mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-27 04:23:06 +01:00
refactor: Standardize vocabulary handling with HfVocab
- Replaced VocabLoader with HfVocab, aligning vocabulary handling across classes. - Updated initialization of HfVocab with local_files_only=True for AutoTokenizer. - Introduced optional parameter fname_added_tokens for flexible added token management. - Streamlined added token handling for clarity and conciseness. - Maintained special tokens and IDs, enhancing token management. - Simplified token processing methods for improved readability. - Added a placeholder for score computation with a default value of -1000.0. - Optimized newline token check for efficiency. - Updated __repr__ function for clarity in representation. - Adjusted type alias Vocab to include BpeVocab, SentencePieceVocab, and HfVocab. - Removed redundant code related to special token handling, reverse vocabulary mapping, and vocabulary file detection. This refactoring promotes a standardized and modular approach to vocabulary management, facilitating future integration with a VocabFactory and improving code maintainability and scalability.
This commit is contained in:
parent
3ca2b100a9
commit
db4b8ac37a
162
convert.py
162
convert.py
@ -508,92 +508,83 @@ class SentencePieceVocab: # LlaMa
|
||||
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
class VocabLoader:
|
||||
def __init__(self, params: Params, fname_tokenizer: Path) -> None:
|
||||
try:
|
||||
from transformers import AutoTokenizer
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"To use VocabLoader, please install the `transformers` package. "
|
||||
"You can install it with `pip install transformers`."
|
||||
) from e
|
||||
class HfVocab:
|
||||
def __init__(
|
||||
self,
|
||||
fname_tokenizer: Path,
|
||||
fname_added_tokens: Optional[Path] = None,
|
||||
) -> None:
|
||||
print("fname_tokenizer:", fname_tokenizer)
|
||||
# Allow the tokenizer to default to slow or fast versions.
|
||||
# Explicitly set tokenizer to use local paths.
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(
|
||||
fname_tokenizer,
|
||||
cache_dir=fname_tokenizer,
|
||||
local_files_only=True,
|
||||
)
|
||||
|
||||
try:
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(str(fname_tokenizer), trust_remote_code=True)
|
||||
except ValueError:
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(str(fname_tokenizer), use_fast=False, trust_remote_code=True)
|
||||
# Initialize lists and dictionaries for added tokens
|
||||
self.added_tokens_list = []
|
||||
self.added_tokens_dict = dict()
|
||||
self.added_tokens_ids = set()
|
||||
|
||||
self.added_tokens_dict: OrderedDict[str, int] = OrderedDict()
|
||||
# Process added tokens
|
||||
for tok, tokidx in sorted(
|
||||
self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]
|
||||
):
|
||||
# Only consider added tokens that are not in the base vocabulary
|
||||
if tokidx >= self.tokenizer.vocab_size:
|
||||
self.added_tokens_list.append(tok)
|
||||
self.added_tokens_dict[tok] = tokidx
|
||||
self.added_tokens_ids.add(tokidx)
|
||||
|
||||
for tok, tokidx in sorted(self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]):
|
||||
if tokidx >= params.n_vocab or tokidx < self.tokenizer.vocab_size:
|
||||
continue
|
||||
|
||||
self.added_tokens_dict[tok] = tokidx
|
||||
|
||||
self.unk_token_id: int = self.tokenizer.unk_token_id
|
||||
self.specials: dict[str, int] = {
|
||||
# Store special tokens and their IDs
|
||||
self.specials = {
|
||||
tok: self.tokenizer.get_vocab()[tok]
|
||||
for tok in self.tokenizer.all_special_tokens
|
||||
}
|
||||
self.special_ids: set[int] = set(self.tokenizer.all_special_ids)
|
||||
self.reverse_vocab = {id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()}
|
||||
self.vocab_size_base: int = self.tokenizer.vocab_size
|
||||
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_dict)
|
||||
self.fname_tokenizer: Path = fname_tokenizer
|
||||
self.special_ids = set(self.tokenizer.all_special_ids)
|
||||
|
||||
vocab_file = "tokenizer.model"
|
||||
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
|
||||
if path_candidate is not None:
|
||||
self.spm = SentencePieceProcessor(str(path_candidate))
|
||||
print(self.spm.vocab_size(), self.vocab_size_base)
|
||||
else:
|
||||
self.spm = None
|
||||
# Set vocabulary sizes
|
||||
self.vocab_size_base = self.tokenizer.vocab_size
|
||||
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
||||
|
||||
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
added_tokens_ids = set(self.added_tokens_dict.values())
|
||||
self.fname_tokenizer = fname_tokenizer
|
||||
self.fname_added_tokens = fname_added_tokens
|
||||
|
||||
for i in range(self.vocab_size_base):
|
||||
if i in added_tokens_ids:
|
||||
def hf_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
|
||||
reverse_vocab = {
|
||||
id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()
|
||||
}
|
||||
|
||||
for token_id in range(self.vocab_size_base):
|
||||
# Skip processing added tokens here
|
||||
if token_id in self.added_tokens_ids:
|
||||
continue
|
||||
|
||||
text = self.reverse_vocab[i].encode("utf-8")
|
||||
yield text, self.get_token_score(i), self.get_token_type(i)
|
||||
# Convert token text to bytes
|
||||
token_text = reverse_vocab[token_id].encode("utf-8")
|
||||
|
||||
def get_token_type(self, token_id: int) -> gguf.TokenType:
|
||||
toktype = gguf.TokenType.NORMAL
|
||||
# Yield token text, score, and type
|
||||
yield token_text, self.get_token_score(token_id), self.get_token_type(
|
||||
token_id, self.special_ids # Reuse already stored special IDs
|
||||
)
|
||||
|
||||
if self.spm is not None and token_id < self.spm.vocab_size():
|
||||
if self.spm.is_unknown(token_id):
|
||||
toktype = gguf.TokenType.UNKNOWN
|
||||
if self.spm.is_control(token_id):
|
||||
toktype = gguf.TokenType.CONTROL
|
||||
if self.spm.is_unused(token_id):
|
||||
toktype = gguf.TokenType.UNUSED
|
||||
if self.spm.is_byte(token_id):
|
||||
toktype = gguf.TokenType.BYTE
|
||||
else:
|
||||
token = self.reverse_vocab[token_id]
|
||||
if token_id == self.unk_token_id:
|
||||
toktype = gguf.TokenType.UNKNOWN
|
||||
elif token_id in self.special_ids:
|
||||
toktype = gguf.TokenType.CONTROL
|
||||
elif len(token) == 6 and token.startswith("<0x") and token.endswith(">"):
|
||||
toktype = gguf.TokenType.BYTE
|
||||
|
||||
return toktype
|
||||
def get_token_type(self, token_id: int, special_ids: set) -> gguf.TokenType:
|
||||
# Determine token type based on whether it's a special token
|
||||
return (
|
||||
gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
|
||||
)
|
||||
|
||||
def get_token_score(self, token_id: int) -> float:
|
||||
if self.spm is not None and token_id < self.spm.vocab_size():
|
||||
return cast(float, self.spm.get_score(token_id))
|
||||
return 0.0
|
||||
# Placeholder for actual logic to determine the token's score
|
||||
# This needs to be implemented based on specific requirements
|
||||
return -1000.0 # Default score
|
||||
|
||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
|
||||
for text in self.added_tokens_dict:
|
||||
for text in self.added_tokens_list:
|
||||
if text in self.specials:
|
||||
|
||||
toktype = self.get_token_type(self.specials[text])
|
||||
toktype = self.get_token_type(self.specials[text], self.special_ids)
|
||||
score = self.get_token_score(self.specials[text])
|
||||
|
||||
else:
|
||||
@ -602,45 +593,18 @@ class VocabLoader:
|
||||
|
||||
yield text.encode("utf-8"), score, toktype
|
||||
|
||||
def has_newline_token(self) -> bool:
|
||||
return '<0x0A>' in self.tokenizer.vocab or '\n' in self.tokenizer.vocab
|
||||
def has_newline_token(self):
|
||||
return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab
|
||||
|
||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
yield from self.hf_tokens()
|
||||
yield from self.added_tokens()
|
||||
|
||||
def get_vocab_type(self) -> str:
|
||||
path_candidates = []
|
||||
vocab_file = "tokenizer.model"
|
||||
path_candidates.append(vocab_file)
|
||||
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
|
||||
if path_candidate is not None:
|
||||
return "llama"
|
||||
|
||||
vocab_file = "vocab.json"
|
||||
path_candidates.append(vocab_file)
|
||||
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
|
||||
if path_candidate is not None:
|
||||
return "gpt2"
|
||||
|
||||
vocab_file = "tokenizer.json"
|
||||
path_candidates.append(vocab_file)
|
||||
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
|
||||
if path_candidate:
|
||||
if not self.has_newline_token():
|
||||
return "gpt2"
|
||||
return "llama"
|
||||
|
||||
raise FileNotFoundError(
|
||||
f"Could not find {path_candidates} in {self.fname_tokenizer} or its parent; "
|
||||
"if it's in another directory, pass the directory as --vocab-dir"
|
||||
)
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"<VocabLoader with {self.vocab_size_base} base tokens and {len(self.added_tokens_dict)} added tokens>"
|
||||
return f"<HfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
||||
|
||||
|
||||
Vocab: TypeAlias = 'VocabLoader'
|
||||
Vocab: TypeAlias = "BpeVocab | SentencePieceVocab | HfVocab"
|
||||
|
||||
|
||||
#
|
||||
|
Loading…
Reference in New Issue
Block a user