mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-14 14:28:58 +01:00
py : fix BPE vocab conversion
ggml-ci
This commit is contained in:
parent
a1372737e0
commit
d92351e23d
20
convert.py
20
convert.py
@ -387,6 +387,7 @@ class BpeVocab: # GPT
|
||||
self.bpe_tokenizer = json.loads(
|
||||
open(str(fname_tokenizer), encoding="utf-8").read()
|
||||
)
|
||||
self.vocab = self.bpe_tokenizer["model"]["vocab"]
|
||||
added_tokens: dict[str, int]
|
||||
if fname_added_tokens is not None:
|
||||
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
|
||||
@ -405,7 +406,7 @@ class BpeVocab: # GPT
|
||||
if item["content"] not in self.bpe_tokenizer
|
||||
)
|
||||
|
||||
vocab_size: int = len(self.bpe_tokenizer)
|
||||
vocab_size: int = len(self.vocab)
|
||||
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
||||
actual_ids = sorted(added_tokens.values())
|
||||
if expected_ids != actual_ids:
|
||||
@ -415,6 +416,7 @@ class BpeVocab: # GPT
|
||||
)
|
||||
|
||||
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
|
||||
self.added_tokens_dict = added_tokens
|
||||
self.added_tokens_list = [text for (text, idx) in items]
|
||||
self.vocab_size_base: int = vocab_size
|
||||
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
|
||||
@ -422,10 +424,9 @@ class BpeVocab: # GPT
|
||||
self.fname_added_tokens = fname_added_tokens
|
||||
|
||||
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
tokenizer = self.bpe_tokenizer
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.items()}
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()}
|
||||
|
||||
for i, _ in enumerate(tokenizer):
|
||||
for i, _ in enumerate(self.vocab):
|
||||
yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
|
||||
|
||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
@ -1383,15 +1384,14 @@ class VocabFactory:
|
||||
self.files[file] = file_path
|
||||
elif parent_file_path.exists():
|
||||
self.files[file] = parent_file_path
|
||||
print(f"Found vocab files: {self.files}")
|
||||
|
||||
def _select_file(self, vocabtype: Optional[str]) -> Path:
|
||||
if vocabtype in ["spm", "bpe"]:
|
||||
# For SentencePiece and BPE, return specific files as before
|
||||
file_key = "tokenizer.model" if vocabtype == "spm" else "vocab.json"
|
||||
if self.files[file_key]:
|
||||
return self.files[file_key]
|
||||
else:
|
||||
raise FileNotFoundError(f"{vocabtype} {file_key} not found.")
|
||||
for file_key in self.files.keys():
|
||||
if self.files[file_key]:
|
||||
return self.files[file_key]
|
||||
raise FileNotFoundError(f"{vocabtype} vocab not found.")
|
||||
elif vocabtype == "hfft":
|
||||
# For Hugging Face Fast Tokenizer, return the directory path instead of a specific file
|
||||
return self.path
|
||||
|
Loading…
Reference in New Issue
Block a user