj = col ^ j; if (ixj > col) { if ((col & k) == 0) { - if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) { - swap(dst_row[col], dst_row[ixj]); + if (dst_row[col] >= ncols || + (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ? + x_row[dst_row[col]] > x_row[dst_row[ixj]] : + x_row[dst_row[col]] < x_row[dst_row[ixj]])) + ) { + ggml_sycl_swap(dst_row[col], dst_row[ixj]); } } else { - if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) { - swap(dst_row[col], dst_row[ixj]); + if (dst_row[ixj] >= ncols || + (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ? + x_row[dst_row[col]] < x_row[dst_row[ixj]] : + x_row[dst_row[col]] > x_row[dst_row[ixj]])) + ) { + ggml_sycl_swap(dst_row[col], dst_row[ixj]); } } } /* - DPCT1118:11: SYCL group functions and algorithms must be encountered + DPCT1118:1: SYCL group functions and algorithms must be encountered in converged control flow. You may need to adjust the code. */ - /* - DPCT1065:59: Consider replacing sycl::nd_item::barrier() with - sycl::nd_item::barrier(sycl::access::fence_space::local_space) for - better performance if there is no access to global memory. - */ - item_ct1.barrier(); + item_ct1.barrier(sycl::access::fence_space::local_space); } } + + // copy the result to dst without the padding + if (col < ncols) { + dst[row * ncols + col] = dst_row[col]; + } } + static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past, const sycl::nd_item<3> &item_ct1) { const int col = item_ct1.get_local_range(1) * item_ct1.get_group(1) + @@ -9933,28 +10401,64 @@ static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int k, #endif } +template +static void dequantize_row_iq1_s_sycl(const void *vx, dst_t *y, const int k, + dpct::queue_ptr stream) { + const int nb = k / QK_K; + { + dpct::has_capability_or_fail(stream->get_device(), + {sycl::aspect::fp16}); + + stream->submit([&](sycl::handler &cgh) { + cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) * + sycl::range<3>(1, 1, 32), + sycl::range<3>(1, 1, 32)), + [=](sycl::nd_item<3> item_ct1) { + dequantize_block_iq1_s( + vx, y, item_ct1, iq1s_grid_gpu + ); + }); + }); + } +} + +template +static void dequantize_row_iq1_m_sycl(const void *vx, dst_t *y, const int k, + dpct::queue_ptr stream) { + const int nb = k / QK_K; + { + dpct::has_capability_or_fail(stream->get_device(), + {sycl::aspect::fp16}); + + stream->submit([&](sycl::handler &cgh) { + cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) * + sycl::range<3>(1, 1, 32), + sycl::range<3>(1, 1, 32)), + [=](sycl::nd_item<3> item_ct1) { + dequantize_block_iq1_m( + vx, y, item_ct1, iq1s_grid_gpu + ); + }); + }); + } +} template static void dequantize_row_iq2_xxs_sycl(const void *vx, dst_t *y, const int k, dpct::queue_ptr stream) { const int nb = k / QK_K; { - dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { - auto iq2xxs_grid_ptr_ct1 = &iq2xxs_grid[0]; - auto ksigns_iq2xs_ptr_ct1 = &ksigns_iq2xs[0]; - auto kmask_iq2xs_ptr_ct1 = &kmask_iq2xs[0]; - cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) * sycl::range<3>(1, 1, 32), sycl::range<3>(1, 1, 32)), [=](sycl::nd_item<3> item_ct1) { dequantize_block_iq2_xxs( - vx, y, item_ct1, iq2xxs_grid_ptr_ct1, - ksigns_iq2xs_ptr_ct1, kmask_iq2xs_ptr_ct1); + vx, y, item_ct1, iq2xxs_grid, + ksigns_iq2xs, kmask_iq2xs); }); }); } @@ -9965,48 +10469,58 @@ static void dequantize_row_iq2_xs_sycl(const void *vx, dst_t *y, const int k, dpct::queue_ptr stream) { const int nb = k / QK_K; { - dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { - auto iq2xs_grid_ptr_ct1 = &iq2xs_grid[0]; - auto ksigns_iq2xs_ptr_ct1 = &ksigns_iq2xs[0]; - auto kmask_iq2xs_ptr_ct1 = &kmask_iq2xs[0]; - cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) * sycl::range<3>(1, 1, 32), sycl::range<3>(1, 1, 32)), [=](sycl::nd_item<3> item_ct1) { dequantize_block_iq2_xs( - vx, y, item_ct1, iq2xs_grid_ptr_ct1, - ksigns_iq2xs_ptr_ct1, kmask_iq2xs_ptr_ct1); + vx, y, item_ct1, iq2xs_grid, + ksigns_iq2xs, kmask_iq2xs); }); }); } } template -static void dequantize_row_iq3_xxs_sycl(const void *vx, dst_t *y, const int k, - dpct::queue_ptr stream) { +static void dequantize_row_iq2_s_sycl(const void *vx, dst_t *y, const int k, + dpct::queue_ptr stream) { const int nb = k / QK_K; { - dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { - auto iq3xxs_grid_ptr_ct1 = &iq3xxs_grid[0]; - auto ksigns_iq2xs_ptr_ct1 = &ksigns_iq2xs[0]; - auto kmask_iq2xs_ptr_ct1 = &kmask_iq2xs[0]; + cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) * + sycl::range<3>(1, 1, 32), + sycl::range<3>(1, 1, 32)), + [=](sycl::nd_item<3> item_ct1) { + dequantize_block_iq2_s(vx, y, item_ct1); + }); + }); + } +} + +template +static void dequantize_row_iq3_xxs_sycl(const void *vx, dst_t *y, const int k, + dpct::queue_ptr stream) { + const int nb = k / QK_K; + { + dpct::has_capability_or_fail(stream->get_device(), + {sycl::aspect::fp16}); + + stream->submit([&](sycl::handler &cgh) { cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) * sycl::range<3>(1, 1, 32), sycl::range<3>(1, 1, 32)), [=](sycl::nd_item<3> item_ct1) { dequantize_block_iq3_xxs( - vx, y, item_ct1, iq3xxs_grid_ptr_ct1, - ksigns_iq2xs_ptr_ct1, kmask_iq2xs_ptr_ct1); + vx, y, item_ct1, iq3xxs_grid, + ksigns_iq2xs, kmask_iq2xs); }); }); } @@ -10017,53 +10531,68 @@ static void dequantize_row_iq3_s_sycl(const void *vx, dst_t *y, const int k, dpct::queue_ptr stream) { const int nb = k / QK_K; { - dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); stream->submit([&](sycl::handler &cgh) { - auto iq3s_grid_ptr_ct1 = &iq3s_grid[0]; - auto ksigns_iq2xs_ptr_ct1 = &ksigns_iq2xs[0]; - auto kmask_iq2xs_ptr_ct1 = &kmask_iq2xs[0]; - cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) * sycl::range<3>(1, 1, 32), sycl::range<3>(1, 1, 32)), [=](sycl::nd_item<3> item_ct1) { dequantize_block_iq3_s( - vx, y, item_ct1, iq3s_grid_ptr_ct1, - ksigns_iq2xs_ptr_ct1, kmask_iq2xs_ptr_ct1); + vx, y, item_ct1, kmask_iq2xs, iq3s_grid); }); }); } } template -static void dequantize_row_iq1_s_sycl(const void *vx, dst_t *y, const int k, - dpct::queue_ptr stream) { - const int nb = k / QK_K; - { +static void dequantize_row_iq4_xs_sycl(const void *vx, dst_t *y, const int k, + dpct::queue_ptr stream) { + const int nb = (k + QK_K - 1) / QK_K; +#if QK_K == 64 + dequantize_row_iq4_nl_sycl(vx, y, k, stream); +#else + { + dpct::has_capability_or_fail(stream->get_device(), + {sycl::aspect::fp16}); - dpct::has_capability_or_fail(stream->get_device(), - {sycl::aspect::fp16}); - - stream->submit([&](sycl::handler &cgh) { - auto iq1s_grid_ptr_ct1 = &iq1s_grid_gpu[0]; - auto ksigns_iq2xs_ptr_ct1 = &ksigns_iq2xs[0]; - auto kmask_iq2xs_ptr_ct1 = &kmask_iq2xs[0]; - - cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) * - sycl::range<3>(1, 1, 32), - sycl::range<3>(1, 1, 32)), - [=](sycl::nd_item<3> item_ct1) { - dequantize_block_iq1_s( - vx, y, item_ct1, iq1s_grid_ptr_ct1, - ksigns_iq2xs_ptr_ct1, kmask_iq2xs_ptr_ct1); - }); - }); - } + stream->submit([&](sycl::handler &cgh) { + cgh.parallel_for( + sycl::nd_range<3>(sycl::range<3>(1, 1, nb) * + sycl::range<3>(1, 1, 32), + sycl::range<3>(1, 1, 32)), + [=](sycl::nd_item<3> item_ct1) { + dequantize_block_iq4_xs(vx, y, item_ct1); + }); + }); + } +#endif } + +template +static void dequantize_row_iq4_nl_sycl(const void *vx, dst_t *y, const int k, + dpct::queue_ptr stream) { + const int nb = (k + QK_K - 1) / QK_K; + { + dpct::has_capability_or_fail(stream->get_device(), + {sycl::aspect::fp16}); + + stream->submit([&](sycl::handler &cgh) { + cgh.parallel_for( + sycl::nd_range<3>(sycl::range<3>(1, 1, nb) * + sycl::range<3>(1, 1, 32), + sycl::range<3>(1, 1, 32)), + [=](sycl::nd_item<3> item_ct1) { + dequantize_block_iq4_nl(vx, y, item_ct1); + }); + }); + } +} + + + template static void convert_unary_sycl(const void *__restrict__ vx, dst_t *__restrict__ y, const int k, @@ -10108,16 +10637,24 @@ static to_fp16_sycl_t ggml_get_to_fp16_sycl(ggml_type type) try { return dequantize_row_q5_K_sycl; case GGML_TYPE_Q6_K: return dequantize_row_q6_K_sycl; + case GGML_TYPE_IQ1_S: + return dequantize_row_iq1_s_sycl; + case GGML_TYPE_IQ1_M: + return dequantize_row_iq1_m_sycl; case GGML_TYPE_IQ2_XXS: return dequantize_row_iq2_xxs_sycl; case GGML_TYPE_IQ2_XS: return dequantize_row_iq2_xs_sycl; + case GGML_TYPE_IQ2_S: + return dequantize_row_iq2_s_sycl; case GGML_TYPE_IQ3_XXS: return dequantize_row_iq3_xxs_sycl; case GGML_TYPE_IQ3_S: return dequantize_row_iq3_s_sycl; - case GGML_TYPE_IQ1_S: - return dequantize_row_iq1_s_sycl; + case GGML_TYPE_IQ4_XS: + return dequantize_row_iq4_xs_sycl; + case GGML_TYPE_IQ4_NL: + return dequantize_row_iq4_nl_sycl; case GGML_TYPE_F32: return convert_unary_sycl; default: @@ -10152,16 +10689,24 @@ static to_fp32_sycl_t ggml_get_to_fp32_sycl(ggml_type type) { return dequantize_row_q5_K_sycl; case GGML_TYPE_Q6_K: return dequantize_row_q6_K_sycl; + case GGML_TYPE_IQ1_S: + return dequantize_row_iq1_s_sycl; + case GGML_TYPE_IQ1_M: + return dequantize_row_iq1_m_sycl; case GGML_TYPE_IQ2_XXS: return dequantize_row_iq2_xxs_sycl; case GGML_TYPE_IQ2_XS: return dequantize_row_iq2_xs_sycl; + case GGML_TYPE_IQ2_S: + return dequantize_row_iq2_s_sycl; case GGML_TYPE_IQ3_XXS: return dequantize_row_iq3_xxs_sycl; case GGML_TYPE_IQ3_S: return dequantize_row_iq3_s_sycl; - case GGML_TYPE_IQ1_S: - return dequantize_row_iq1_s_sycl; + case GGML_TYPE_IQ4_XS: + return dequantize_row_iq4_xs_sycl; + case GGML_TYPE_IQ4_NL: + return dequantize_row_iq4_nl_sycl; case GGML_TYPE_F16: return convert_unary_sycl; default: @@ -10624,19 +11169,13 @@ static void mul_mat_vec_iq2_xxs_q8_1_sycl(const void *vx, const void *vy, const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { - stream->submit([&](sycl::handler &cgh) { - auto iq2xxs_grid_ptr_ct1 = &iq2xxs_grid[0]; - auto ksigns_iq2xs_ptr_ct1 = &ksigns_iq2xs[0]; - auto kmask_iq2xs_ptr_ct1 = &kmask_iq2xs[0]; - cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { mul_mat_vec_q_iq2_xxs_q8_1( - vx, vy, dst, ncols, nrows, item_ct1, - iq2xxs_grid_ptr_ct1, ksigns_iq2xs_ptr_ct1, kmask_iq2xs_ptr_ct1); + vx, vy, dst, ncols, nrows, item_ct1); }); }); } @@ -10661,8 +11200,32 @@ static void mul_mat_vec_iq2_xs_q8_1_sycl(const void *vx, const void *vy, [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { mul_mat_vec_q_iq2_xs_q8_1( - vx, vy, dst, ncols, nrows, item_ct1, - iq2xs_grid_ptr_ct1, ksigns64_ptr_ct1); + vx, vy, dst, ncols, nrows, item_ct1); + }); + }); + } +} + +static void mul_mat_vec_iq2_s_q8_1_sycl(const void *vx, const void *vy, + float *dst, const int ncols, + const int nrows, + dpct::queue_ptr stream) { + GGML_ASSERT(ncols % QK_K == 0); + const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; + const sycl::range<3> block_nums(1, 1, block_num_y); + const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); + { + + stream->submit([&](sycl::handler &cgh) { + auto iq2xs_grid_ptr_ct1 = &iq2xs_grid[0]; + auto ksigns64_ptr_ct1 = &ksigns64[0]; + + cgh.parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) + [[intel::reqd_sub_group_size(32)]] { + mul_mat_vec_q_iq2_s_q8_1( + vx, vy, dst, ncols, nrows, item_ct1); }); }); } @@ -10687,8 +11250,7 @@ static void mul_mat_vec_iq3_xxs_q8_1_sycl(const void *vx, const void *vy, [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { mul_mat_vec_q_iq3_xxs_q8_1( - vx, vy, dst, ncols, nrows, item_ct1, - iq3xxs_grid_ptr_ct1, ksigns64_ptr_ct1); + vx, vy, dst, ncols, nrows, item_ct1); }); }); } @@ -10706,15 +11268,13 @@ static void mul_mat_vec_iq3_s_q8_1_sycl(const void *vx, const void *vy, stream->submit([&](sycl::handler &cgh) { auto iq3s_grid_ptr_ct1 = &iq3s_grid[0]; - auto ksigns64_ptr_ct1 = &ksigns64[0]; cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { mul_mat_vec_q_iq3_s_q8_1( - vx, vy, dst, ncols, nrows, item_ct1, - iq3s_grid_ptr_ct1, ksigns64_ptr_ct1); + vx, vy, dst, ncols, nrows, item_ct1); }); }); } @@ -10739,8 +11299,72 @@ static void mul_mat_vec_iq1_s_q8_1_sycl(const void *vx, const void *vy, [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] { mul_mat_vec_q_iq1_s_q8_1( - vx, vy, dst, ncols, nrows, item_ct1, - iq1s_grid_ptr_ct1, ksigns64_ptr_ct1); + vx, vy, dst, ncols, nrows, item_ct1); + }); + }); + } +} + +static void mul_mat_vec_iq1_m_q8_1_sycl(const void *vx, const void *vy, + float *dst, const int ncols, + const int nrows, + dpct::queue_ptr stream) { + GGML_ASSERT(ncols % QK_K == 0); + const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; + const sycl::range<3> block_nums(1, 1, block_num_y); + const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); + { + stream->submit([&](sycl::handler &cgh) { + cgh.parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) + [[intel::reqd_sub_group_size(32)]] { + mul_mat_vec_q_iq1_m_q8_1( + vx, vy, dst, ncols, nrows, item_ct1); + }); + }); + } +} + +static void mul_mat_vec_iq4_nl_q8_1_sycl(const void *vx, const void *vy, + float *dst, const int ncols, + const int nrows, + dpct::queue_ptr stream) { + GGML_ASSERT(ncols % QK4_NL == 0); + const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; + const sycl::range<3> block_nums(1, 1, block_num_y); + const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); + { + + stream->submit([&](sycl::handler &cgh) { + cgh.parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) + [[intel::reqd_sub_group_size(32)]] { + mul_mat_vec_q_iq4_nl_q8_1( + vx, vy, dst, ncols, nrows, item_ct1); + }); + }); + } +} + +static void mul_mat_vec_iq4_xs_q8_1_sycl(const void *vx, const void *vy, + float *dst, const int ncols, + const int nrows, + dpct::queue_ptr stream) { + GGML_ASSERT(ncols % QK_K == 0); + const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; + const sycl::range<3> block_nums(1, 1, block_num_y); + const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); + { + + stream->submit([&](sycl::handler &cgh) { + cgh.parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) + [[intel::reqd_sub_group_size(32)]] { + mul_mat_vec_q_iq4_xs_q8_1( + vx, vy, dst, ncols, nrows, item_ct1); }); }); } @@ -12364,36 +12988,54 @@ static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols, }); } +static int next_power_of_2(int x) { + int n = 1; + while (n < x) { + n *= 2; + } + return n; +} + static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols, const int nrows, ggml_sort_order order, dpct::queue_ptr stream) { // bitonic sort requires ncols to be power of 2 - GGML_ASSERT((ncols & (ncols - 1)) == 0); + const int ncols_pad = next_power_of_2(ncols); - const sycl::range<3> block_dims(1, 1, ncols); + const sycl::range<3> block_dims(1, 1, ncols_pad); const sycl::range<3> block_nums(1, nrows, 1); + const size_t shared_mem = ncols_pad * sizeof(int); + + // GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb); + if (order == GGML_SORT_ORDER_ASC) { - /* - DPCT1049:44: The work-group size passed to the SYCL kernel may exceed - the limit. To get the device limit, query - info::device::max_work_group_size. Adjust the work-group size if needed. - */ - stream->parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) { - k_argsort_f32_i32(x, dst, ncols, item_ct1); - }); + stream->submit([&](sycl::handler &cgh) { + sycl::local_accessor dpct_local_acc_ct1( + sycl::range<1>(shared_mem), cgh); + + cgh.parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) { + k_argsort_f32_i32( + x, dst, ncols, ncols_pad, item_ct1, + dpct_local_acc_ct1.get_multi_ptr() + .get()); + }); + }); } else if (order == GGML_SORT_ORDER_DESC) { - /* - DPCT1049:45: The work-group size passed to the SYCL kernel may exceed - the limit. To get the device limit, query - info::device::max_work_group_size. Adjust the work-group size if needed. - */ - stream->parallel_for( - sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) { - k_argsort_f32_i32(x, dst, ncols, item_ct1); - }); + stream->submit([&](sycl::handler &cgh) { + sycl::local_accessor dpct_local_acc_ct1( + sycl::range<1>(shared_mem), cgh); + + cgh.parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) { + k_argsort_f32_i32( + x, dst, ncols, ncols_pad, item_ct1, + dpct_local_acc_ct1.get_multi_ptr() + .get()); + }); + }); } else { GGML_ASSERT(false); } @@ -13521,8 +14163,12 @@ static int64_t get_row_rounding(ggml_type type, const std::array= VER_GEN9 ? 128 : 64; case GGML_TYPE_IQ3_S: return max_compute_capability >= VER_GEN9 ? 128 : 64; @@ -13541,11 +14187,20 @@ inline void ggml_sycl_op_mul_mat_vec_q( const int64_t src1_ncols, const int64_t src1_padded_row_size, const dpct::queue_ptr &stream) { - GGML_ASSERT(ggml_nrows(src1) == 1); + const int64_t ne10 = src1->ne[0]; + GGML_ASSERT(ne10 % QK8_1 == 0); const int64_t ne00 = src0->ne[0]; const int64_t row_diff = row_high - row_low; + int id; + SYCL_CHECK( + CHECK_TRY_ERROR(id = get_current_device_id())); + + // the main device has a larger memory buffer to hold the results from all GPUs + // nrows_dst == nrows of the matrix that the kernel writes into + const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne00 : row_diff; + switch (src0->type) { case GGML_TYPE_Q4_0: mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); @@ -13577,20 +14232,32 @@ inline void ggml_sycl_op_mul_mat_vec_q( case GGML_TYPE_Q6_K: mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); break; + case GGML_TYPE_IQ1_S: + mul_mat_vec_iq1_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_IQ1_M: + mul_mat_vec_iq1_m_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; case GGML_TYPE_IQ2_XXS: mul_mat_vec_iq2_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); break; case GGML_TYPE_IQ2_XS: mul_mat_vec_iq2_xs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); break; + case GGML_TYPE_IQ2_S: + mul_mat_vec_iq2_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; case GGML_TYPE_IQ3_XXS: mul_mat_vec_iq3_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); break; case GGML_TYPE_IQ3_S: mul_mat_vec_iq3_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); break; - case GGML_TYPE_IQ1_S: - mul_mat_vec_iq1_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + case GGML_TYPE_IQ4_NL: + mul_mat_vec_iq4_nl_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); + break; + case GGML_TYPE_IQ4_XS: + mul_mat_vec_iq4_xs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream); break; default: GGML_ASSERT(false); @@ -13672,6 +14339,7 @@ inline void ggml_sycl_op_dequantize_mul_mat_vec( convert_mul_mat_vec_f16_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); break; default: + printf("ggml_sycl_op_dequantize_mul_mat_vec unsupported GGML_TYPE %d\n", src0->type); GGML_ASSERT(false); break; } @@ -14526,8 +15194,8 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0, src1_padded_col_size = (i0 * ne11 + src1_col_0) * ne10; } // do the computation - op(src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i, - dev[i].row_low, dev[i].row_high, src1_ncols, src1_padded_col_size, stream); + SYCL_CHECK(CHECK_TRY_ERROR(op(src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i, + dev[i].row_low, dev[i].row_high, src1_ncols, src1_padded_col_size, stream))); /* DPCT1010:93: SYCL uses exceptions to report errors and does not use the error codes. The call was replaced with 0. You need to @@ -15108,7 +15776,14 @@ static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1 #ifdef GGML_SYCL_FORCE_DMMV const bool use_mul_mat_vec_q = false; #else - const bool use_mul_mat_vec_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type) && ggml_nrows(src1) == 1; + bool use_mul_mat_vec_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type) && ggml_nrows(src1) == 1; + use_mul_mat_vec_q = use_mul_mat_vec_q || + (src0->type == GGML_TYPE_IQ2_XXS) || (src0->type == GGML_TYPE_IQ2_XS) || (src0->type == GGML_TYPE_IQ2_S) || + (src0->type == GGML_TYPE_IQ3_XXS) || (src0->type == GGML_TYPE_IQ3_S) || + (src0->type == GGML_TYPE_IQ4_NL) || (src0->type == GGML_TYPE_IQ4_XS) || + (src0->type == GGML_TYPE_IQ1_S) || (src0->type == GGML_TYPE_IQ1_M); + + #endif // GGML_SYCL_FORCE_DMMV if (use_mul_mat_vec_q) { @@ -16968,9 +17643,14 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons return false; } ggml_type a_type = a->type; - if (a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ2_S || - a_type == GGML_TYPE_IQ4_XS) { - return false; + if (a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ4_XS || + a_type == GGML_TYPE_IQ3_XXS || a_type == GGML_TYPE_IQ3_S || + a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ2_S || + a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ1_M + ) { + if (b->ne[1] == 1 && ggml_nrows(b) > 1) { + return false; + } } return true; } break;