mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 06:10:29 +01:00
speculative : refactor and add a simpler example (#10362)
* speculative : refactor and add a simpler example ggml-ci * speculative : clean-up and add comments and TODOs [no ci] * speculative : manage context in common_speculative ggml-ci * speculative : simplify ggml-ci * speculative : simplify (cont) ggml-ci * speculative : add --draft-min CLI arg * speculative : minor fixup * make : build fixes * speculative : do not redraft previous drafts ggml-ci * speculative : fix the draft sampling ggml-ci * speculative : fix compile warning * common : refactor args ggml-ci * common : change defaults [no ci] * common : final touches ggml-ci
This commit is contained in:
parent
cce5a90075
commit
d9d54e498d
1
Makefile
1
Makefile
@ -966,6 +966,7 @@ OBJ_COMMON = \
|
||||
$(DIR_COMMON)/console.o \
|
||||
$(DIR_COMMON)/ngram-cache.o \
|
||||
$(DIR_COMMON)/sampling.o \
|
||||
$(DIR_COMMON)/speculative.o \
|
||||
$(DIR_COMMON)/build-info.o \
|
||||
$(DIR_COMMON)/json-schema-to-grammar.o
|
||||
|
||||
|
@ -66,6 +66,8 @@ add_library(${TARGET} STATIC
|
||||
ngram-cache.h
|
||||
sampling.cpp
|
||||
sampling.h
|
||||
speculative.cpp
|
||||
speculative.h
|
||||
)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
|
438
common/arg.cpp
438
common/arg.cpp
@ -233,10 +233,11 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
}
|
||||
}
|
||||
|
||||
postprocess_cpu_params(params.cpuparams, nullptr);
|
||||
postprocess_cpu_params(params.cpuparams, nullptr);
|
||||
postprocess_cpu_params(params.cpuparams_batch, ¶ms.cpuparams);
|
||||
postprocess_cpu_params(params.draft_cpuparams, ¶ms.cpuparams);
|
||||
postprocess_cpu_params(params.draft_cpuparams_batch, ¶ms.cpuparams_batch);
|
||||
|
||||
postprocess_cpu_params(params.speculative.cpuparams, ¶ms.cpuparams);
|
||||
postprocess_cpu_params(params.speculative.cpuparams_batch, ¶ms.cpuparams_batch);
|
||||
|
||||
if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
|
||||
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
|
||||
@ -251,7 +252,7 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
for (auto & antiprompt : params.antiprompt) {
|
||||
string_process_escapes(antiprompt);
|
||||
}
|
||||
for (auto & seq_breaker : params.sparams.dry_sequence_breakers) {
|
||||
for (auto & seq_breaker : params.sampling.dry_sequence_breakers) {
|
||||
string_process_escapes(seq_breaker);
|
||||
}
|
||||
}
|
||||
@ -329,7 +330,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
|
||||
std::string sampler_type_chars;
|
||||
std::string sampler_type_names;
|
||||
for (const auto & sampler : params.sparams.samplers) {
|
||||
for (const auto & sampler : params.sampling.samplers) {
|
||||
sampler_type_chars += common_sampler_type_to_chr(sampler);
|
||||
sampler_type_names += common_sampler_type_to_str(sampler) + ";";
|
||||
}
|
||||
@ -407,26 +408,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"-td", "--threads-draft"}, "N",
|
||||
"number of threads to use during generation (default: same as --threads)",
|
||||
[](common_params & params, int value) {
|
||||
params.draft_cpuparams.n_threads = value;
|
||||
if (params.draft_cpuparams.n_threads <= 0) {
|
||||
params.draft_cpuparams.n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-tbd", "--threads-batch-draft"}, "N",
|
||||
"number of threads to use during batch and prompt processing (default: same as --threads-draft)",
|
||||
[](common_params & params, int value) {
|
||||
params.draft_cpuparams_batch.n_threads = value;
|
||||
if (params.draft_cpuparams_batch.n_threads <= 0) {
|
||||
params.draft_cpuparams_batch.n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-C", "--cpu-mask"}, "M",
|
||||
"CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")",
|
||||
@ -515,108 +496,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.cpuparams_batch.poll = value;
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"-Cd", "--cpu-mask-draft"}, "M",
|
||||
"Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
|
||||
[](common_params & params, const std::string & mask) {
|
||||
params.draft_cpuparams.mask_valid = true;
|
||||
if (!parse_cpu_mask(mask, params.draft_cpuparams.cpumask)) {
|
||||
throw std::invalid_argument("invalid cpumask");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-Crd", "--cpu-range-draft"}, "lo-hi",
|
||||
"Ranges of CPUs for affinity. Complements --cpu-mask-draft",
|
||||
[](common_params & params, const std::string & range) {
|
||||
params.draft_cpuparams.mask_valid = true;
|
||||
if (!parse_cpu_range(range, params.draft_cpuparams.cpumask)) {
|
||||
throw std::invalid_argument("invalid range");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--cpu-strict-draft"}, "<0|1>",
|
||||
"Use strict CPU placement for draft model (default: same as --cpu-strict)",
|
||||
[](common_params & params, int value) {
|
||||
params.draft_cpuparams.strict_cpu = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--prio-draft"}, "N",
|
||||
string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.draft_cpuparams.priority),
|
||||
[](common_params & params, int prio) {
|
||||
if (prio < 0 || prio > 3) {
|
||||
throw std::invalid_argument("invalid value");
|
||||
}
|
||||
params.draft_cpuparams.priority = (enum ggml_sched_priority) prio;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--poll-draft"}, "<0|1>",
|
||||
"Use polling to wait for draft model work (default: same as --poll])",
|
||||
[](common_params & params, int value) {
|
||||
params.draft_cpuparams.poll = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-Cbd", "--cpu-mask-batch-draft"}, "M",
|
||||
"Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
|
||||
[](common_params & params, const std::string & mask) {
|
||||
params.draft_cpuparams_batch.mask_valid = true;
|
||||
if (!parse_cpu_mask(mask, params.draft_cpuparams_batch.cpumask)) {
|
||||
throw std::invalid_argument("invalid cpumask");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
|
||||
"Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
|
||||
[](common_params & params, const std::string & range) {
|
||||
params.draft_cpuparams_batch.mask_valid = true;
|
||||
if (!parse_cpu_range(range, params.draft_cpuparams_batch.cpumask)) {
|
||||
throw std::invalid_argument("invalid cpumask");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--cpu-strict-batch-draft"}, "<0|1>",
|
||||
"Use strict CPU placement for draft model (default: --cpu-strict-draft)",
|
||||
[](common_params & params, int value) {
|
||||
params.draft_cpuparams_batch.strict_cpu = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--prio-batch-draft"}, "N",
|
||||
string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.draft_cpuparams_batch.priority),
|
||||
[](common_params & params, int prio) {
|
||||
if (prio < 0 || prio > 3) {
|
||||
throw std::invalid_argument("invalid value");
|
||||
}
|
||||
params.draft_cpuparams_batch.priority = (enum ggml_sched_priority) prio;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--poll-batch-draft"}, "<0|1>",
|
||||
"Use polling to wait for draft model work (default: --poll-draft)",
|
||||
[](common_params & params, int value) {
|
||||
params.draft_cpuparams_batch.poll = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--draft"}, "N",
|
||||
string_format("number of tokens to draft for speculative decoding (default: %d)", params.n_draft),
|
||||
[](common_params & params, int value) {
|
||||
params.n_draft = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
|
||||
add_opt(common_arg(
|
||||
{"-ps", "--p-split"}, "N",
|
||||
string_format("speculative decoding split probability (default: %.1f)", (double)params.p_split),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.p_split = std::stof(value);
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-lcs", "--lookup-cache-static"}, "FNAME",
|
||||
"path to static lookup cache to use for lookup decoding (not updated by generation)",
|
||||
@ -701,7 +580,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
|
||||
[](common_params & params) {
|
||||
params.no_perf = true;
|
||||
params.sparams.no_perf = true;
|
||||
params.sampling.no_perf = true;
|
||||
}
|
||||
).set_env("LLAMA_ARG_NO_PERF"));
|
||||
add_opt(common_arg(
|
||||
@ -883,155 +762,155 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
|
||||
[](common_params & params, const std::string & value) {
|
||||
const auto sampler_names = string_split<std::string>(value, ';');
|
||||
params.sparams.samplers = common_sampler_types_from_names(sampler_names, true);
|
||||
params.sampling.samplers = common_sampler_types_from_names(sampler_names, true);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"-s", "--seed"}, "SEED",
|
||||
string_format("RNG seed (default: %d, use random seed for %d)", params.sparams.seed, LLAMA_DEFAULT_SEED),
|
||||
string_format("RNG seed (default: %d, use random seed for %d)", params.sampling.seed, LLAMA_DEFAULT_SEED),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.seed = std::stoul(value);
|
||||
params.sampling.seed = std::stoul(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--sampling-seq"}, "SEQUENCE",
|
||||
string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.samplers = common_sampler_types_from_chars(value);
|
||||
params.sampling.samplers = common_sampler_types_from_chars(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--ignore-eos"},
|
||||
"ignore end of stream token and continue generating (implies --logit-bias EOS-inf)",
|
||||
[](common_params & params) {
|
||||
params.sparams.ignore_eos = true;
|
||||
params.sampling.ignore_eos = true;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--penalize-nl"},
|
||||
string_format("penalize newline tokens (default: %s)", params.sparams.penalize_nl ? "true" : "false"),
|
||||
string_format("penalize newline tokens (default: %s)", params.sampling.penalize_nl ? "true" : "false"),
|
||||
[](common_params & params) {
|
||||
params.sparams.penalize_nl = true;
|
||||
params.sampling.penalize_nl = true;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--temp"}, "N",
|
||||
string_format("temperature (default: %.1f)", (double)params.sparams.temp),
|
||||
string_format("temperature (default: %.1f)", (double)params.sampling.temp),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.temp = std::stof(value);
|
||||
params.sparams.temp = std::max(params.sparams.temp, 0.0f);
|
||||
params.sampling.temp = std::stof(value);
|
||||
params.sampling.temp = std::max(params.sampling.temp, 0.0f);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--top-k"}, "N",
|
||||
string_format("top-k sampling (default: %d, 0 = disabled)", params.sparams.top_k),
|
||||
string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k),
|
||||
[](common_params & params, int value) {
|
||||
params.sparams.top_k = value;
|
||||
params.sampling.top_k = value;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--top-p"}, "N",
|
||||
string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sparams.top_p),
|
||||
string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.top_p = std::stof(value);
|
||||
params.sampling.top_p = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--min-p"}, "N",
|
||||
string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sparams.min_p),
|
||||
string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.min_p = std::stof(value);
|
||||
params.sampling.min_p = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--xtc-probability"}, "N",
|
||||
string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sparams.xtc_probability),
|
||||
string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.xtc_probability = std::stof(value);
|
||||
params.sampling.xtc_probability = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--xtc-threshold"}, "N",
|
||||
string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sparams.xtc_threshold),
|
||||
string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.xtc_threshold = std::stof(value);
|
||||
params.sampling.xtc_threshold = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--typical"}, "N",
|
||||
string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sparams.typ_p),
|
||||
string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sampling.typ_p),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.typ_p = std::stof(value);
|
||||
params.sampling.typ_p = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--repeat-last-n"}, "N",
|
||||
string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sparams.penalty_last_n),
|
||||
string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sampling.penalty_last_n),
|
||||
[](common_params & params, int value) {
|
||||
params.sparams.penalty_last_n = value;
|
||||
params.sparams.n_prev = std::max(params.sparams.n_prev, params.sparams.penalty_last_n);
|
||||
params.sampling.penalty_last_n = value;
|
||||
params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--repeat-penalty"}, "N",
|
||||
string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sparams.penalty_repeat),
|
||||
string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.penalty_repeat = std::stof(value);
|
||||
params.sampling.penalty_repeat = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--presence-penalty"}, "N",
|
||||
string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sparams.penalty_present),
|
||||
string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_present),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.penalty_present = std::stof(value);
|
||||
params.sampling.penalty_present = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--frequency-penalty"}, "N",
|
||||
string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sparams.penalty_freq),
|
||||
string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_freq),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.penalty_freq = std::stof(value);
|
||||
params.sampling.penalty_freq = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--dry-multiplier"}, "N",
|
||||
string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sparams.dry_multiplier),
|
||||
string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sampling.dry_multiplier),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.dry_multiplier = std::stof(value);
|
||||
params.sampling.dry_multiplier = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--dry-base"}, "N",
|
||||
string_format("set DRY sampling base value (default: %.2f)", (double)params.sparams.dry_base),
|
||||
string_format("set DRY sampling base value (default: %.2f)", (double)params.sampling.dry_base),
|
||||
[](common_params & params, const std::string & value) {
|
||||
float potential_base = std::stof(value);
|
||||
if (potential_base >= 1.0f)
|
||||
{
|
||||
params.sparams.dry_base = potential_base;
|
||||
params.sampling.dry_base = potential_base;
|
||||
}
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--dry-allowed-length"}, "N",
|
||||
string_format("set allowed length for DRY sampling (default: %d)", params.sparams.dry_allowed_length),
|
||||
string_format("set allowed length for DRY sampling (default: %d)", params.sampling.dry_allowed_length),
|
||||
[](common_params & params, int value) {
|
||||
params.sparams.dry_allowed_length = value;
|
||||
params.sampling.dry_allowed_length = value;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--dry-penalty-last-n"}, "N",
|
||||
string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sparams.dry_penalty_last_n),
|
||||
string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sampling.dry_penalty_last_n),
|
||||
[](common_params & params, int value) {
|
||||
params.sparams.dry_penalty_last_n = value;
|
||||
params.sampling.dry_penalty_last_n = value;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--dry-sequence-breaker"}, "STRING",
|
||||
string_format("add sequence breaker for DRY sampling, clearing out default breakers (%s) in the process; use \"none\" to not use any sequence breakers\n",
|
||||
params.sparams.dry_sequence_breakers.empty() ? "none" :
|
||||
std::accumulate(std::next(params.sparams.dry_sequence_breakers.begin()),
|
||||
params.sparams.dry_sequence_breakers.end(),
|
||||
std::string("'") + (params.sparams.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sparams.dry_sequence_breakers[0]) + "'",
|
||||
params.sampling.dry_sequence_breakers.empty() ? "none" :
|
||||
std::accumulate(std::next(params.sampling.dry_sequence_breakers.begin()),
|
||||
params.sampling.dry_sequence_breakers.end(),
|
||||
std::string("'") + (params.sampling.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sampling.dry_sequence_breakers[0]) + "'",
|
||||
[](const std::string& a, const std::string& b) {
|
||||
std::string formatted_b = (b == "\n") ? "\\n" : b;
|
||||
return a + ", '" + formatted_b + "'";
|
||||
@ -1040,51 +919,51 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
static bool defaults_cleared = false;
|
||||
|
||||
if (!defaults_cleared) {
|
||||
params.sparams.dry_sequence_breakers.clear();
|
||||
params.sampling.dry_sequence_breakers.clear();
|
||||
defaults_cleared = true;
|
||||
}
|
||||
|
||||
if (value == "none") {
|
||||
params.sparams.dry_sequence_breakers.clear();
|
||||
params.sampling.dry_sequence_breakers.clear();
|
||||
} else {
|
||||
params.sparams.dry_sequence_breakers.emplace_back(value);
|
||||
params.sampling.dry_sequence_breakers.emplace_back(value);
|
||||
}
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--dynatemp-range"}, "N",
|
||||
string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sparams.dynatemp_range),
|
||||
string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sampling.dynatemp_range),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.dynatemp_range = std::stof(value);
|
||||
params.sampling.dynatemp_range = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--dynatemp-exp"}, "N",
|
||||
string_format("dynamic temperature exponent (default: %.1f)", (double)params.sparams.dynatemp_exponent),
|
||||
string_format("dynamic temperature exponent (default: %.1f)", (double)params.sampling.dynatemp_exponent),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.dynatemp_exponent = std::stof(value);
|
||||
params.sampling.dynatemp_exponent = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--mirostat"}, "N",
|
||||
string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n"
|
||||
"(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sparams.mirostat),
|
||||
"(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat),
|
||||
[](common_params & params, int value) {
|
||||
params.sparams.mirostat = value;
|
||||
params.sampling.mirostat = value;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--mirostat-lr"}, "N",
|
||||
string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sparams.mirostat_eta),
|
||||
string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.mirostat_eta = std::stof(value);
|
||||
params.sampling.mirostat_eta = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--mirostat-ent"}, "N",
|
||||
string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sparams.mirostat_tau),
|
||||
string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.mirostat_tau = std::stof(value);
|
||||
params.sampling.mirostat_tau = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
@ -1100,7 +979,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
try {
|
||||
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
|
||||
const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
|
||||
params.sparams.logit_bias.push_back({key, bias});
|
||||
params.sampling.logit_bias.push_back({key, bias});
|
||||
} else {
|
||||
throw std::invalid_argument("invalid input format");
|
||||
}
|
||||
@ -1111,9 +990,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--grammar"}, "GRAMMAR",
|
||||
string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sparams.grammar.c_str()),
|
||||
string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sampling.grammar.c_str()),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.grammar = value;
|
||||
params.sampling.grammar = value;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
@ -1127,7 +1006,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
std::copy(
|
||||
std::istreambuf_iterator<char>(file),
|
||||
std::istreambuf_iterator<char>(),
|
||||
std::back_inserter(params.sparams.grammar)
|
||||
std::back_inserter(params.sampling.grammar)
|
||||
);
|
||||
}
|
||||
).set_sparam());
|
||||
@ -1135,7 +1014,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"-j", "--json-schema"}, "SCHEMA",
|
||||
"JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sparams.grammar = json_schema_to_grammar(json::parse(value));
|
||||
params.sampling.grammar = json_schema_to_grammar(json::parse(value));
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
@ -1444,17 +1323,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
}
|
||||
).set_env("LLAMA_ARG_N_GPU_LAYERS"));
|
||||
add_opt(common_arg(
|
||||
{"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
|
||||
"number of layers to store in VRAM for the draft model",
|
||||
[](common_params & params, int value) {
|
||||
params.n_gpu_layers_draft = value;
|
||||
if (!llama_supports_gpu_offload()) {
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-sm", "--split-mode"}, "{none,layer,row}",
|
||||
"how to split the model across multiple GPUs, one of:\n"
|
||||
@ -1593,13 +1461,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.model = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
|
||||
add_opt(common_arg(
|
||||
{"-md", "--model-draft"}, "FNAME",
|
||||
"draft model for speculative decoding (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.model_draft = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-mu", "--model-url"}, "MODEL_URL",
|
||||
"model download url (default: unused)",
|
||||
@ -2037,5 +1898,168 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
).set_env("LLAMA_LOG_TIMESTAMPS"));
|
||||
|
||||
// speculative parameters
|
||||
add_opt(common_arg(
|
||||
{"-td", "--threads-draft"}, "N",
|
||||
"number of threads to use during generation (default: same as --threads)",
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.cpuparams.n_threads = value;
|
||||
if (params.speculative.cpuparams.n_threads <= 0) {
|
||||
params.speculative.cpuparams.n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-tbd", "--threads-batch-draft"}, "N",
|
||||
"number of threads to use during batch and prompt processing (default: same as --threads-draft)",
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.cpuparams_batch.n_threads = value;
|
||||
if (params.speculative.cpuparams_batch.n_threads <= 0) {
|
||||
params.speculative.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-Cd", "--cpu-mask-draft"}, "M",
|
||||
"Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
|
||||
[](common_params & params, const std::string & mask) {
|
||||
params.speculative.cpuparams.mask_valid = true;
|
||||
if (!parse_cpu_mask(mask, params.speculative.cpuparams.cpumask)) {
|
||||
throw std::invalid_argument("invalid cpumask");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-Crd", "--cpu-range-draft"}, "lo-hi",
|
||||
"Ranges of CPUs for affinity. Complements --cpu-mask-draft",
|
||||
[](common_params & params, const std::string & range) {
|
||||
params.speculative.cpuparams.mask_valid = true;
|
||||
if (!parse_cpu_range(range, params.speculative.cpuparams.cpumask)) {
|
||||
throw std::invalid_argument("invalid range");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--cpu-strict-draft"}, "<0|1>",
|
||||
"Use strict CPU placement for draft model (default: same as --cpu-strict)",
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.cpuparams.strict_cpu = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--prio-draft"}, "N",
|
||||
string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams.priority),
|
||||
[](common_params & params, int prio) {
|
||||
if (prio < 0 || prio > 3) {
|
||||
throw std::invalid_argument("invalid value");
|
||||
}
|
||||
params.speculative.cpuparams.priority = (enum ggml_sched_priority) prio;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--poll-draft"}, "<0|1>",
|
||||
"Use polling to wait for draft model work (default: same as --poll])",
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.cpuparams.poll = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-Cbd", "--cpu-mask-batch-draft"}, "M",
|
||||
"Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
|
||||
[](common_params & params, const std::string & mask) {
|
||||
params.speculative.cpuparams_batch.mask_valid = true;
|
||||
if (!parse_cpu_mask(mask, params.speculative.cpuparams_batch.cpumask)) {
|
||||
throw std::invalid_argument("invalid cpumask");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
|
||||
"Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
|
||||
[](common_params & params, const std::string & range) {
|
||||
params.speculative.cpuparams_batch.mask_valid = true;
|
||||
if (!parse_cpu_range(range, params.speculative.cpuparams_batch.cpumask)) {
|
||||
throw std::invalid_argument("invalid cpumask");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--cpu-strict-batch-draft"}, "<0|1>",
|
||||
"Use strict CPU placement for draft model (default: --cpu-strict-draft)",
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.cpuparams_batch.strict_cpu = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--prio-batch-draft"}, "N",
|
||||
string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams_batch.priority),
|
||||
[](common_params & params, int prio) {
|
||||
if (prio < 0 || prio > 3) {
|
||||
throw std::invalid_argument("invalid value");
|
||||
}
|
||||
params.speculative.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--poll-batch-draft"}, "<0|1>",
|
||||
"Use polling to wait for draft model work (default: --poll-draft)",
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.cpuparams_batch.poll = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--draft-max", "--draft", "--draft-n"}, "N",
|
||||
string_format("number of tokens to draft for speculative decoding (default: %d)", params.speculative.n_max),
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.n_max = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--draft-min", "--draft-n-min"}, "N",
|
||||
string_format("minimum number of draft tokens to use for speculative decoding (default: %d)", params.speculative.n_min),
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.n_min = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--draft-p-split"}, "P",
|
||||
string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.p_split = std::stof(value);
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
|
||||
add_opt(common_arg(
|
||||
{"--draft-p-min"}, "P",
|
||||
string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.p_min = std::stof(value);
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-cd", "--ctx-size-draft"}, "N",
|
||||
string_format("size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.speculative.n_ctx),
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.n_ctx = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
|
||||
"number of layers to store in VRAM for the draft model",
|
||||
[](common_params & params, int value) {
|
||||
params.speculative.n_gpu_layers = value;
|
||||
if (!llama_supports_gpu_offload()) {
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-md", "--model-draft"}, "FNAME",
|
||||
"draft model for speculative decoding (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.model = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
|
||||
|
||||
return ctx_arg;
|
||||
}
|
||||
|
@ -536,12 +536,12 @@ std::string string_from(const struct llama_context * ctx, const struct llama_bat
|
||||
[](const unsigned char c) { return !std::isprint(c); }),
|
||||
detokenized.end());
|
||||
|
||||
buf << "\n" << std::to_string(i)
|
||||
<< ":token '" << detokenized << "'"
|
||||
<< ":pos " << std::to_string(batch.pos[i])
|
||||
<< ":n_seq_id " << std::to_string(batch.n_seq_id[i])
|
||||
<< ":seq_id " << std::to_string(batch.seq_id[i][0])
|
||||
<< ":logits " << std::to_string(batch.logits[i]);
|
||||
buf << "\n" << std::to_string(i)
|
||||
<< ", token '" << detokenized << "'"
|
||||
<< ", pos " << std::to_string(batch.pos[i])
|
||||
<< ", n_seq_id " << std::to_string(batch.n_seq_id[i])
|
||||
<< ", seq_id " << std::to_string(batch.seq_id[i][0])
|
||||
<< ", logits " << std::to_string(batch.logits[i]);
|
||||
}
|
||||
|
||||
buf << " ]";
|
||||
@ -925,9 +925,9 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
common_lora_adapters_apply(lctx, iparams.lora_adapters);
|
||||
}
|
||||
|
||||
if (params.sparams.ignore_eos && llama_token_eos(model) == LLAMA_TOKEN_NULL) {
|
||||
if (params.sampling.ignore_eos && llama_token_eos(model) == LLAMA_TOKEN_NULL) {
|
||||
LOG_WRN("%s: warning: model does not have an EOS token, ignoring --ignore-eos\n", __func__);
|
||||
params.sparams.ignore_eos = false;
|
||||
params.sampling.ignore_eos = false;
|
||||
}
|
||||
|
||||
if (params.warmup) {
|
||||
@ -1490,6 +1490,66 @@ void common_batch_add(
|
||||
batch.n_tokens++;
|
||||
}
|
||||
|
||||
//
|
||||
// Token utils
|
||||
//
|
||||
|
||||
size_t common_lcp(const llama_tokens & a, const llama_tokens & b) {
|
||||
size_t i;
|
||||
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
|
||||
|
||||
return i;
|
||||
}
|
||||
|
||||
size_t common_lcs(const llama_tokens & a, const llama_tokens & b) {
|
||||
// check for empty sequences
|
||||
if (a.empty() || b.empty()) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// get the lengths of the input sequences
|
||||
size_t a_len = a.size();
|
||||
size_t b_len = b.size();
|
||||
|
||||
// initialize the maximum length of the longest common subsequence (LCS)
|
||||
size_t max_length = 0;
|
||||
|
||||
// use two rows instead of a 2D matrix to optimize space
|
||||
std::vector<size_t> prev_row(b_len + 1, 0);
|
||||
std::vector<size_t> curr_row(b_len + 1, 0);
|
||||
|
||||
// iterate through the elements of a
|
||||
for (size_t i = 1; i <= a_len; i++) {
|
||||
// iterate through the elements of b
|
||||
for (size_t j = 1; j <= b_len; j++) {
|
||||
// if elements at the current positions match
|
||||
if (a[i - 1] == b[j - 1]) {
|
||||
// if it's the first element of either sequences, set LCS length to 1
|
||||
if (i == 1 || j == 1) {
|
||||
curr_row[j] = 1;
|
||||
} else {
|
||||
// increment LCS length by 1 compared to the previous element
|
||||
curr_row[j] = prev_row[j - 1] + 1;
|
||||
}
|
||||
|
||||
// update max_length if necessary
|
||||
if (curr_row[j] > max_length) {
|
||||
max_length = curr_row[j];
|
||||
}
|
||||
} else {
|
||||
// reset LCS length if elements don't match
|
||||
curr_row[j] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// update the previous row for the next iteration
|
||||
prev_row = curr_row;
|
||||
}
|
||||
|
||||
// return the maximum length of the LCS
|
||||
return max_length;
|
||||
}
|
||||
|
||||
//
|
||||
// Vocab utils
|
||||
//
|
||||
|
@ -33,6 +33,8 @@ struct common_lora_adapter_container : common_lora_adapter_info {
|
||||
struct llama_lora_adapter * adapter;
|
||||
};
|
||||
|
||||
using llama_tokens = std::vector<llama_token>;
|
||||
|
||||
// build info
|
||||
extern int LLAMA_BUILD_NUMBER;
|
||||
extern char const * LLAMA_COMMIT;
|
||||
@ -101,8 +103,8 @@ enum dimre_method {
|
||||
DIMRE_METHOD_MEAN,
|
||||
};
|
||||
|
||||
// sampler parameters
|
||||
struct common_sampler_params {
|
||||
// sampling parameters
|
||||
struct common_params_sampling {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
||||
|
||||
int32_t n_prev = 64; // number of previous tokens to remember
|
||||
@ -153,19 +155,30 @@ struct common_sampler_params {
|
||||
std::string print() const;
|
||||
};
|
||||
|
||||
struct common_params_speculative {
|
||||
int32_t n_ctx = 0; // draft context size
|
||||
int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
|
||||
int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
float p_min = 0.9f; // minimum speculative decoding probability (greedy)
|
||||
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
|
||||
std::string model = ""; // draft model for speculative decoding // NOLINT
|
||||
};
|
||||
|
||||
struct common_params {
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 4096; // context size
|
||||
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_parallel = 1; // number of parallel sequences to decode
|
||||
int32_t n_sequences = 1; // number of sequences to decode
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t grp_attn_n = 1; // group-attention factor
|
||||
@ -182,8 +195,6 @@ struct common_params {
|
||||
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
struct cpu_params draft_cpuparams;
|
||||
struct cpu_params draft_cpuparams_batch;
|
||||
|
||||
ggml_backend_sched_eval_callback cb_eval = nullptr;
|
||||
void * cb_eval_user_data = nullptr;
|
||||
@ -195,10 +206,10 @@ struct common_params {
|
||||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
||||
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
|
||||
|
||||
struct common_sampler_params sparams;
|
||||
struct common_params_sampling sampling;
|
||||
struct common_params_speculative speculative;
|
||||
|
||||
std::string model = ""; // model path // NOLINT
|
||||
std::string model_draft = ""; // draft model for speculative decoding // NOLINT
|
||||
std::string model_alias = "unknown"; // model alias // NOLINT
|
||||
std::string model_url = ""; // model url to download // NOLINT
|
||||
std::string hf_token = ""; // HF token // NOLINT
|
||||
@ -461,7 +472,9 @@ struct llama_model * common_load_model_from_hf(const char * repo, const char * f
|
||||
// clear LoRA adapters from context, then apply new list of adapters
|
||||
void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters);
|
||||
|
||||
//
|
||||
// Batch utils
|
||||
//
|
||||
|
||||
void common_batch_clear(struct llama_batch & batch);
|
||||
|
||||
@ -472,6 +485,16 @@ void common_batch_add(
|
||||
const std::vector<llama_seq_id> & seq_ids,
|
||||
bool logits);
|
||||
|
||||
//
|
||||
// Token utils
|
||||
//
|
||||
|
||||
// longest common prefix
|
||||
size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
|
||||
|
||||
// longet common subsequence
|
||||
size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
|
||||
|
||||
//
|
||||
// Vocab utils
|
||||
//
|
||||
|
@ -99,7 +99,7 @@ struct ring_buffer {
|
||||
};
|
||||
|
||||
struct common_sampler {
|
||||
common_sampler_params params;
|
||||
common_params_sampling params;
|
||||
|
||||
struct llama_sampler * grmr;
|
||||
struct llama_sampler * chain;
|
||||
@ -125,7 +125,7 @@ struct common_sampler {
|
||||
}
|
||||
};
|
||||
|
||||
std::string common_sampler_params::print() const {
|
||||
std::string common_params_sampling::print() const {
|
||||
char result[1024];
|
||||
|
||||
snprintf(result, sizeof(result),
|
||||
@ -141,7 +141,7 @@ std::string common_sampler_params::print() const {
|
||||
return std::string(result);
|
||||
}
|
||||
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_sampler_params & params) {
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
|
||||
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
|
||||
|
||||
lparams.no_perf = params.no_perf;
|
||||
@ -320,6 +320,45 @@ llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_co
|
||||
return cur_p.data[cur_p.selected].id;
|
||||
}
|
||||
|
||||
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
|
||||
GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");
|
||||
|
||||
std::vector<llama_token> result;
|
||||
result.reserve(idxs.size());
|
||||
|
||||
size_t i = 0;
|
||||
for (; i < draft.size(); i++) {
|
||||
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
|
||||
|
||||
common_sampler_accept(gsmpl, id, true);
|
||||
|
||||
result.push_back(id);
|
||||
|
||||
if (draft[i] != id) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (i == draft.size()) {
|
||||
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
|
||||
|
||||
common_sampler_accept(gsmpl, id, true);
|
||||
|
||||
result.push_back(id);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
|
||||
std::vector<int> idxs(draft.size() + 1);
|
||||
for (size_t i = 0; i < idxs.size(); ++i) {
|
||||
idxs[i] = i;
|
||||
}
|
||||
|
||||
return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
|
||||
}
|
||||
|
||||
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
|
||||
return llama_sampler_get_seed(gsmpl->chain);
|
||||
}
|
||||
|
@ -36,7 +36,7 @@ struct common_sampler;
|
||||
|
||||
// llama_sampler API overloads
|
||||
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_sampler_params & params);
|
||||
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params);
|
||||
|
||||
void common_sampler_free(struct common_sampler * gsmpl);
|
||||
|
||||
@ -60,6 +60,27 @@ void common_perf_print(const struct llama_context * ctx, const struct common_sam
|
||||
//
|
||||
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
|
||||
|
||||
// generalized version of common_sampler_sample
|
||||
//
|
||||
// will cross-reference the sampled tokens with a batch of draft tokens and accept those that match
|
||||
// if the sampler disagrees at some point, we stop and return the accepted tokens up to now
|
||||
//
|
||||
// common_sampler_sample_n(gsmpl, ctx, { idx }, {});
|
||||
//
|
||||
// is equivalent to
|
||||
//
|
||||
// common_sampler_sample(gsmpl, ctx, idx);
|
||||
// common_sampler_accept(gsmpl, token, true);
|
||||
//
|
||||
// requires: idxs.size() == draft.size() + 1
|
||||
//
|
||||
// returns at least 1 token, up to idxs.size()
|
||||
//
|
||||
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first = false);
|
||||
|
||||
// assume idxs == [ 0, 1, 2, ..., draft.size() ]
|
||||
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first = false);
|
||||
|
||||
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);
|
||||
|
||||
// helpers
|
||||
|
269
common/speculative.cpp
Normal file
269
common/speculative.cpp
Normal file
@ -0,0 +1,269 @@
|
||||
#include "speculative.h"
|
||||
|
||||
#include "log.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
|
||||
#include <cstring>
|
||||
|
||||
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
|
||||
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
|
||||
|
||||
struct common_speculative {
|
||||
struct llama_context * ctx;
|
||||
struct common_sampler * smpl;
|
||||
|
||||
llama_batch batch;
|
||||
llama_tokens prompt;
|
||||
};
|
||||
|
||||
struct common_speculative * common_speculative_init(
|
||||
struct llama_context * ctx_dft) {
|
||||
auto * result = new common_speculative {
|
||||
/* .ctx = */ ctx_dft,
|
||||
/* .smpl = */ nullptr,
|
||||
/* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
|
||||
/* .prompt = */ {},
|
||||
};
|
||||
|
||||
// TODO: optimize or pass from outside?
|
||||
#if 0
|
||||
{
|
||||
common_params_sampling params;
|
||||
params.no_perf = false;
|
||||
|
||||
params.top_k = 40;
|
||||
params.top_p = 0.9;
|
||||
|
||||
params.samplers = {
|
||||
COMMON_SAMPLER_TYPE_TOP_K,
|
||||
COMMON_SAMPLER_TYPE_TOP_P,
|
||||
COMMON_SAMPLER_TYPE_INFILL,
|
||||
};
|
||||
|
||||
result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
|
||||
}
|
||||
#else
|
||||
{
|
||||
common_params_sampling params;
|
||||
params.no_perf = false;
|
||||
|
||||
params.top_k = 10;
|
||||
|
||||
params.samplers = {
|
||||
COMMON_SAMPLER_TYPE_TOP_K,
|
||||
};
|
||||
|
||||
result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
|
||||
}
|
||||
#endif
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void common_speculative_free(struct common_speculative * spec) {
|
||||
common_sampler_free(spec->smpl);
|
||||
|
||||
llama_batch_free(spec->batch);
|
||||
|
||||
delete spec;
|
||||
}
|
||||
|
||||
bool common_speculative_are_compatible(
|
||||
const struct llama_context * ctx_tgt,
|
||||
const struct llama_context * ctx_dft) {
|
||||
const struct llama_model * model_tgt = llama_get_model(ctx_tgt);
|
||||
const struct llama_model * model_dft = llama_get_model(ctx_dft);
|
||||
|
||||
const bool vocab_type_tgt = llama_vocab_type(model_tgt);
|
||||
LOG_DBG("%s: vocab_type tgt: %d\n", __func__, vocab_type_tgt);
|
||||
|
||||
const bool vocab_type_dft = llama_vocab_type(model_dft);
|
||||
LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft);
|
||||
|
||||
if (vocab_type_tgt != vocab_type_dft) {
|
||||
LOG_ERR("%s: draft model vocab type must match target model to use speculation but "
|
||||
"vocab_type_dft = %d while vocab_type_tgt = %d\n", __func__, vocab_type_dft, vocab_type_tgt);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) ||
|
||||
llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) ||
|
||||
llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
|
||||
llama_token_eos(model_tgt) != llama_token_eos(model_dft)
|
||||
) {
|
||||
LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
{
|
||||
const int n_vocab_tgt = llama_n_vocab(model_tgt);
|
||||
const int n_vocab_dft = llama_n_vocab(model_dft);
|
||||
|
||||
const int vocab_diff = std::abs(n_vocab_tgt - n_vocab_dft);
|
||||
|
||||
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
|
||||
LOG_ERR("%s: draft model vocab must closely match target model to use speculation but "
|
||||
"target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
|
||||
__func__, n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
|
||||
return false;
|
||||
}
|
||||
|
||||
for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
|
||||
const char * token_text_tgt = llama_token_get_text(model_tgt, i);
|
||||
const char * token_text_dft = llama_token_get_text(model_dft, i);
|
||||
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
|
||||
LOG_ERR("%s: draft model vocab must match target model to use speculation but "
|
||||
"token %d content differs - target '%s', draft '%s'\n", __func__, i,
|
||||
common_token_to_piece(ctx_tgt, i).c_str(),
|
||||
common_token_to_piece(ctx_dft, i).c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
llama_tokens common_speculative_gen_draft(
|
||||
struct common_speculative * spec,
|
||||
struct common_speculative_params params,
|
||||
const llama_tokens & prompt_tgt,
|
||||
llama_token id_last) {
|
||||
auto & batch = spec->batch;
|
||||
auto & ctx = spec->ctx;
|
||||
auto & smpl = spec->smpl;
|
||||
auto & prompt = spec->prompt;
|
||||
|
||||
int reuse_i = 0;
|
||||
int reuse_n = 0;
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx) - params.n_draft;
|
||||
|
||||
const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);
|
||||
|
||||
// reuse as much as possible from the old draft context
|
||||
// ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
|
||||
for (int i = 0; i < (int) prompt.size(); ++i) {
|
||||
int cur = 0;
|
||||
while (i_start + cur < (int) prompt_tgt.size() &&
|
||||
i + cur < (int) prompt.size() &&
|
||||
prompt_tgt[i_start + cur] == prompt[i + cur]) {
|
||||
cur++;
|
||||
}
|
||||
|
||||
if ((cur >= params.n_reuse || n_ctx >= (int) prompt_tgt.size()) && cur > reuse_n) {
|
||||
reuse_i = i;
|
||||
reuse_n = cur;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt.size());
|
||||
|
||||
llama_tokens result;
|
||||
result.reserve(params.n_draft);
|
||||
|
||||
if (reuse_n == 0) {
|
||||
llama_kv_cache_clear(ctx);
|
||||
|
||||
prompt.clear();
|
||||
} else {
|
||||
// this happens when a previous draft has been discarded (for example, due to being too small), but the
|
||||
// target model agreed with it. in this case, we simply pass back the previous results to save compute
|
||||
if (reuse_i + reuse_n < (int) prompt.size() && prompt[reuse_i + reuse_n] == id_last) {
|
||||
for (int i = reuse_i + reuse_n + 1; i < (int) prompt.size(); ++i) {
|
||||
result.push_back(prompt[i]);
|
||||
|
||||
if (params.n_draft <= (int) result.size()) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
if (reuse_i > 0) {
|
||||
llama_kv_cache_seq_rm (ctx, 0, 0, reuse_i);
|
||||
llama_kv_cache_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
|
||||
|
||||
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
|
||||
}
|
||||
|
||||
if (reuse_n < (int) prompt.size()) {
|
||||
llama_kv_cache_seq_rm (ctx, 0, reuse_n, -1);
|
||||
|
||||
prompt.erase(prompt.begin() + reuse_n, prompt.end());
|
||||
}
|
||||
}
|
||||
|
||||
// prepare a batch to evaluate any new tokens in the prompt
|
||||
common_batch_clear(batch);
|
||||
|
||||
for (size_t i = i_start + reuse_n; i < prompt_tgt.size(); ++i) {
|
||||
//LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
|
||||
common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false);
|
||||
|
||||
prompt.push_back(prompt_tgt[i]);
|
||||
}
|
||||
|
||||
// we should rarely end-up here during normal decoding
|
||||
if (batch.n_tokens > 0) {
|
||||
//LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());
|
||||
|
||||
llama_decode(ctx, batch);
|
||||
}
|
||||
|
||||
const llama_pos n_past = prompt.size();
|
||||
|
||||
LOG_DBG("%s: n_past = %d\n", __func__, n_past);
|
||||
|
||||
common_batch_clear(batch);
|
||||
common_batch_add (batch, id_last, n_past, { 0 }, true);
|
||||
|
||||
prompt.push_back(id_last);
|
||||
|
||||
//LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str());
|
||||
|
||||
llama_decode(ctx, batch);
|
||||
|
||||
common_sampler_reset(smpl);
|
||||
|
||||
// sample n_draft tokens from the draft model
|
||||
for (int i = 0; i < params.n_draft; ++i) {
|
||||
common_batch_clear(batch);
|
||||
|
||||
common_sampler_sample(smpl, ctx, 0, true);
|
||||
|
||||
const auto * cur_p = common_sampler_get_candidates(smpl);
|
||||
|
||||
for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
|
||||
LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",
|
||||
k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx, cur_p->data[k].id).c_str());
|
||||
}
|
||||
|
||||
// add drafted token for each sequence
|
||||
const llama_token id = cur_p->data[0].id;
|
||||
|
||||
// only collect very high-confidence draft tokens
|
||||
if (cur_p->data[0].p < params.p_min) {
|
||||
break;
|
||||
}
|
||||
|
||||
common_sampler_accept(smpl, id, true);
|
||||
|
||||
result.push_back(id);
|
||||
|
||||
if (params.n_draft <= (int) result.size()) {
|
||||
break;
|
||||
}
|
||||
|
||||
common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
|
||||
|
||||
// evaluate the drafted tokens on the draft model
|
||||
llama_decode(ctx, batch);
|
||||
|
||||
prompt.push_back(id);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
28
common/speculative.h
Normal file
28
common/speculative.h
Normal file
@ -0,0 +1,28 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
||||
struct common_speculative;
|
||||
|
||||
struct common_speculative_params {
|
||||
int n_draft = 16; // max drafted tokens
|
||||
int n_reuse = 256;
|
||||
|
||||
float p_min = 0.9f; // min probabiliy required to accept a token in the draft
|
||||
};
|
||||
|
||||
struct common_speculative * common_speculative_init(struct llama_context * ctx_dft);
|
||||
|
||||
void common_speculative_free(struct common_speculative * spec);
|
||||
|
||||
bool common_speculative_are_compatible(
|
||||
const struct llama_context * ctx_tgt,
|
||||
const struct llama_context * ctx_dft);
|
||||
|
||||
// sample up to n_draft tokens and add them to the batch using the draft model
|
||||
llama_tokens common_speculative_gen_draft(
|
||||
struct common_speculative * spec,
|
||||
struct common_speculative_params params,
|
||||
const llama_tokens & prompt,
|
||||
llama_token id_last);
|
@ -50,5 +50,6 @@ else()
|
||||
add_subdirectory(simple)
|
||||
add_subdirectory(simple-chat)
|
||||
add_subdirectory(speculative)
|
||||
add_subdirectory(speculative-simple)
|
||||
add_subdirectory(tokenize)
|
||||
endif()
|
||||
|
@ -68,10 +68,10 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_sampler * smpl = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(params.sparams.top_k));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(params.sparams.top_p, params.sparams.min_keep));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_temp (params.sparams.temp));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sparams.seed));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(params.sampling.top_k));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(params.sampling.top_p, params.sampling.min_keep));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_temp (params.sampling.temp));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sampling.seed));
|
||||
|
||||
if (ctx == NULL) {
|
||||
LOG_ERR("%s: error: failed to create the llama_context\n" , __func__);
|
||||
|
@ -73,7 +73,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_init();
|
||||
|
||||
auto & sparams = params.sparams;
|
||||
auto & sparams = params.sampling;
|
||||
|
||||
console::init(params.simple_io, params.use_color);
|
||||
atexit([]() { console::cleanup(); });
|
||||
|
@ -191,7 +191,7 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
||||
|
||||
LOG("\n");
|
||||
|
||||
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sampling);
|
||||
if (!smpl) {
|
||||
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
|
||||
exit(1);
|
||||
|
@ -237,7 +237,7 @@ static struct common_sampler * llama_init(struct llava_context * ctx_llava, comm
|
||||
|
||||
LOG_INF("\n");
|
||||
|
||||
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sampling);
|
||||
return smpl;
|
||||
}
|
||||
|
||||
|
@ -115,7 +115,7 @@ int main(int argc, char ** argv) {
|
||||
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
|
||||
|
||||
// target model sampling context
|
||||
struct common_sampler * smpl = common_sampler_init(model, params.sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(model, params.sampling);
|
||||
|
||||
// verification n-grams
|
||||
std::vector<ngram_data> ngrams_cur(G);
|
||||
|
@ -21,7 +21,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
common_init();
|
||||
|
||||
const int n_draft = params.n_draft;
|
||||
const int n_draft = params.speculative.n_max;
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
@ -40,6 +40,7 @@ int main(int argc, char ** argv){
|
||||
common_ngram_cache ngram_cache_context;
|
||||
common_ngram_cache ngram_cache_dynamic;
|
||||
common_ngram_cache ngram_cache_static;
|
||||
|
||||
int64_t t_draft_flat_us = 0;
|
||||
int64_t t_draft_us = 0;
|
||||
|
||||
|
@ -22,7 +22,7 @@ int main(int argc, char ** argv){
|
||||
common_init();
|
||||
|
||||
// max. number of additional tokens to draft if match is found
|
||||
const int n_draft = params.n_draft;
|
||||
const int n_draft = params.speculative.n_max;
|
||||
|
||||
const bool dump_kv_cache = params.dump_kv_cache;
|
||||
|
||||
@ -102,7 +102,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
bool has_eos = false;
|
||||
|
||||
struct common_sampler * smpl = common_sampler_init(model, params.sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(model, params.sampling);
|
||||
|
||||
std::vector<llama_token> draft;
|
||||
|
||||
|
@ -100,7 +100,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_init();
|
||||
|
||||
auto & sparams = params.sparams;
|
||||
auto & sparams = params.sampling;
|
||||
|
||||
// save choice to use color for later
|
||||
// (note for later: this is a slightly awkward choice)
|
||||
|
@ -160,7 +160,7 @@ int main(int argc, char ** argv) {
|
||||
for (size_t i = 0; i < clients.size(); ++i) {
|
||||
auto & client = clients[i];
|
||||
client.id = i;
|
||||
client.smpl = common_sampler_init(model, params.sparams);
|
||||
client.smpl = common_sampler_init(model, params.sampling);
|
||||
}
|
||||
|
||||
std::vector<llama_token> tokens_system;
|
||||
|
@ -282,8 +282,8 @@ int main(int argc, char ** argv) {
|
||||
return a.second > b.second;
|
||||
});
|
||||
|
||||
LOG("Top %d similar chunks:\n", params.sparams.top_k);
|
||||
for (int i = 0; i < std::min(params.sparams.top_k, (int) chunks.size()); i++) {
|
||||
LOG("Top %d similar chunks:\n", params.sampling.top_k);
|
||||
for (int i = 0; i < std::min(params.sampling.top_k, (int) chunks.size()); i++) {
|
||||
LOG("filename: %s\n", chunks[similarities[i].first].filename.c_str());
|
||||
LOG("filepos: %lld\n", (long long int) chunks[similarities[i].first].filepos);
|
||||
LOG("similarity: %f\n", similarities[i].second);
|
||||
|
@ -9,7 +9,7 @@ int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
params.prompt = "The quick brown fox";
|
||||
params.sparams.seed = 1234;
|
||||
params.sampling.seed = 1234;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
|
||||
return 1;
|
||||
@ -42,7 +42,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_sampler * smpl = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_dist(params.sparams.seed));
|
||||
llama_sampler_chain_add(smpl, llama_sampler_init_dist(params.sampling.seed));
|
||||
|
||||
// tokenize prompt
|
||||
auto tokens = common_tokenize(ctx, params.prompt, true);
|
||||
@ -106,7 +106,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_sampler * smpl2 = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl2, llama_sampler_init_dist(params.sparams.seed));
|
||||
llama_sampler_chain_add(smpl2, llama_sampler_init_dist(params.sampling.seed));
|
||||
|
||||
printf("\nsecond run: %s", params.prompt.c_str());
|
||||
|
||||
@ -169,7 +169,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_sampler * smpl3 = llama_sampler_chain_init(sparams);
|
||||
|
||||
llama_sampler_chain_add(smpl3, llama_sampler_init_dist(params.sparams.seed));
|
||||
llama_sampler_chain_add(smpl3, llama_sampler_init_dist(params.sampling.seed));
|
||||
|
||||
printf("\nsingle seq run: %s", params.prompt.c_str());
|
||||
|
||||
|
@ -175,7 +175,7 @@ struct server_slot {
|
||||
// sampling
|
||||
json json_schema;
|
||||
|
||||
struct common_sampler_params sparams;
|
||||
struct common_params_sampling sparams;
|
||||
struct common_sampler * smpl = nullptr;
|
||||
|
||||
llama_token sampled;
|
||||
@ -687,7 +687,7 @@ struct server_context {
|
||||
|
||||
SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
|
||||
|
||||
slot.sparams = params.sparams;
|
||||
slot.sparams = params.sampling;
|
||||
|
||||
slot.callback_on_release = [this](int) {
|
||||
queue_tasks.pop_deferred_task();
|
||||
@ -743,7 +743,7 @@ struct server_context {
|
||||
}
|
||||
|
||||
// length of the Longest Common Subsequence between the current slot's prompt and the input prompt
|
||||
int cur_lcs_len = longest_common_subsequence(slot.cache_tokens, task.prompt_tokens);
|
||||
int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
|
||||
|
||||
// fraction of the common subsequence length compared to the current slot's prompt length
|
||||
float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
|
||||
@ -788,7 +788,7 @@ struct server_context {
|
||||
bool launch_slot_with_task(server_slot & slot, const server_task & task) {
|
||||
slot_params default_params;
|
||||
// Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
|
||||
auto default_sparams = params.sparams;
|
||||
auto default_sparams = params.sampling;
|
||||
const auto & data = task.data;
|
||||
|
||||
if (data.count("__oaicompat") != 0) {
|
||||
@ -1960,7 +1960,7 @@ struct server_context {
|
||||
|
||||
if (slot.params.cache_prompt) {
|
||||
// reuse any previously computed tokens that are common with the new prompt
|
||||
slot.n_past = longest_common_prefix(slot.cache_tokens, prompt_tokens);
|
||||
slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
|
||||
|
||||
// reuse chunks from the cached prompt by shifting their KV cache in the new position
|
||||
if (params.n_cache_reuse > 0) {
|
||||
|
@ -24,7 +24,6 @@
|
||||
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
using llama_tokens = std::vector<llama_token>;
|
||||
|
||||
#define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
|
||||
#define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
|
||||
@ -439,62 +438,6 @@ static std::string gen_chatcmplid() {
|
||||
// other common utils
|
||||
//
|
||||
|
||||
static size_t longest_common_prefix(const llama_tokens & a, const llama_tokens & b) {
|
||||
size_t i;
|
||||
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
|
||||
|
||||
return i;
|
||||
}
|
||||
|
||||
static size_t longest_common_subsequence(const llama_tokens & a, const llama_tokens & b) {
|
||||
// check for empty sequences
|
||||
if (a.empty() || b.empty()) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// get the lengths of the input sequences
|
||||
size_t a_len = a.size();
|
||||
size_t b_len = b.size();
|
||||
|
||||
// initialize the maximum length of the longest common subsequence (LCS)
|
||||
size_t max_length = 0;
|
||||
|
||||
// use two rows instead of a 2D matrix to optimize space
|
||||
std::vector<size_t> prev_row(b_len + 1, 0);
|
||||
std::vector<size_t> curr_row(b_len + 1, 0);
|
||||
|
||||
// iterate through the elements of a
|
||||
for (size_t i = 1; i <= a_len; i++) {
|
||||
// iterate through the elements of b
|
||||
for (size_t j = 1; j <= b_len; j++) {
|
||||
// if elements at the current positions match
|
||||
if (a[i - 1] == b[j - 1]) {
|
||||
// if it's the first element of either sequences, set LCS length to 1
|
||||
if (i == 1 || j == 1) {
|
||||
curr_row[j] = 1;
|
||||
} else {
|
||||
// increment LCS length by 1 compared to the previous element
|
||||
curr_row[j] = prev_row[j - 1] + 1;
|
||||
}
|
||||
|
||||
// update max_length if necessary
|
||||
if (curr_row[j] > max_length) {
|
||||
max_length = curr_row[j];
|
||||
}
|
||||
} else {
|
||||
// reset LCS length if elements don't match
|
||||
curr_row[j] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// update the previous row for the next iteration
|
||||
prev_row = curr_row;
|
||||
}
|
||||
|
||||
// return the maximum length of the LCS
|
||||
return max_length;
|
||||
}
|
||||
|
||||
static bool ends_with(const std::string & str, const std::string & suffix) {
|
||||
return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
|
||||
}
|
||||
|
5
examples/speculative-simple/CMakeLists.txt
Normal file
5
examples/speculative-simple/CMakeLists.txt
Normal file
@ -0,0 +1,5 @@
|
||||
set(TARGET llama-speculative-simple)
|
||||
add_executable(${TARGET} speculative-simple.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
12
examples/speculative-simple/README.md
Normal file
12
examples/speculative-simple/README.md
Normal file
@ -0,0 +1,12 @@
|
||||
# llama.cpp/examples/speculative-simple
|
||||
|
||||
Demonstration of basic greedy speculative decoding
|
||||
|
||||
```bash
|
||||
./bin/llama-speculative-simple \
|
||||
-m ../models/qwen2.5-32b-coder-instruct/ggml-model-q8_0.gguf \
|
||||
-md ../models/qwen2.5-1.5b-coder-instruct/ggml-model-q4_0.gguf \
|
||||
-f test.txt -c 0 -ngl 99 --color \
|
||||
--sampling-seq k --top-k 1 -fa --temp 0.0 \
|
||||
-ngld 99 --draft-max 16 --draft-min 5 --draft-p-min 0.9
|
||||
```
|
273
examples/speculative-simple/speculative-simple.cpp
Normal file
273
examples/speculative-simple/speculative-simple.cpp
Normal file
@ -0,0 +1,273 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "sampling.h"
|
||||
#include "speculative.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.n_predict < -1) {
|
||||
LOG_ERR("%s: --n-predict must be >= -1\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.speculative.model.empty()) {
|
||||
LOG_ERR("%s: --model-draft is required\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model_tgt = NULL;
|
||||
llama_model * model_dft = NULL;
|
||||
|
||||
llama_context * ctx_tgt = NULL;
|
||||
llama_context * ctx_dft = NULL;
|
||||
|
||||
// load the target model
|
||||
common_init_result llama_init_tgt = common_init_from_params(params);
|
||||
|
||||
model_tgt = llama_init_tgt.model;
|
||||
ctx_tgt = llama_init_tgt.context;
|
||||
|
||||
// load the draft model
|
||||
params.model = params.speculative.model;
|
||||
params.n_ctx = params.speculative.n_ctx;
|
||||
params.n_batch = params.speculative.n_ctx > 0 ? params.speculative.n_ctx : params.n_batch;
|
||||
params.n_gpu_layers = params.speculative.n_gpu_layers;
|
||||
|
||||
if (params.speculative.cpuparams.n_threads > 0) {
|
||||
params.cpuparams.n_threads = params.speculative.cpuparams.n_threads;
|
||||
}
|
||||
|
||||
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
|
||||
common_init_result llama_init_dft = common_init_from_params(params);
|
||||
|
||||
model_dft = llama_init_dft.model;
|
||||
ctx_dft = llama_init_dft.context;
|
||||
|
||||
if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Tokenize the prompt
|
||||
std::vector<llama_token> inp;
|
||||
inp = common_tokenize(ctx_tgt, params.prompt, true, true);
|
||||
|
||||
if (llama_n_ctx(ctx_tgt) < (int) inp.size()) {
|
||||
LOG_ERR("%s: the prompt exceeds the context size (%d tokens, ctx %d)\n", __func__, (int) inp.size(), llama_n_ctx(ctx_tgt));
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (llama_n_batch(ctx_tgt) < (int) inp.size()) {
|
||||
LOG_ERR("%s: the prompt exceeds the batch size (%d tokens, batch %d)\n", __func__, (int) inp.size(), llama_n_batch(ctx_tgt));
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
LOG("\n\n");
|
||||
|
||||
for (auto id : inp) {
|
||||
LOG("%s", common_token_to_piece(ctx_tgt, id).c_str());
|
||||
}
|
||||
|
||||
// how many tokens to draft each time
|
||||
int n_draft = params.speculative.n_max;
|
||||
int n_draft_min = params.speculative.n_min;
|
||||
|
||||
float p_min = params.speculative.p_min;
|
||||
|
||||
int n_predict = 0;
|
||||
int n_drafted = 0;
|
||||
int n_accept = 0;
|
||||
|
||||
// used to determine end of generation
|
||||
bool has_eos = false;
|
||||
|
||||
// ================================================
|
||||
// everything until here is standard initialization
|
||||
// the relevant stuff for speculative decoding starts here
|
||||
|
||||
const auto t_enc_start = ggml_time_us();
|
||||
|
||||
// target model sampling context
|
||||
struct common_sampler * smpl = common_sampler_init(model_tgt, params.sampling);
|
||||
|
||||
// eval the prompt
|
||||
llama_decode(ctx_tgt, llama_batch_get_one(inp.data(), inp.size() - 1));
|
||||
|
||||
// note: keep the last token separate!
|
||||
llama_token id_last = inp.back();
|
||||
|
||||
// all tokens currently in the target context
|
||||
auto prompt_tgt = std::vector<llama_token>(inp.begin(), inp.end() - 1);
|
||||
|
||||
int n_past = inp.size() - 1;
|
||||
|
||||
// init the speculator
|
||||
struct common_speculative_params params_spec;
|
||||
params_spec.n_draft = n_draft;
|
||||
params_spec.n_reuse = llama_n_ctx(ctx_dft) - n_draft;
|
||||
params_spec.p_min = p_min;
|
||||
|
||||
struct common_speculative * spec = common_speculative_init(ctx_dft);
|
||||
|
||||
llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, 1);
|
||||
|
||||
const auto t_enc_end = ggml_time_us();
|
||||
|
||||
const auto t_dec_start = ggml_time_us();
|
||||
|
||||
while (true) {
|
||||
// optionally, generate draft tokens that can be appended to the target batch
|
||||
//
|
||||
// this is the most important part of the speculation. the more probable tokens that are provided here
|
||||
// the better the performance will be. in theory, this computation can be performed asynchronously and even
|
||||
// offloaded to a remote device. it doesn't even have to be based on an LLM. instead, it can provide tokens
|
||||
// from a cache or lookup tables.
|
||||
//
|
||||
llama_tokens draft = common_speculative_gen_draft(spec, params_spec, prompt_tgt, id_last);
|
||||
|
||||
//LOG_DBG("draft: %s\n", string_from(ctx_dft, draft).c_str());
|
||||
|
||||
// always have a token to evaluate from before - id_last
|
||||
common_batch_clear(batch_tgt);
|
||||
common_batch_add (batch_tgt, id_last, n_past++, { 0 }, true);
|
||||
|
||||
// evaluate the target model on [id_last, draft0, draft1, ..., draftN-1]
|
||||
{
|
||||
// do not waste time on small drafts
|
||||
if (draft.size() < n_draft_min) {
|
||||
draft.clear();
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < draft.size(); ++i) {
|
||||
common_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
|
||||
}
|
||||
|
||||
//LOG_DBG("target batch: %s\n", string_from(ctx_tgt, batch_tgt).c_str());
|
||||
|
||||
llama_decode(ctx_tgt, batch_tgt);
|
||||
}
|
||||
|
||||
// sample from the full target batch and return the accepted tokens based on the target sampler
|
||||
//
|
||||
// for each token to be accepted, the sampler would have to sample that same token
|
||||
// in such cases, instead of decoding the sampled token as we normally do, we simply continue with the
|
||||
// available logits from the batch and sample the next token until we run out of logits or the sampler
|
||||
// disagrees with the draft
|
||||
//
|
||||
const auto ids = common_sampler_sample_and_accept_n(smpl, ctx_tgt, draft);
|
||||
|
||||
//LOG_DBG("ids: %s\n", string_from(ctx_tgt, ids).c_str());
|
||||
|
||||
GGML_ASSERT(ids.size() > 0); // there will always be at least one accepted token
|
||||
|
||||
n_past += ids.size() - 1;
|
||||
n_drafted += batch_tgt.n_tokens - 1;
|
||||
n_accept += ids.size() - 1;
|
||||
|
||||
// process the accepted tokens and update contexts
|
||||
//
|
||||
// this is the standard token post-processing that we normally do
|
||||
// in this case, we do it for a group of accepted tokens at once
|
||||
//
|
||||
{
|
||||
llama_token id;
|
||||
std::string token_str;
|
||||
|
||||
for (size_t i = 0; i < ids.size(); ++i) {
|
||||
id = ids[i];
|
||||
|
||||
++n_predict;
|
||||
|
||||
if (llama_token_is_eog(model_tgt, id)) {
|
||||
has_eos = true;
|
||||
break;
|
||||
}
|
||||
|
||||
token_str = common_token_to_piece(ctx_tgt, id);
|
||||
|
||||
if (params.use_color && i + 1 < ids.size()) {
|
||||
LOG("\u001b[%dm%s\u001b[37m", (36 - 0 % 6), token_str.c_str());
|
||||
} else {
|
||||
LOG("%s", token_str.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
|
||||
break;
|
||||
}
|
||||
|
||||
LOG_DBG("accepted %d/%d draft tokens, the last target token is: (%d, '%s')\n", (int) ids.size() - 1, (int) draft.size(), id, token_str.c_str());
|
||||
|
||||
{
|
||||
LOG_DBG("clear kv cache from any extra tokens, n_past = %d\n", n_past);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx_tgt, 0, n_past, -1);
|
||||
}
|
||||
|
||||
prompt_tgt.push_back(id_last);
|
||||
prompt_tgt.insert(prompt_tgt.end(), ids.begin(), ids.end() - 1);
|
||||
|
||||
// remember the last accepted token for the next iteration
|
||||
id_last = id;
|
||||
}
|
||||
}
|
||||
|
||||
auto t_dec_end = ggml_time_us();
|
||||
|
||||
const int n_input = inp.size();
|
||||
|
||||
LOG("\n\n");
|
||||
|
||||
LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
||||
LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("n_draft = %d\n", n_draft);
|
||||
LOG_INF("n_predict = %d\n", n_predict);
|
||||
LOG_INF("n_drafted = %d\n", n_drafted);
|
||||
LOG_INF("n_accept = %d\n", n_accept);
|
||||
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("draft:\n\n");
|
||||
|
||||
llama_perf_context_print(ctx_dft);
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("target:\n\n");
|
||||
common_perf_print(ctx_tgt, smpl);
|
||||
|
||||
common_sampler_free(smpl);
|
||||
common_speculative_free(spec);
|
||||
|
||||
llama_free(ctx_tgt);
|
||||
llama_free_model(model_tgt);
|
||||
|
||||
llama_free(ctx_dft);
|
||||
llama_free_model(model_dft);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
LOG("\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
@ -12,7 +12,7 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 100
|
||||
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
|
||||
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
|
||||
|
||||
struct seq_draft {
|
||||
@ -33,7 +33,7 @@ int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
// needed to get candidate probs even for temp <= 0.0
|
||||
params.sparams.n_probs = 128;
|
||||
params.sampling.n_probs = 128;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
|
||||
return 1;
|
||||
@ -46,7 +46,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.model_draft.empty()) {
|
||||
if (params.speculative.model.empty()) {
|
||||
LOG_ERR("%s: --model-draft is required\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
@ -55,9 +55,9 @@ int main(int argc, char ** argv) {
|
||||
const int n_seq_dft = params.n_parallel;
|
||||
|
||||
// probability threshold for splitting a draft branch (only for n_seq_dft > 1)
|
||||
const float p_split = params.p_split;
|
||||
const float p_draft_split = params.speculative.p_split;
|
||||
|
||||
std::default_random_engine rng(params.sparams.seed == LLAMA_DEFAULT_SEED ? std::random_device()() : params.sparams.seed);
|
||||
std::default_random_engine rng(params.sampling.seed == LLAMA_DEFAULT_SEED ? std::random_device()() : params.sampling.seed);
|
||||
std::uniform_real_distribution<> u_dist;
|
||||
|
||||
// init llama.cpp
|
||||
@ -76,13 +76,13 @@ int main(int argc, char ** argv) {
|
||||
ctx_tgt = llama_init_tgt.context;
|
||||
|
||||
// load the draft model
|
||||
params.model = params.model_draft;
|
||||
params.n_gpu_layers = params.n_gpu_layers_draft;
|
||||
if (params.draft_cpuparams.n_threads > 0) {
|
||||
params.cpuparams.n_threads = params.draft_cpuparams.n_threads;
|
||||
params.model = params.speculative.model;
|
||||
params.n_gpu_layers = params.speculative.n_gpu_layers;
|
||||
if (params.speculative.cpuparams.n_threads > 0) {
|
||||
params.cpuparams.n_threads = params.speculative.cpuparams.n_threads;
|
||||
}
|
||||
|
||||
params.cpuparams_batch.n_threads = params.draft_cpuparams_batch.n_threads;
|
||||
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
|
||||
common_init_result llama_init_dft = common_init_from_params(params);
|
||||
model_dft = llama_init_dft.model;
|
||||
ctx_dft = llama_init_dft.context;
|
||||
@ -170,7 +170,7 @@ int main(int argc, char ** argv) {
|
||||
//GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
|
||||
|
||||
// how many tokens to draft each time
|
||||
int n_draft = params.n_draft;
|
||||
int n_draft = params.speculative.n_max;
|
||||
|
||||
int n_predict = 0;
|
||||
int n_drafted = 0;
|
||||
@ -183,14 +183,14 @@ int main(int argc, char ** argv) {
|
||||
bool has_eos = false;
|
||||
|
||||
// target model sampling context (reuse the llama_context's sampling instance)
|
||||
struct common_sampler * smpl = common_sampler_init(model_tgt, params.sparams);
|
||||
struct common_sampler * smpl = common_sampler_init(model_tgt, params.sampling);
|
||||
|
||||
// draft sequence data
|
||||
std::vector<seq_draft> drafts(n_seq_dft);
|
||||
|
||||
for (int s = 0; s < n_seq_dft; ++s) {
|
||||
// allocate llama_sampler for each draft sequence
|
||||
drafts[s].smpl = common_sampler_init(model_dft, params.sparams);
|
||||
drafts[s].smpl = common_sampler_init(model_dft, params.sampling);
|
||||
}
|
||||
|
||||
llama_batch batch_dft = llama_batch_init(llama_n_batch(ctx_dft), 0, 1);
|
||||
@ -230,7 +230,7 @@ int main(int argc, char ** argv) {
|
||||
// for stochastic sampling, attempt to match the token with the drafted tokens
|
||||
{
|
||||
bool accept = false;
|
||||
if (params.sparams.temp > 0) {
|
||||
if (params.sampling.temp > 0) {
|
||||
// stochastic verification
|
||||
common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
|
||||
|
||||
@ -494,7 +494,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// attempt to split the branch if the probability is high enough
|
||||
for (int f = 1; f < 8; ++f) {
|
||||
if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_split) {
|
||||
if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_draft_split) {
|
||||
LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
|
||||
|
@ -70,7 +70,7 @@ int main(void) {
|
||||
|
||||
// non-existence arg in specific example (--draft cannot be used outside llama-speculative)
|
||||
argv = {"binary_name", "--draft", "123"};
|
||||
assert(false == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_SERVER));
|
||||
assert(false == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_EMBEDDING));
|
||||
|
||||
|
||||
printf("test-arg-parser: test valid usage\n\n");
|
||||
@ -96,7 +96,7 @@ int main(void) {
|
||||
// --draft cannot be used outside llama-speculative
|
||||
argv = {"binary_name", "--draft", "123"};
|
||||
assert(true == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_SPECULATIVE));
|
||||
assert(params.n_draft == 123);
|
||||
assert(params.speculative.n_max == 123);
|
||||
|
||||
// skip this part on windows, because setenv is not supported
|
||||
#ifdef _WIN32
|
||||
|
Loading…
Reference in New Issue
Block a user