mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 05:48:47 +01:00
server: concurrency fix + monitoring - add /metrics prometheus compatible endpoint (#5708)
* server: monitoring - add /metrics prometheus compatible endpoint * server: concurrency issue, when 2 task are waiting for results, only one call thread is notified * server: metrics - move to a dedicated struct
This commit is contained in:
parent
1289408817
commit
d52d7819b8
@ -41,6 +41,7 @@ see https://github.com/ggerganov/llama.cpp/issues/1437
|
|||||||
- `--grp-attn-w`: Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`
|
- `--grp-attn-w`: Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`
|
||||||
- `-n, --n-predict`: Set the maximum tokens to predict (default: -1)
|
- `-n, --n-predict`: Set the maximum tokens to predict (default: -1)
|
||||||
- `--slots-endpoint-disable`: To disable slots state monitoring endpoint. Slots state may contain user data, prompts included.
|
- `--slots-endpoint-disable`: To disable slots state monitoring endpoint. Slots state may contain user data, prompts included.
|
||||||
|
- `--metrics`: enable prometheus `/metrics` compatible endpoint (default: disabled)
|
||||||
- `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name (default: template taken from model's metadata). We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
|
- `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name (default: template taken from model's metadata). We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
|
||||||
|
|
||||||
## Build
|
## Build
|
||||||
@ -457,6 +458,18 @@ Notice that each `probs` is an array of length `n_probs`.
|
|||||||
]
|
]
|
||||||
```
|
```
|
||||||
|
|
||||||
|
- **GET** `/metrics`: [Prometheus](https://prometheus.io/) compatible metrics exporter endpoint if `--metrics` is enabled:
|
||||||
|
|
||||||
|
Available metrics:
|
||||||
|
- `llamacpp:prompt_tokens_total`: Number of prompt tokens processed.
|
||||||
|
- `llamacpp:tokens_predicted_total`: Number of generation tokens processed.
|
||||||
|
- `llamacpp:prompt_tokens_seconds`: Average prompt throughput in tokens/s.
|
||||||
|
- `llamacpp:predicted_tokens_seconds`: Average generation throughput in tokens/s.
|
||||||
|
- `llamacpp:kv_cache_usage_ratio`: KV-cache usage. 1 means 100 percent usage.
|
||||||
|
- `llamacpp:kv_cache_tokens`: KV-cache tokens.
|
||||||
|
- `llamacpp:requests_processing`: Number of request processing.
|
||||||
|
- `llamacpp:requests_deferred`: Number of request deferred.
|
||||||
|
|
||||||
## More examples
|
## More examples
|
||||||
|
|
||||||
### Change system prompt on runtime
|
### Change system prompt on runtime
|
||||||
|
@ -43,6 +43,7 @@ struct server_params
|
|||||||
int32_t read_timeout = 600;
|
int32_t read_timeout = 600;
|
||||||
int32_t write_timeout = 600;
|
int32_t write_timeout = 600;
|
||||||
bool slots_endpoint = true;
|
bool slots_endpoint = true;
|
||||||
|
bool metrics_endpoint = false;
|
||||||
};
|
};
|
||||||
|
|
||||||
bool server_verbose = false;
|
bool server_verbose = false;
|
||||||
@ -310,6 +311,39 @@ struct llama_client_slot
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
struct llama_metrics {
|
||||||
|
uint64_t n_prompt_tokens_processed_total = 0;
|
||||||
|
uint64_t n_tokens_predicted_total = 0;
|
||||||
|
|
||||||
|
uint64_t n_prompt_tokens_processed = 0;
|
||||||
|
uint64_t t_prompt_processing = 0;
|
||||||
|
|
||||||
|
uint64_t n_tokens_predicted = 0;
|
||||||
|
uint64_t t_tokens_generation = 0;
|
||||||
|
|
||||||
|
|
||||||
|
void on_prompt_eval(const llama_client_slot &slot) {
|
||||||
|
n_prompt_tokens_processed_total += slot.num_prompt_tokens_processed;
|
||||||
|
|
||||||
|
n_prompt_tokens_processed += slot.num_prompt_tokens_processed;
|
||||||
|
t_prompt_processing += slot.t_prompt_processing;
|
||||||
|
}
|
||||||
|
|
||||||
|
void on_prediction(const llama_client_slot &slot) {
|
||||||
|
n_tokens_predicted_total += slot.n_decoded;
|
||||||
|
|
||||||
|
n_tokens_predicted += slot.n_decoded;
|
||||||
|
t_tokens_generation += slot.t_token_generation;
|
||||||
|
}
|
||||||
|
|
||||||
|
void reset_bucket() {
|
||||||
|
n_prompt_tokens_processed = 0;
|
||||||
|
t_prompt_processing = 0;
|
||||||
|
n_tokens_predicted = 0;
|
||||||
|
t_tokens_generation = 0;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
struct llama_server_context
|
struct llama_server_context
|
||||||
{
|
{
|
||||||
llama_model *model = nullptr;
|
llama_model *model = nullptr;
|
||||||
@ -344,6 +378,8 @@ struct llama_server_context
|
|||||||
llama_server_queue queue_tasks;
|
llama_server_queue queue_tasks;
|
||||||
llama_server_response queue_results;
|
llama_server_response queue_results;
|
||||||
|
|
||||||
|
llama_metrics metrics;
|
||||||
|
|
||||||
~llama_server_context()
|
~llama_server_context()
|
||||||
{
|
{
|
||||||
if (ctx)
|
if (ctx)
|
||||||
@ -1404,7 +1440,7 @@ struct llama_server_context
|
|||||||
case TASK_TYPE_NEXT_RESPONSE: {
|
case TASK_TYPE_NEXT_RESPONSE: {
|
||||||
// do nothing
|
// do nothing
|
||||||
} break;
|
} break;
|
||||||
case TASK_TYPE_SLOTS_DATA: {
|
case TASK_TYPE_METRICS: {
|
||||||
json slots_data = json::array();
|
json slots_data = json::array();
|
||||||
int n_idle_slots = 0;
|
int n_idle_slots = 0;
|
||||||
int n_processing_slots = 0;
|
int n_processing_slots = 0;
|
||||||
@ -1440,8 +1476,22 @@ struct llama_server_context
|
|||||||
res.result_json = {
|
res.result_json = {
|
||||||
{ "idle", n_idle_slots },
|
{ "idle", n_idle_slots },
|
||||||
{ "processing", n_processing_slots },
|
{ "processing", n_processing_slots },
|
||||||
{ "slots", slots_data }
|
{ "deferred", queue_tasks.queue_tasks_deferred.size() },
|
||||||
|
|
||||||
|
{ "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
|
||||||
|
{ "n_tokens_predicted_total", metrics.n_tokens_predicted_total},
|
||||||
|
|
||||||
|
{ "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed},
|
||||||
|
{ "t_prompt_processing", metrics.t_prompt_processing},
|
||||||
|
{ "n_tokens_predicted", metrics.n_tokens_predicted},
|
||||||
|
{ "t_tokens_generation", metrics.t_tokens_generation},
|
||||||
|
|
||||||
|
{ "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)},
|
||||||
|
{ "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)},
|
||||||
|
|
||||||
|
{ "slots", slots_data },
|
||||||
};
|
};
|
||||||
|
metrics.reset_bucket();
|
||||||
queue_results.send(res);
|
queue_results.send(res);
|
||||||
} break;
|
} break;
|
||||||
}
|
}
|
||||||
@ -1849,6 +1899,7 @@ struct llama_server_context
|
|||||||
{
|
{
|
||||||
slot.t_start_genereration = ggml_time_us();
|
slot.t_start_genereration = ggml_time_us();
|
||||||
slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
|
slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
|
||||||
|
metrics.on_prompt_eval(slot);
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
|
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
|
||||||
@ -1871,6 +1922,7 @@ struct llama_server_context
|
|||||||
slot.release();
|
slot.release();
|
||||||
slot.print_timings();
|
slot.print_timings();
|
||||||
send_final_response(slot);
|
send_final_response(slot);
|
||||||
|
metrics.on_prediction(slot);
|
||||||
}
|
}
|
||||||
|
|
||||||
slot.i_batch = -1;
|
slot.i_batch = -1;
|
||||||
@ -1955,6 +2007,7 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|||||||
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
|
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
|
||||||
printf(" --log-disable disables logging to a file.\n");
|
printf(" --log-disable disables logging to a file.\n");
|
||||||
printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n");
|
printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n");
|
||||||
|
printf(" --metrics enable prometheus compatible metrics endpoint (default: %s).\n", sparams.metrics_endpoint ? "enabled" : "disabled");
|
||||||
printf("\n");
|
printf("\n");
|
||||||
printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
|
printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
|
||||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||||
@ -2414,6 +2467,10 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||||||
{
|
{
|
||||||
sparams.slots_endpoint = false;
|
sparams.slots_endpoint = false;
|
||||||
}
|
}
|
||||||
|
else if (arg == "--metrics")
|
||||||
|
{
|
||||||
|
sparams.metrics_endpoint = true;
|
||||||
|
}
|
||||||
else if (arg == "--chat-template")
|
else if (arg == "--chat-template")
|
||||||
{
|
{
|
||||||
if (++i >= argc)
|
if (++i >= argc)
|
||||||
@ -2621,7 +2678,7 @@ int main(int argc, char **argv)
|
|||||||
// request slots data using task queue
|
// request slots data using task queue
|
||||||
task_server task;
|
task_server task;
|
||||||
task.id = llama.queue_tasks.get_new_id();
|
task.id = llama.queue_tasks.get_new_id();
|
||||||
task.type = TASK_TYPE_SLOTS_DATA;
|
task.type = TASK_TYPE_METRICS;
|
||||||
task.target_id = -1;
|
task.target_id = -1;
|
||||||
|
|
||||||
llama.queue_results.add_waiting_task_id(task.id);
|
llama.queue_results.add_waiting_task_id(task.id);
|
||||||
@ -2668,7 +2725,7 @@ int main(int argc, char **argv)
|
|||||||
// request slots data using task queue
|
// request slots data using task queue
|
||||||
task_server task;
|
task_server task;
|
||||||
task.id = llama.queue_tasks.get_new_id();
|
task.id = llama.queue_tasks.get_new_id();
|
||||||
task.type = TASK_TYPE_SLOTS_DATA;
|
task.type = TASK_TYPE_METRICS;
|
||||||
task.target_id = -1;
|
task.target_id = -1;
|
||||||
|
|
||||||
llama.queue_results.add_waiting_task_id(task.id);
|
llama.queue_results.add_waiting_task_id(task.id);
|
||||||
@ -2683,6 +2740,87 @@ int main(int argc, char **argv)
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (sparams.metrics_endpoint) {
|
||||||
|
svr.Get("/metrics", [&](const httplib::Request&, httplib::Response& res) {
|
||||||
|
// request slots data using task queue
|
||||||
|
task_server task;
|
||||||
|
task.id = llama.queue_tasks.get_new_id();
|
||||||
|
task.type = TASK_TYPE_METRICS;
|
||||||
|
task.target_id = -1;
|
||||||
|
|
||||||
|
llama.queue_results.add_waiting_task_id(task.id);
|
||||||
|
llama.queue_tasks.post(task);
|
||||||
|
|
||||||
|
// get the result
|
||||||
|
task_result result = llama.queue_results.recv(task.id);
|
||||||
|
llama.queue_results.remove_waiting_task_id(task.id);
|
||||||
|
|
||||||
|
json data = result.result_json;
|
||||||
|
|
||||||
|
uint64_t n_prompt_tokens_processed = data["n_prompt_tokens_processed"];
|
||||||
|
uint64_t t_prompt_processing = data["t_prompt_processing"];
|
||||||
|
|
||||||
|
uint64_t n_tokens_predicted = data["n_tokens_predicted"];
|
||||||
|
uint64_t t_tokens_generation = data["t_tokens_generation"];
|
||||||
|
|
||||||
|
int32_t kv_cache_used_cells = data["kv_cache_used_cells"];
|
||||||
|
|
||||||
|
// metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
|
||||||
|
json all_metrics_def = json {
|
||||||
|
{"counter", {{
|
||||||
|
{"name", "prompt_tokens_total"},
|
||||||
|
{"help", "Number of prompt tokens processed."},
|
||||||
|
{"value", data["n_prompt_tokens_processed_total"]}
|
||||||
|
}, {
|
||||||
|
{"name", "tokens_predicted_total"},
|
||||||
|
{"help", "Number of generation tokens processed."},
|
||||||
|
{"value", data["n_tokens_predicted_total"]}
|
||||||
|
}}},
|
||||||
|
{"gauge", {{
|
||||||
|
{"name", "prompt_tokens_seconds"},
|
||||||
|
{"help", "Average prompt throughput in tokens/s."},
|
||||||
|
{"value", n_prompt_tokens_processed ? 1e3 / t_prompt_processing * n_prompt_tokens_processed : 0}
|
||||||
|
},{
|
||||||
|
{"name", "predicted_tokens_seconds"},
|
||||||
|
{"help", "Average generation throughput in tokens/s."},
|
||||||
|
{"value", n_tokens_predicted ? 1e3 / t_tokens_generation * n_tokens_predicted : 0}
|
||||||
|
},{
|
||||||
|
{"name", "kv_cache_usage_ratio"},
|
||||||
|
{"help", "KV-cache usage. 1 means 100 percent usage."},
|
||||||
|
{"value", 1. * kv_cache_used_cells / params.n_ctx}
|
||||||
|
},{
|
||||||
|
{"name", "kv_cache_tokens"},
|
||||||
|
{"help", "KV-cache tokens."},
|
||||||
|
{"value", data["kv_cache_tokens_count"]}
|
||||||
|
},{
|
||||||
|
{"name", "requests_processing"},
|
||||||
|
{"help", "Number of request processing."},
|
||||||
|
{"value", data["processing"]}
|
||||||
|
},{
|
||||||
|
{"name", "requests_deferred"},
|
||||||
|
{"help", "Number of request deferred."},
|
||||||
|
{"value", data["deferred"]}
|
||||||
|
}}}
|
||||||
|
};
|
||||||
|
|
||||||
|
std::stringstream prometheus;
|
||||||
|
for (const auto& el : all_metrics_def.items()) {
|
||||||
|
const auto& type = el.key();
|
||||||
|
const auto& metrics_def = el.value();
|
||||||
|
for (const auto& metric_def : metrics_def) {
|
||||||
|
std::string name = metric_def["name"];
|
||||||
|
std::string help = metric_def["help"];
|
||||||
|
prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
|
||||||
|
<< "# TYPE llamacpp:" << name << " " << type << "\n"
|
||||||
|
<< "llamacpp:" << name << " " << metric_def["value"] << "\n";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
res.set_content(prometheus.str(), "text/plain; version=0.0.4");
|
||||||
|
res.status = 200; // HTTP OK
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
svr.set_logger(log_server_request);
|
svr.set_logger(log_server_request);
|
||||||
|
|
||||||
svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
|
svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
|
||||||
|
@ -16,6 +16,8 @@ def before_scenario(context, scenario):
|
|||||||
|
|
||||||
|
|
||||||
def after_scenario(context, scenario):
|
def after_scenario(context, scenario):
|
||||||
|
if context.server_process is None:
|
||||||
|
return
|
||||||
if scenario.status == "failed":
|
if scenario.status == "failed":
|
||||||
if 'GITHUB_ACTIONS' in os.environ:
|
if 'GITHUB_ACTIONS' in os.environ:
|
||||||
print(f"\x1b[33;101mSCENARIO FAILED: {scenario.name} server logs:\x1b[0m\n\n")
|
print(f"\x1b[33;101mSCENARIO FAILED: {scenario.name} server logs:\x1b[0m\n\n")
|
||||||
|
@ -13,6 +13,7 @@ Feature: llama.cpp server
|
|||||||
And 1 slots
|
And 1 slots
|
||||||
And embeddings extraction
|
And embeddings extraction
|
||||||
And 32 server max tokens to predict
|
And 32 server max tokens to predict
|
||||||
|
And prometheus compatible metrics exposed
|
||||||
Then the server is starting
|
Then the server is starting
|
||||||
Then the server is healthy
|
Then the server is healthy
|
||||||
|
|
||||||
@ -25,6 +26,7 @@ Feature: llama.cpp server
|
|||||||
And <n_predict> max tokens to predict
|
And <n_predict> max tokens to predict
|
||||||
And a completion request with no api error
|
And a completion request with no api error
|
||||||
Then <n_predicted> tokens are predicted matching <re_content>
|
Then <n_predicted> tokens are predicted matching <re_content>
|
||||||
|
And prometheus metrics are exposed
|
||||||
|
|
||||||
Examples: Prompts
|
Examples: Prompts
|
||||||
| prompt | n_predict | re_content | n_predicted |
|
| prompt | n_predict | re_content | n_predicted |
|
||||||
|
@ -13,6 +13,7 @@ import aiohttp
|
|||||||
import openai
|
import openai
|
||||||
from behave import step
|
from behave import step
|
||||||
from behave.api.async_step import async_run_until_complete
|
from behave.api.async_step import async_run_until_complete
|
||||||
|
from prometheus_client import parser
|
||||||
|
|
||||||
|
|
||||||
@step(u"a server listening on {server_fqdn}:{server_port}")
|
@step(u"a server listening on {server_fqdn}:{server_port}")
|
||||||
@ -34,6 +35,8 @@ def step_server_config(context, server_fqdn, server_port):
|
|||||||
context.server_api_key = None
|
context.server_api_key = None
|
||||||
context.server_continuous_batching = False
|
context.server_continuous_batching = False
|
||||||
context.server_embeddings = False
|
context.server_embeddings = False
|
||||||
|
context.server_metrics = False
|
||||||
|
context.server_process = None
|
||||||
context.server_seed = None
|
context.server_seed = None
|
||||||
context.user_api_key = None
|
context.user_api_key = None
|
||||||
|
|
||||||
@ -82,6 +85,11 @@ def step_server_embeddings(context):
|
|||||||
context.server_embeddings = True
|
context.server_embeddings = True
|
||||||
|
|
||||||
|
|
||||||
|
@step(u'prometheus compatible metrics exposed')
|
||||||
|
def step_server_metrics(context):
|
||||||
|
context.server_metrics = True
|
||||||
|
|
||||||
|
|
||||||
@step(u"the server is starting")
|
@step(u"the server is starting")
|
||||||
def step_start_server(context):
|
def step_start_server(context):
|
||||||
start_server_background(context)
|
start_server_background(context)
|
||||||
@ -424,6 +432,23 @@ def step_check_options_header_value(context, cors_header, cors_header_value):
|
|||||||
assert context.options_response.headers[cors_header] == cors_header_value
|
assert context.options_response.headers[cors_header] == cors_header_value
|
||||||
|
|
||||||
|
|
||||||
|
@step(u'prometheus metrics are exposed')
|
||||||
|
@async_run_until_complete
|
||||||
|
async def step_prometheus_metrics_exported(context):
|
||||||
|
async with aiohttp.ClientSession() as session:
|
||||||
|
async with await session.get(f'{context.base_url}/metrics') as metrics_response:
|
||||||
|
assert metrics_response.status == 200
|
||||||
|
assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
|
||||||
|
metrics_raw = await metrics_response.text()
|
||||||
|
metric_exported = False
|
||||||
|
for metric in parser.text_string_to_metric_families(metrics_raw):
|
||||||
|
match metric.name:
|
||||||
|
case "llamacpp:kv_cache_usage_ratio":
|
||||||
|
assert len(metric.samples) > 0
|
||||||
|
metric_exported = True
|
||||||
|
assert metric_exported, "No metrics exported"
|
||||||
|
|
||||||
|
|
||||||
async def concurrent_requests(context, f_completion, *args, **kwargs):
|
async def concurrent_requests(context, f_completion, *args, **kwargs):
|
||||||
n_prompts = len(context.prompts)
|
n_prompts = len(context.prompts)
|
||||||
if context.debug:
|
if context.debug:
|
||||||
@ -753,6 +778,8 @@ def start_server_background(context):
|
|||||||
server_args.append('--cont-batching')
|
server_args.append('--cont-batching')
|
||||||
if context.server_embeddings:
|
if context.server_embeddings:
|
||||||
server_args.append('--embedding')
|
server_args.append('--embedding')
|
||||||
|
if context.server_metrics:
|
||||||
|
server_args.append('--metrics')
|
||||||
if context.model_alias is not None:
|
if context.model_alias is not None:
|
||||||
server_args.extend(['--alias', context.model_alias])
|
server_args.extend(['--alias', context.model_alias])
|
||||||
if context.n_ctx is not None:
|
if context.n_ctx is not None:
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
aiohttp~=3.9.3
|
aiohttp~=3.9.3
|
||||||
behave~=1.2.6
|
behave~=1.2.6
|
||||||
openai~=0.25.0
|
openai~=0.25.0
|
||||||
|
prometheus-client~=0.20.0
|
||||||
|
@ -50,7 +50,7 @@ enum task_type {
|
|||||||
TASK_TYPE_COMPLETION,
|
TASK_TYPE_COMPLETION,
|
||||||
TASK_TYPE_CANCEL,
|
TASK_TYPE_CANCEL,
|
||||||
TASK_TYPE_NEXT_RESPONSE,
|
TASK_TYPE_NEXT_RESPONSE,
|
||||||
TASK_TYPE_SLOTS_DATA
|
TASK_TYPE_METRICS
|
||||||
};
|
};
|
||||||
|
|
||||||
struct task_server {
|
struct task_server {
|
||||||
@ -441,7 +441,7 @@ struct llama_server_response {
|
|||||||
{
|
{
|
||||||
LOG_VERBOSE("queue_results.push_back", {});
|
LOG_VERBOSE("queue_results.push_back", {});
|
||||||
queue_results.push_back(result);
|
queue_results.push_back(result);
|
||||||
condition_results.notify_one();
|
condition_results.notify_all();
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user