mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 18:09:18 +01:00
llama : pad KV cache size (#4280)
* llama : pad KV cache size to 32 * metal : try to improve batched decoding
This commit is contained in:
parent
5a7d3125e7
commit
d7b800b8bc
@ -1083,7 +1083,7 @@ void ggml_metal_graph_compute(
|
||||
|
||||
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
|
||||
// to the matrix-vector kernel
|
||||
int ne11_mm_min = 1;
|
||||
int ne11_mm_min = src0t == GGML_TYPE_F16 ? 1 : 16;
|
||||
|
||||
#if 0
|
||||
// the numbers below are measured on M2 Ultra for 7B and 13B models
|
||||
|
@ -5744,8 +5744,7 @@ static int llama_decode_internal(
|
||||
// a heuristic, to avoid attending the full cache if it is not yet utilized
|
||||
// after enough generations, the benefit from this heuristic disappears
|
||||
// if we start defragmenting the cache, the benefit from this will be more important
|
||||
//kv_self.n = std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)); // TODO: this might be better for CUDA?
|
||||
kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, llama_kv_cache_cell_max(kv_self)));
|
||||
kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)));
|
||||
|
||||
//printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user