mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-01 00:39:00 +01:00
vulkan: multi-row k quants (#10846)
* multi row k quant shaders! * better row selection * more row choices * readjust row selection * rm_kq=2 by default
This commit is contained in:
parent
d283d02bf2
commit
d79d8f39b4
@ -1855,53 +1855,58 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||||||
|
|
||||||
// mul mat vec
|
// mul mat vec
|
||||||
|
|
||||||
// AMD GCN and Intel graphics cards perform best when the number of rows per shader is doubled
|
// the number of rows computed per shader depends on GPU model and quant
|
||||||
uint32_t rm = 1;
|
uint32_t rm_stdq = 1;
|
||||||
if ((device->vendor_id == VK_VENDOR_ID_AMD && device->subgroup_min_size == 64 && device->subgroup_max_size == 64) || device->vendor_id == VK_VENDOR_ID_INTEL)
|
uint32_t rm_kq = 2;
|
||||||
rm = 2;
|
if (device->vendor_id == VK_VENDOR_ID_AMD) {
|
||||||
|
if (device->subgroup_min_size == 64 && device->subgroup_max_size == 64) { // GCN
|
||||||
|
rm_stdq = 2;
|
||||||
|
rm_kq = 4;
|
||||||
|
}
|
||||||
|
} else if (device->vendor_id == VK_VENDOR_ID_INTEL)
|
||||||
|
rm_stdq = 2;
|
||||||
|
|
||||||
// computing additional rows per workgroup is a benefit for Q4_0 -> Q5_1, but not for Q8_0.
|
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f32_f32", mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f32_f32", mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f32_f32", mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f32_f32", mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq}, 1, true);
|
||||||
|
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f16_f32", mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f16_f32", mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f16_f32", mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f16_f32", mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq}, 1, true);
|
||||||
|
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq}, 1, true);
|
||||||
|
|
||||||
// dequant shaders
|
// dequant shaders
|
||||||
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", dequant_f32_len, dequant_f32_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
|
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", dequant_f32_len, dequant_f32_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
|
||||||
|
@ -6,21 +6,15 @@
|
|||||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||||
|
|
||||||
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
||||||
|
layout (constant_id = 1) const uint NUM_ROWS = 1;
|
||||||
|
|
||||||
shared FLOAT_TYPE tmp[BLOCK_SIZE];
|
shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
|
||||||
|
|
||||||
void main() {
|
|
||||||
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
|
|
||||||
|
|
||||||
if (row >= p.stride_d) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||||
uint a_offset, b_offset, d_offset;
|
uint a_offset, b_offset, d_offset;
|
||||||
get_offsets(a_offset, b_offset, d_offset);
|
get_offsets(a_offset, b_offset, d_offset);
|
||||||
|
|
||||||
const uint num_blocks_per_row = p.ncols / QUANT_K;
|
const uint num_blocks_per_row = p.ncols / QUANT_K;
|
||||||
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
|
|
||||||
|
|
||||||
// 16 threads are used to process each block
|
// 16 threads are used to process each block
|
||||||
const uint it_size = gl_WorkGroupSize.x/16;
|
const uint it_size = gl_WorkGroupSize.x/16;
|
||||||
@ -38,15 +32,15 @@ void main() {
|
|||||||
const uint s_offset = 8*v_im;
|
const uint s_offset = 8*v_im;
|
||||||
const uint y_offset = 128*v_im + l0;
|
const uint y_offset = 128*v_im + l0;
|
||||||
|
|
||||||
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp
|
FLOAT_TYPE temp[NUM_ROWS];
|
||||||
|
|
||||||
|
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||||
|
temp[i] = FLOAT_TYPE(0);
|
||||||
|
}
|
||||||
|
|
||||||
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
|
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
|
||||||
const uint y_idx = i * QUANT_K + y_offset;
|
const uint y_idx = i * QUANT_K + y_offset;
|
||||||
|
|
||||||
f16vec2 d = data_a[ib0 + i].d;
|
|
||||||
const FLOAT_TYPE dall = d.x;
|
|
||||||
const FLOAT_TYPE dmin = d.y;
|
|
||||||
|
|
||||||
B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0];
|
B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0];
|
||||||
B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8];
|
B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8];
|
||||||
B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16];
|
B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16];
|
||||||
@ -56,6 +50,12 @@ void main() {
|
|||||||
B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48];
|
B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48];
|
||||||
B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56];
|
B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56];
|
||||||
|
|
||||||
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
|
||||||
|
f16vec2 d = data_a[ib0 + i].d;
|
||||||
|
const FLOAT_TYPE dall = d.x;
|
||||||
|
const FLOAT_TYPE dmin = d.y;
|
||||||
|
|
||||||
uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0];
|
uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0];
|
||||||
uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1];
|
uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1];
|
||||||
|
|
||||||
@ -94,20 +94,40 @@ void main() {
|
|||||||
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]),
|
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]),
|
||||||
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2))))))));
|
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2))))))));
|
||||||
}
|
}
|
||||||
temp = fma(dall, sum1, fma(-dmin, sum2, temp));
|
temp[n] = fma(dall, sum1, fma(-dmin, sum2, temp[n]));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
tmp[gl_LocalInvocationID.x] = temp;
|
|
||||||
|
|
||||||
// sum up partial sums and write back result
|
// sum up partial sums and write back result
|
||||||
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
tmpsh[n][tid] = temp[n];
|
||||||
|
}
|
||||||
barrier();
|
barrier();
|
||||||
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) {
|
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
|
||||||
if (tid < s) {
|
if (tid < s) {
|
||||||
tmp[tid] += tmp[tid + s];
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
tmpsh[n][tid] += tmpsh[n][tid + s];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
barrier();
|
barrier();
|
||||||
}
|
}
|
||||||
if (tid == 0) {
|
if (tid == 0) {
|
||||||
data_d[d_offset + row] = D_TYPE(tmp[0]);
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void main() {
|
||||||
|
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
|
||||||
|
|
||||||
|
// do NUM_ROWS at a time, unless there aren't enough remaining rows
|
||||||
|
if (first_row + NUM_ROWS <= p.stride_d) {
|
||||||
|
compute_outputs(first_row, NUM_ROWS);
|
||||||
|
} else {
|
||||||
|
if (first_row >= p.stride_d) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
compute_outputs(first_row, p.stride_d - first_row);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -6,21 +6,15 @@
|
|||||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||||
|
|
||||||
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
||||||
|
layout (constant_id = 1) const uint NUM_ROWS = 1;
|
||||||
|
|
||||||
shared FLOAT_TYPE tmp[BLOCK_SIZE];
|
shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
|
||||||
|
|
||||||
void main() {
|
|
||||||
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
|
|
||||||
|
|
||||||
if (row >= p.stride_d) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||||
uint a_offset, b_offset, d_offset;
|
uint a_offset, b_offset, d_offset;
|
||||||
get_offsets(a_offset, b_offset, d_offset);
|
get_offsets(a_offset, b_offset, d_offset);
|
||||||
|
|
||||||
const uint num_blocks_per_row = p.ncols / QUANT_K;
|
const uint num_blocks_per_row = p.ncols / QUANT_K;
|
||||||
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
|
|
||||||
|
|
||||||
// 16 threads are used to process each block
|
// 16 threads are used to process each block
|
||||||
const uint it_size = gl_WorkGroupSize.x/16;
|
const uint it_size = gl_WorkGroupSize.x/16;
|
||||||
@ -39,15 +33,17 @@ void main() {
|
|||||||
const uint q_offset = 32*v_im + l0;
|
const uint q_offset = 32*v_im + l0;
|
||||||
const uint y_offset = 128*v_im + l0;
|
const uint y_offset = 128*v_im + l0;
|
||||||
|
|
||||||
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp
|
FLOAT_TYPE temp[NUM_ROWS];
|
||||||
|
|
||||||
|
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||||
|
temp[i] = FLOAT_TYPE(0);
|
||||||
|
}
|
||||||
|
|
||||||
const uint s_shift = 4 * v_im;
|
const uint s_shift = 4 * v_im;
|
||||||
|
|
||||||
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
|
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
|
||||||
const uint y_idx = i * QUANT_K + y_offset;
|
const uint y_idx = i * QUANT_K + y_offset;
|
||||||
|
|
||||||
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
|
|
||||||
|
|
||||||
B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0];
|
B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0];
|
||||||
B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8];
|
B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8];
|
||||||
B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16];
|
B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16];
|
||||||
@ -57,6 +53,10 @@ void main() {
|
|||||||
B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48];
|
B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48];
|
||||||
B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56];
|
B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56];
|
||||||
|
|
||||||
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
|
||||||
|
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
|
||||||
|
|
||||||
uint16_t s0_16 = data_a_packed16[ib0 + i].scales[0];
|
uint16_t s0_16 = data_a_packed16[ib0 + i].scales[0];
|
||||||
uint16_t s2_16 = data_a_packed16[ib0 + i].scales[1];
|
uint16_t s2_16 = data_a_packed16[ib0 + i].scales[1];
|
||||||
uint16_t s4_16 = data_a_packed16[ib0 + i].scales[2];
|
uint16_t s4_16 = data_a_packed16[ib0 + i].scales[2];
|
||||||
@ -81,20 +81,40 @@ void main() {
|
|||||||
fma(FLOAT_TYPE(b80[l]) * FLOAT_TYPE(int8_t(((s4[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)),
|
fma(FLOAT_TYPE(b80[l]) * FLOAT_TYPE(int8_t(((s4[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)),
|
||||||
fma(FLOAT_TYPE(b112[l]) * FLOAT_TYPE(int8_t(((s6[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)), sum))))))));
|
fma(FLOAT_TYPE(b112[l]) * FLOAT_TYPE(int8_t(((s6[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)), sum))))))));
|
||||||
}
|
}
|
||||||
temp = fma(d, sum, temp);
|
temp[n] = fma(d, sum, temp[n]);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
tmp[gl_LocalInvocationID.x] = temp;
|
|
||||||
|
|
||||||
// sum up partial sums and write back result
|
// sum up partial sums and write back result
|
||||||
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
tmpsh[n][tid] = temp[n];
|
||||||
|
}
|
||||||
barrier();
|
barrier();
|
||||||
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) {
|
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
|
||||||
if (tid < s) {
|
if (tid < s) {
|
||||||
tmp[tid] += tmp[tid + s];
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
tmpsh[n][tid] += tmpsh[n][tid + s];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
barrier();
|
barrier();
|
||||||
}
|
}
|
||||||
if (tid == 0) {
|
if (tid == 0) {
|
||||||
data_d[d_offset + row] = D_TYPE(tmp[0]);
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void main() {
|
||||||
|
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
|
||||||
|
|
||||||
|
// do NUM_ROWS at a time, unless there aren't enough remaining rows
|
||||||
|
if (first_row + NUM_ROWS <= p.stride_d) {
|
||||||
|
compute_outputs(first_row, NUM_ROWS);
|
||||||
|
} else {
|
||||||
|
if (first_row >= p.stride_d) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
compute_outputs(first_row, p.stride_d - first_row);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -7,21 +7,15 @@
|
|||||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||||
|
|
||||||
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
||||||
|
layout (constant_id = 1) const uint NUM_ROWS = 1;
|
||||||
|
|
||||||
shared FLOAT_TYPE tmp[BLOCK_SIZE];
|
shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
|
||||||
|
|
||||||
void main() {
|
|
||||||
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
|
|
||||||
|
|
||||||
if (row >= p.stride_d) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||||
uint a_offset, b_offset, d_offset;
|
uint a_offset, b_offset, d_offset;
|
||||||
get_offsets(a_offset, b_offset, d_offset);
|
get_offsets(a_offset, b_offset, d_offset);
|
||||||
|
|
||||||
const uint num_blocks_per_row = p.ncols / QUANT_K;
|
const uint num_blocks_per_row = p.ncols / QUANT_K;
|
||||||
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
|
|
||||||
|
|
||||||
// 16 threads are used to process each block
|
// 16 threads are used to process each block
|
||||||
const uint it_size = gl_WorkGroupSize.x/16;
|
const uint it_size = gl_WorkGroupSize.x/16;
|
||||||
@ -42,12 +36,23 @@ void main() {
|
|||||||
const uint q_offset = 32*v_im + l0;
|
const uint q_offset = 32*v_im + l0;
|
||||||
const uint y_offset = 64*v_im + l0;
|
const uint y_offset = 64*v_im + l0;
|
||||||
|
|
||||||
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp
|
FLOAT_TYPE temp[NUM_ROWS];
|
||||||
|
|
||||||
|
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||||
|
temp[i] = FLOAT_TYPE(0);
|
||||||
|
}
|
||||||
|
|
||||||
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
|
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
|
||||||
const uint y1_idx = i * QUANT_K + y_offset;
|
const uint y1_idx = i * QUANT_K + y_offset;
|
||||||
const uint y2_idx = y1_idx + 128;
|
const uint y2_idx = y1_idx + 128;
|
||||||
|
|
||||||
|
B_TYPE_VEC4 by10 = data_b_v4[(b_offset + y1_idx) / 4];
|
||||||
|
B_TYPE_VEC4 by132 = data_b_v4[(b_offset + y1_idx) / 4 + 8];
|
||||||
|
B_TYPE_VEC4 by20 = data_b_v4[(b_offset + y2_idx) / 4];
|
||||||
|
B_TYPE_VEC4 by232 = data_b_v4[(b_offset + y2_idx) / 4 + 8];
|
||||||
|
|
||||||
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
|
||||||
f16vec2 d = data_a[ib0 + i].d;
|
f16vec2 d = data_a[ib0 + i].d;
|
||||||
const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
|
const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
|
||||||
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
|
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
|
||||||
@ -98,11 +103,6 @@ void main() {
|
|||||||
const uint32_t q4_14 = qs64_hi4.z;
|
const uint32_t q4_14 = qs64_hi4.z;
|
||||||
const uint32_t q4_15 = qs64_hi4.w;
|
const uint32_t q4_15 = qs64_hi4.w;
|
||||||
|
|
||||||
B_TYPE_VEC4 by10 = data_b_v4[(b_offset + y1_idx) / 4];
|
|
||||||
B_TYPE_VEC4 by132 = data_b_v4[(b_offset + y1_idx) / 4 + 8];
|
|
||||||
B_TYPE_VEC4 by20 = data_b_v4[(b_offset + y2_idx) / 4];
|
|
||||||
B_TYPE_VEC4 by232 = data_b_v4[(b_offset + y2_idx) / 4 + 8];
|
|
||||||
|
|
||||||
const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x), q4_0, fma(FLOAT_TYPE(by10.y), q4_1, fma(FLOAT_TYPE(by10.z), q4_2, FLOAT_TYPE(by10.w) * q4_3)));
|
const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x), q4_0, fma(FLOAT_TYPE(by10.y), q4_1, fma(FLOAT_TYPE(by10.z), q4_2, FLOAT_TYPE(by10.w) * q4_3)));
|
||||||
const FLOAT_TYPE sy = fma(FLOAT_TYPE(by132.x), q4_4, fma(FLOAT_TYPE(by132.y), q4_5, fma(FLOAT_TYPE(by132.z), q4_6, FLOAT_TYPE(by132.w) * q4_7)));
|
const FLOAT_TYPE sy = fma(FLOAT_TYPE(by132.x), q4_4, fma(FLOAT_TYPE(by132.y), q4_5, fma(FLOAT_TYPE(by132.z), q4_6, FLOAT_TYPE(by132.w) * q4_7)));
|
||||||
const FLOAT_TYPE sz = fma(FLOAT_TYPE(by20.x), q4_8, fma(FLOAT_TYPE(by20.y), q4_9, fma(FLOAT_TYPE(by20.z), q4_10, FLOAT_TYPE(by20.w) * q4_11)));
|
const FLOAT_TYPE sz = fma(FLOAT_TYPE(by20.x), q4_8, fma(FLOAT_TYPE(by20.y), q4_9, fma(FLOAT_TYPE(by20.z), q4_10, FLOAT_TYPE(by20.w) * q4_11)));
|
||||||
@ -112,20 +112,40 @@ void main() {
|
|||||||
fma(FLOAT_TYPE(by10.y), sc2, fma(FLOAT_TYPE(by132.y), sc3, fma(FLOAT_TYPE(by20.y), sc6, fma(FLOAT_TYPE(by232.y), sc7,
|
fma(FLOAT_TYPE(by10.y), sc2, fma(FLOAT_TYPE(by132.y), sc3, fma(FLOAT_TYPE(by20.y), sc6, fma(FLOAT_TYPE(by232.y), sc7,
|
||||||
fma(FLOAT_TYPE(by10.z), sc2, fma(FLOAT_TYPE(by132.z), sc3, fma(FLOAT_TYPE(by20.z), sc6, fma(FLOAT_TYPE(by232.z), sc7,
|
fma(FLOAT_TYPE(by10.z), sc2, fma(FLOAT_TYPE(by132.z), sc3, fma(FLOAT_TYPE(by20.z), sc6, fma(FLOAT_TYPE(by232.z), sc7,
|
||||||
fma(FLOAT_TYPE(by10.w), sc2, fma(FLOAT_TYPE(by132.w), sc3, fma(FLOAT_TYPE(by20.w), sc6, FLOAT_TYPE(by232.w) * sc7)))))))))))))));
|
fma(FLOAT_TYPE(by10.w), sc2, fma(FLOAT_TYPE(by132.w), sc3, fma(FLOAT_TYPE(by20.w), sc6, FLOAT_TYPE(by232.w) * sc7)))))))))))))));
|
||||||
temp = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp));
|
temp[n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[n]));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
tmp[gl_LocalInvocationID.x] = temp;
|
|
||||||
|
|
||||||
// sum up partial sums and write back result
|
// sum up partial sums and write back result
|
||||||
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
tmpsh[n][tid] = temp[n];
|
||||||
|
}
|
||||||
barrier();
|
barrier();
|
||||||
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) {
|
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
|
||||||
if (tid < s) {
|
if (tid < s) {
|
||||||
tmp[tid] += tmp[tid + s];
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
tmpsh[n][tid] += tmpsh[n][tid + s];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
barrier();
|
barrier();
|
||||||
}
|
}
|
||||||
if (tid == 0) {
|
if (tid == 0) {
|
||||||
data_d[d_offset + row] = D_TYPE(tmp[0]);
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void main() {
|
||||||
|
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
|
||||||
|
|
||||||
|
// do NUM_ROWS at a time, unless there aren't enough remaining rows
|
||||||
|
if (first_row + NUM_ROWS <= p.stride_d) {
|
||||||
|
compute_outputs(first_row, NUM_ROWS);
|
||||||
|
} else {
|
||||||
|
if (first_row >= p.stride_d) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
compute_outputs(first_row, p.stride_d - first_row);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -7,21 +7,15 @@
|
|||||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||||
|
|
||||||
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
||||||
|
layout (constant_id = 1) const uint NUM_ROWS = 1;
|
||||||
|
|
||||||
shared FLOAT_TYPE tmp[BLOCK_SIZE];
|
shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
|
||||||
|
|
||||||
void main() {
|
|
||||||
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
|
|
||||||
|
|
||||||
if (row >= p.stride_d) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||||
uint a_offset, b_offset, d_offset;
|
uint a_offset, b_offset, d_offset;
|
||||||
get_offsets(a_offset, b_offset, d_offset);
|
get_offsets(a_offset, b_offset, d_offset);
|
||||||
|
|
||||||
const uint num_blocks_per_row = p.ncols / QUANT_K;
|
const uint num_blocks_per_row = p.ncols / QUANT_K;
|
||||||
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
|
|
||||||
|
|
||||||
// 16 threads are used to process each block
|
// 16 threads are used to process each block
|
||||||
const uint it_size = gl_WorkGroupSize.x/16;
|
const uint it_size = gl_WorkGroupSize.x/16;
|
||||||
@ -39,12 +33,27 @@ void main() {
|
|||||||
const uint q_offset = 32*v_im + l0;
|
const uint q_offset = 32*v_im + l0;
|
||||||
const uint y_offset = 64*v_im + l0;
|
const uint y_offset = 64*v_im + l0;
|
||||||
|
|
||||||
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp
|
FLOAT_TYPE temp[NUM_ROWS];
|
||||||
|
|
||||||
|
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||||
|
temp[i] = FLOAT_TYPE(0);
|
||||||
|
}
|
||||||
|
|
||||||
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
|
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
|
||||||
const uint y1_idx = i * QUANT_K + y_offset;
|
const uint y1_idx = i * QUANT_K + y_offset;
|
||||||
const uint y2_idx = y1_idx + 128;
|
const uint y2_idx = y1_idx + 128;
|
||||||
|
|
||||||
|
B_TYPE_VEC2 by10 = data_b_v2[(b_offset + y1_idx) / 2];
|
||||||
|
B_TYPE_VEC2 by116 = data_b_v2[(b_offset + y1_idx) / 2 + 8];
|
||||||
|
B_TYPE_VEC2 by132 = data_b_v2[(b_offset + y1_idx) / 2 + 16];
|
||||||
|
B_TYPE_VEC2 by148 = data_b_v2[(b_offset + y1_idx) / 2 + 24];
|
||||||
|
B_TYPE_VEC2 by20 = data_b_v2[(b_offset + y2_idx) / 2];
|
||||||
|
B_TYPE_VEC2 by216 = data_b_v2[(b_offset + y2_idx) / 2 + 8];
|
||||||
|
B_TYPE_VEC2 by232 = data_b_v2[(b_offset + y2_idx) / 2 + 16];
|
||||||
|
B_TYPE_VEC2 by248 = data_b_v2[(b_offset + y2_idx) / 2 + 24];
|
||||||
|
|
||||||
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
|
||||||
f16vec2 d = data_a[ib0 + i].d;
|
f16vec2 d = data_a[ib0 + i].d;
|
||||||
const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
|
const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
|
||||||
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
|
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
|
||||||
@ -107,15 +116,6 @@ void main() {
|
|||||||
const uint32_t q4_14 = qs64_80_hi4.z;
|
const uint32_t q4_14 = qs64_80_hi4.z;
|
||||||
const uint32_t q4_15 = qs64_80_hi4.w;
|
const uint32_t q4_15 = qs64_80_hi4.w;
|
||||||
|
|
||||||
B_TYPE_VEC2 by10 = data_b_v2[(b_offset + y1_idx) / 2];
|
|
||||||
B_TYPE_VEC2 by116 = data_b_v2[(b_offset + y1_idx) / 2 + 8];
|
|
||||||
B_TYPE_VEC2 by132 = data_b_v2[(b_offset + y1_idx) / 2 + 16];
|
|
||||||
B_TYPE_VEC2 by148 = data_b_v2[(b_offset + y1_idx) / 2 + 24];
|
|
||||||
B_TYPE_VEC2 by20 = data_b_v2[(b_offset + y2_idx) / 2];
|
|
||||||
B_TYPE_VEC2 by216 = data_b_v2[(b_offset + y2_idx) / 2 + 8];
|
|
||||||
B_TYPE_VEC2 by232 = data_b_v2[(b_offset + y2_idx) / 2 + 16];
|
|
||||||
B_TYPE_VEC2 by248 = data_b_v2[(b_offset + y2_idx) / 2 + 24];
|
|
||||||
|
|
||||||
const FLOAT_TYPE sx =
|
const FLOAT_TYPE sx =
|
||||||
fma(FLOAT_TYPE(by10.x), q4_0,
|
fma(FLOAT_TYPE(by10.x), q4_0,
|
||||||
fma(FLOAT_TYPE(by10.y), q4_1,
|
fma(FLOAT_TYPE(by10.y), q4_1,
|
||||||
@ -141,20 +141,40 @@ void main() {
|
|||||||
fma(FLOAT_TYPE(by132.x) + FLOAT_TYPE(by132.y) + FLOAT_TYPE(by148.x) + FLOAT_TYPE(by148.y), sc3,
|
fma(FLOAT_TYPE(by132.x) + FLOAT_TYPE(by132.y) + FLOAT_TYPE(by148.x) + FLOAT_TYPE(by148.y), sc3,
|
||||||
fma(FLOAT_TYPE(by20.x) + FLOAT_TYPE(by20.y) + FLOAT_TYPE(by216.x) + FLOAT_TYPE(by216.y), sc6,
|
fma(FLOAT_TYPE(by20.x) + FLOAT_TYPE(by20.y) + FLOAT_TYPE(by216.x) + FLOAT_TYPE(by216.y), sc6,
|
||||||
(FLOAT_TYPE(by232.x) + FLOAT_TYPE(by232.y) + FLOAT_TYPE(by248.x) + FLOAT_TYPE(by248.y)) * sc7)));
|
(FLOAT_TYPE(by232.x) + FLOAT_TYPE(by232.y) + FLOAT_TYPE(by248.x) + FLOAT_TYPE(by248.y)) * sc7)));
|
||||||
temp = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp));
|
temp[n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[n]));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
tmp[gl_LocalInvocationID.x] = temp;
|
|
||||||
|
|
||||||
// sum up partial sums and write back result
|
// sum up partial sums and write back result
|
||||||
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
tmpsh[n][tid] = temp[n];
|
||||||
|
}
|
||||||
barrier();
|
barrier();
|
||||||
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) {
|
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
|
||||||
if (tid < s) {
|
if (tid < s) {
|
||||||
tmp[tid] += tmp[tid + s];
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
tmpsh[n][tid] += tmpsh[n][tid + s];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
barrier();
|
barrier();
|
||||||
}
|
}
|
||||||
if (tid == 0) {
|
if (tid == 0) {
|
||||||
data_d[d_offset + row] = D_TYPE(tmp[0]);
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void main() {
|
||||||
|
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
|
||||||
|
|
||||||
|
// do NUM_ROWS at a time, unless there aren't enough remaining rows
|
||||||
|
if (first_row + NUM_ROWS <= p.stride_d) {
|
||||||
|
compute_outputs(first_row, NUM_ROWS);
|
||||||
|
} else {
|
||||||
|
if (first_row >= p.stride_d) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
compute_outputs(first_row, p.stride_d - first_row);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -7,21 +7,15 @@
|
|||||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||||
|
|
||||||
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
||||||
|
layout (constant_id = 1) const uint NUM_ROWS = 1;
|
||||||
|
|
||||||
shared FLOAT_TYPE tmp[BLOCK_SIZE];
|
shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
|
||||||
|
|
||||||
void main() {
|
|
||||||
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
|
|
||||||
|
|
||||||
if (row >= p.stride_d) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||||
uint a_offset, b_offset, d_offset;
|
uint a_offset, b_offset, d_offset;
|
||||||
get_offsets(a_offset, b_offset, d_offset);
|
get_offsets(a_offset, b_offset, d_offset);
|
||||||
|
|
||||||
const uint num_blocks_per_row = p.ncols / QUANT_K;
|
const uint num_blocks_per_row = p.ncols / QUANT_K;
|
||||||
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
|
|
||||||
|
|
||||||
// 16 threads are used to process each block
|
// 16 threads are used to process each block
|
||||||
const uint it_size = gl_WorkGroupSize.x/16;
|
const uint it_size = gl_WorkGroupSize.x/16;
|
||||||
@ -42,11 +36,22 @@ void main() {
|
|||||||
const uint s_offset = 8*v_im + is;
|
const uint s_offset = 8*v_im + is;
|
||||||
const uint y_offset = 128*v_im + l0;
|
const uint y_offset = 128*v_im + l0;
|
||||||
|
|
||||||
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp
|
FLOAT_TYPE temp[NUM_ROWS];
|
||||||
|
|
||||||
|
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||||
|
temp[i] = FLOAT_TYPE(0);
|
||||||
|
}
|
||||||
|
|
||||||
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
|
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
|
||||||
const uint y_idx = i * QUANT_K + y_offset;
|
const uint y_idx = i * QUANT_K + y_offset;
|
||||||
|
|
||||||
|
B_TYPE_VEC4 by0 = data_b_v4[(b_offset + y_idx) / 4];
|
||||||
|
B_TYPE_VEC4 by32 = data_b_v4[(b_offset + y_idx) / 4 + 8];
|
||||||
|
B_TYPE_VEC4 by64 = data_b_v4[(b_offset + y_idx) / 4 + 16];
|
||||||
|
B_TYPE_VEC4 by96 = data_b_v4[(b_offset + y_idx) / 4 + 24];
|
||||||
|
|
||||||
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
|
||||||
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
|
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
|
||||||
|
|
||||||
FLOAT_TYPE scales[4];
|
FLOAT_TYPE scales[4];
|
||||||
@ -79,11 +84,6 @@ void main() {
|
|||||||
uvec4 q2 = uvec4(unpack8(q2_u32));
|
uvec4 q2 = uvec4(unpack8(q2_u32));
|
||||||
uvec4 q3 = uvec4(unpack8(q3_u32));
|
uvec4 q3 = uvec4(unpack8(q3_u32));
|
||||||
|
|
||||||
B_TYPE_VEC4 by0 = data_b_v4[(b_offset + y_idx) / 4];
|
|
||||||
B_TYPE_VEC4 by32 = data_b_v4[(b_offset + y_idx) / 4 + 8];
|
|
||||||
B_TYPE_VEC4 by64 = data_b_v4[(b_offset + y_idx) / 4 + 16];
|
|
||||||
B_TYPE_VEC4 by96 = data_b_v4[(b_offset + y_idx) / 4 + 24];
|
|
||||||
|
|
||||||
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
|
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
|
||||||
[[unroll]] for (int l = 0; l < 4; ++l) {
|
[[unroll]] for (int l = 0; l < 4; ++l) {
|
||||||
sum = fma(FLOAT_TYPE(by0[l]) * scales[0], FLOAT_TYPE(int8_t(q0[l]) - 32),
|
sum = fma(FLOAT_TYPE(by0[l]) * scales[0], FLOAT_TYPE(int8_t(q0[l]) - 32),
|
||||||
@ -91,20 +91,40 @@ void main() {
|
|||||||
fma(FLOAT_TYPE(by64[l]) * scales[2], FLOAT_TYPE(int8_t(q2[l]) - 32),
|
fma(FLOAT_TYPE(by64[l]) * scales[2], FLOAT_TYPE(int8_t(q2[l]) - 32),
|
||||||
fma(FLOAT_TYPE(by96[l]) * scales[3], FLOAT_TYPE(int8_t(q3[l]) - 32), sum))));
|
fma(FLOAT_TYPE(by96[l]) * scales[3], FLOAT_TYPE(int8_t(q3[l]) - 32), sum))));
|
||||||
}
|
}
|
||||||
temp += sum * d;
|
temp[n] += sum * d;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
tmp[gl_LocalInvocationID.x] = temp;
|
|
||||||
// sum up partial sums and write back result
|
// sum up partial sums and write back result
|
||||||
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
tmpsh[n][tid] = temp[n];
|
||||||
|
}
|
||||||
barrier();
|
barrier();
|
||||||
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) {
|
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
|
||||||
if (tid < s) {
|
if (tid < s) {
|
||||||
tmp[tid] += tmp[tid + s];
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
tmpsh[n][tid] += tmpsh[n][tid + s];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
barrier();
|
barrier();
|
||||||
}
|
}
|
||||||
if (tid == 0) {
|
if (tid == 0) {
|
||||||
data_d[d_offset + row] = D_TYPE(tmp[0]);
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||||
|
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void main() {
|
||||||
|
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
|
||||||
|
|
||||||
|
// do NUM_ROWS at a time, unless there aren't enough remaining rows
|
||||||
|
if (first_row + NUM_ROWS <= p.stride_d) {
|
||||||
|
compute_outputs(first_row, NUM_ROWS);
|
||||||
|
} else {
|
||||||
|
if (first_row >= p.stride_d) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
compute_outputs(first_row, p.stride_d - first_row);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user