mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-01 00:39:00 +01:00
ggml-cuda : add rope f16, restore performance with parallel decoding (#3272)
* ggml-cuda : add rope f16, restore performance * offload KQ_mask with all models * fix rope shift --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
db0fc2da06
commit
e04dc51988
130
ggml-cuda.cu
130
ggml-cuda.cu
@ -439,7 +439,6 @@ static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { nullpt
|
|||||||
struct ggml_tensor_extra_gpu {
|
struct ggml_tensor_extra_gpu {
|
||||||
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
|
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
|
||||||
cudaEvent_t events[GGML_CUDA_MAX_DEVICES][MAX_STREAMS]; // events for synchronizing multiple GPUs
|
cudaEvent_t events[GGML_CUDA_MAX_DEVICES][MAX_STREAMS]; // events for synchronizing multiple GPUs
|
||||||
bool copied;
|
|
||||||
};
|
};
|
||||||
|
|
||||||
// this is faster on Windows
|
// this is faster on Windows
|
||||||
@ -4357,8 +4356,9 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
|||||||
|
|
||||||
// rope == RoPE == rotary positional embedding
|
// rope == RoPE == rotary positional embedding
|
||||||
|
|
||||||
static __global__ void rope_f32(const float * x, float * dst, const int ncols, const int32_t * pos, const float freq_scale,
|
template<typename T, bool has_pos>
|
||||||
const int p_delta_rows, const float theta_scale) {
|
static __global__ void rope(const T * x, T * dst, const int ncols, const int32_t * pos, const float freq_scale,
|
||||||
|
const int p_delta_rows, const float theta_scale) {
|
||||||
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||||
|
|
||||||
if (col >= ncols) {
|
if (col >= ncols) {
|
||||||
@ -4369,8 +4369,8 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c
|
|||||||
const int i = row*ncols + col;
|
const int i = row*ncols + col;
|
||||||
const int i2 = row/p_delta_rows;
|
const int i2 = row/p_delta_rows;
|
||||||
|
|
||||||
const int p = pos != nullptr ? pos[i2] : 0;
|
const int p = has_pos ? pos[i2] : 0;
|
||||||
const float p0 = p * freq_scale;
|
const float p0 = p*freq_scale;
|
||||||
const float theta = p0*powf(theta_scale, col/2);
|
const float theta = p0*powf(theta_scale, col/2);
|
||||||
const float sin_theta = sinf(theta);
|
const float sin_theta = sinf(theta);
|
||||||
const float cos_theta = cosf(theta);
|
const float cos_theta = cosf(theta);
|
||||||
@ -4382,8 +4382,9 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c
|
|||||||
dst[i + 1] = x0*sin_theta + x1*cos_theta;
|
dst[i + 1] = x0*sin_theta + x1*cos_theta;
|
||||||
}
|
}
|
||||||
|
|
||||||
static __global__ void rope_neox_f32(const float * x, float * dst, const int ncols, const int32_t * pos, const float freq_scale,
|
template<typename T, bool has_pos>
|
||||||
const int p_delta_rows, const float theta_scale) {
|
static __global__ void rope_neox(const T * x, T * dst, const int ncols, const int32_t * pos, const float freq_scale,
|
||||||
|
const int p_delta_rows, const float theta_scale) {
|
||||||
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||||
|
|
||||||
if (col >= ncols) {
|
if (col >= ncols) {
|
||||||
@ -4394,8 +4395,8 @@ static __global__ void rope_neox_f32(const float * x, float * dst, const int nco
|
|||||||
const int i = row*ncols + col/2;
|
const int i = row*ncols + col/2;
|
||||||
const int i2 = row/p_delta_rows;
|
const int i2 = row/p_delta_rows;
|
||||||
|
|
||||||
const int p = pos != nullptr ? pos[i2] : 0;
|
const int p = has_pos ? pos[i2] : 0;
|
||||||
const float p0 = p * freq_scale;
|
const float p0 = p*freq_scale;
|
||||||
const float theta = p0*powf(theta_scale, col/2);
|
const float theta = p0*powf(theta_scale, col/2);
|
||||||
const float sin_theta = sinf(theta);
|
const float sin_theta = sinf(theta);
|
||||||
const float cos_theta = cosf(theta);
|
const float cos_theta = cosf(theta);
|
||||||
@ -5371,22 +5372,32 @@ static void scale_f32_cuda(const float * x, float * dst, const float scale, cons
|
|||||||
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
|
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale,
|
template<typename T>
|
||||||
|
static void rope_cuda(const T * x, T * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale,
|
||||||
const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
|
const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
|
||||||
GGML_ASSERT(ncols % 2 == 0);
|
GGML_ASSERT(ncols % 2 == 0);
|
||||||
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||||
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||||
const dim3 block_nums(nrows, num_blocks_x, 1);
|
const dim3 block_nums(nrows, num_blocks_x, 1);
|
||||||
rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale);
|
if (pos == nullptr) {
|
||||||
|
rope<T, false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale);
|
||||||
|
} else {
|
||||||
|
rope<T, true><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void rope_neox_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale,
|
template<typename T>
|
||||||
|
static void rope_neox_cuda(const T * x, T * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale,
|
||||||
const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
|
const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
|
||||||
GGML_ASSERT(ncols % 2 == 0);
|
GGML_ASSERT(ncols % 2 == 0);
|
||||||
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||||
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||||
const dim3 block_nums(nrows, num_blocks_x, 1);
|
const dim3 block_nums(nrows, num_blocks_x, 1);
|
||||||
rope_neox_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale);
|
if (pos == nullptr) {
|
||||||
|
rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale);
|
||||||
|
} else {
|
||||||
|
rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, theta_scale);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale,
|
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale,
|
||||||
@ -6036,7 +6047,7 @@ inline void ggml_cuda_op_mul_mat_cublas(
|
|||||||
const int64_t ne0 = dst->ne[0];
|
const int64_t ne0 = dst->ne[0];
|
||||||
const int64_t row_diff = row_high - row_low;
|
const int64_t row_diff = row_high - row_low;
|
||||||
|
|
||||||
float * src0_ddq_as_f32;
|
float * src0_ddq_as_f32 = nullptr;
|
||||||
size_t src0_as = 0;
|
size_t src0_as = 0;
|
||||||
|
|
||||||
if (src0->type != GGML_TYPE_F32) {
|
if (src0->type != GGML_TYPE_F32) {
|
||||||
@ -6074,8 +6085,9 @@ inline void ggml_cuda_op_rope(
|
|||||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||||
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
|
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
|
||||||
|
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||||||
|
GGML_ASSERT(src0->type == dst->type);
|
||||||
|
|
||||||
const int64_t ne00 = src0->ne[0];
|
const int64_t ne00 = src0->ne[0];
|
||||||
const int64_t ne01 = src0->ne[1];
|
const int64_t ne01 = src0->ne[1];
|
||||||
@ -6093,23 +6105,12 @@ inline void ggml_cuda_op_rope(
|
|||||||
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
|
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||||
|
|
||||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||||
// const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
|
|
||||||
|
|
||||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
const int32_t * pos = nullptr;
|
||||||
GGML_ASSERT(src1->ne[0] == ne2);
|
|
||||||
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
|
|
||||||
|
|
||||||
int id;
|
|
||||||
CUDA_CHECK(cudaGetDevice(&id));
|
|
||||||
|
|
||||||
int * pos = nullptr;
|
|
||||||
if ((mode & 1) == 0) {
|
if ((mode & 1) == 0) {
|
||||||
struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||||
pos = (int *) src1_extra->data_device[id];
|
GGML_ASSERT(src1->ne[0] == ne2);
|
||||||
if (!src1_extra->copied) {
|
pos = (const int32_t *) src1_dd;
|
||||||
CUDA_CHECK(cudaMemcpyAsync(pos, src1->data, ggml_nbytes(src1), cudaMemcpyHostToDevice, main_stream));
|
|
||||||
src1_extra->copied = true;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
const bool is_neox = mode & 2;
|
const bool is_neox = mode & 2;
|
||||||
@ -6121,9 +6122,21 @@ inline void ggml_cuda_op_rope(
|
|||||||
rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, n_ctx, main_stream);
|
rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, n_ctx, main_stream);
|
||||||
} else if (is_neox) {
|
} else if (is_neox) {
|
||||||
GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet");
|
GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet");
|
||||||
rope_neox_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream);
|
if (src0->type == GGML_TYPE_F32) {
|
||||||
|
rope_neox_cuda((const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F16) {
|
||||||
|
rope_neox_cuda((const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream);
|
||||||
|
} else {
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
rope_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream);
|
if (src0->type == GGML_TYPE_F32) {
|
||||||
|
rope_cuda((const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream);
|
||||||
|
} else if (src0->type == GGML_TYPE_F16) {
|
||||||
|
rope_cuda((const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, theta_scale, main_stream);
|
||||||
|
} else {
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
(void) src1;
|
(void) src1;
|
||||||
@ -6294,7 +6307,7 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_set_peer_access(const int n_tokens) {
|
static void ggml_cuda_set_peer_access(const int n_tokens) {
|
||||||
static bool peer_access_enabled = false;
|
static bool peer_access_enabled = false;
|
||||||
|
|
||||||
const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
|
const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
|
||||||
@ -6622,27 +6635,27 @@ static void ggml_cuda_op_mul_mat(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_add);
|
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_add);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_mul);
|
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_mul);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_gelu);
|
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_gelu);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_silu);
|
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_silu);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_norm);
|
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_norm);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm);
|
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -6663,7 +6676,7 @@ bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_te
|
|||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
||||||
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
||||||
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
||||||
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
||||||
@ -6692,7 +6705,7 @@ void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
|
ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
||||||
GGML_ASSERT(!ggml_is_contiguous(src0) && ggml_is_contiguous(src1));
|
GGML_ASSERT(!ggml_is_contiguous(src0) && ggml_is_contiguous(src1));
|
||||||
GGML_ASSERT(!ggml_is_permuted(src0));
|
GGML_ASSERT(!ggml_is_permuted(src0));
|
||||||
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
||||||
@ -6726,7 +6739,7 @@ void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1
|
|||||||
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
|
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
bool all_on_device = (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
|
bool all_on_device = (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
|
||||||
src1->backend == GGML_BACKEND_GPU && dst->backend == GGML_BACKEND_GPU;
|
src1->backend == GGML_BACKEND_GPU && dst->backend == GGML_BACKEND_GPU;
|
||||||
|
|
||||||
@ -6770,11 +6783,11 @@ void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_scale);
|
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_scale);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
const int64_t ne = ggml_nelements(src0);
|
const int64_t ne = ggml_nelements(src0);
|
||||||
GGML_ASSERT(ne == ggml_nelements(src1));
|
GGML_ASSERT(ne == ggml_nelements(src1));
|
||||||
|
|
||||||
@ -6822,29 +6835,29 @@ void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens
|
|||||||
(void) dst;
|
(void) dst;
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
ggml_cuda_cpy(src0, dst, nullptr);
|
ggml_cuda_cpy(src0, dst, nullptr);
|
||||||
(void) src1;
|
(void) src1;
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_diag_mask_inf);
|
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_diag_mask_inf);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_soft_max);
|
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_soft_max);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
|
GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
|
||||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rope);
|
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rope);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
|
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
(void) src0;
|
(void) src0;
|
||||||
(void) src1;
|
(void) src1;
|
||||||
(void) dst;
|
(void) dst;
|
||||||
@ -6967,11 +6980,13 @@ static struct ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
|
|||||||
return extra;
|
return extra;
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace, bool no_alloc) {
|
static void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace, bool no_alloc) {
|
||||||
if (scratch && g_scratch_size == 0) {
|
if (scratch && g_scratch_size == 0) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
tensor->backend = GGML_BACKEND_GPU;
|
||||||
|
|
||||||
// recursively assign CUDA buffers until a compute tensor is found
|
// recursively assign CUDA buffers until a compute tensor is found
|
||||||
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
|
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
|
||||||
const ggml_op src0_op = tensor->src[0]->op;
|
const ggml_op src0_op = tensor->src[0]->op;
|
||||||
@ -6983,8 +6998,6 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bo
|
|||||||
ggml_cuda_assign_buffers_impl(tensor->src[1], scratch, force_inplace, no_alloc);
|
ggml_cuda_assign_buffers_impl(tensor->src[1], scratch, force_inplace, no_alloc);
|
||||||
}
|
}
|
||||||
|
|
||||||
tensor->backend = GGML_BACKEND_GPU;
|
|
||||||
|
|
||||||
if (scratch && no_alloc) {
|
if (scratch && no_alloc) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
@ -7069,6 +7082,15 @@ void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset)
|
|||||||
tensor->extra = extra;
|
tensor->extra = extra;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_copy_to_device(struct ggml_tensor * tensor) {
|
||||||
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||||
|
GGML_ASSERT(ggml_is_contiguous(tensor));
|
||||||
|
|
||||||
|
struct ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||||
|
CUDA_CHECK(ggml_cuda_set_device(g_main_device));
|
||||||
|
CUDA_CHECK(cudaMemcpy(extra->data_device[g_main_device], tensor->data, ggml_nbytes(tensor), cudaMemcpyHostToDevice));
|
||||||
|
}
|
||||||
|
|
||||||
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) {
|
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) {
|
||||||
ggml_cuda_assign_buffers_impl(tensor, true, false, false);
|
ggml_cuda_assign_buffers_impl(tensor, true, false, false);
|
||||||
}
|
}
|
||||||
|
@ -31,6 +31,7 @@ GGML_API void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tens
|
|||||||
|
|
||||||
GGML_API void ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor);
|
GGML_API void ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor);
|
||||||
GGML_API void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset);
|
GGML_API void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset);
|
||||||
|
GGML_API void ggml_cuda_copy_to_device(struct ggml_tensor * tensor);
|
||||||
|
|
||||||
GGML_API void ggml_cuda_set_main_device(int main_device);
|
GGML_API void ggml_cuda_set_main_device(int main_device);
|
||||||
GGML_API void ggml_cuda_set_mul_mat_q(bool mul_mat_q);
|
GGML_API void ggml_cuda_set_mul_mat_q(bool mul_mat_q);
|
||||||
|
2
ggml.c
2
ggml.c
@ -6343,7 +6343,7 @@ static struct ggml_tensor * ggml_cpy_impl(
|
|||||||
}
|
}
|
||||||
|
|
||||||
// make a view of the destination
|
// make a view of the destination
|
||||||
struct ggml_tensor * result = ggml_view_tensor(ctx, b);
|
struct ggml_tensor * result = b->op == GGML_OP_NONE ? b : ggml_view_tensor(ctx, b);
|
||||||
if (strlen(b->name) > 0) {
|
if (strlen(b->name) > 0) {
|
||||||
ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
|
ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
|
||||||
} else {
|
} else {
|
||||||
|
44
llama.cpp
44
llama.cpp
@ -1256,10 +1256,10 @@ static bool llama_kv_cache_init(
|
|||||||
|
|
||||||
(void) n_gpu_layers;
|
(void) n_gpu_layers;
|
||||||
#ifdef GGML_USE_CUBLAS
|
#ifdef GGML_USE_CUBLAS
|
||||||
if (n_gpu_layers > n_layer + 1) {
|
if (n_gpu_layers > (int)n_layer + 1) {
|
||||||
ggml_cuda_assign_buffers_no_scratch(cache.v);
|
ggml_cuda_assign_buffers_no_scratch(cache.v);
|
||||||
}
|
}
|
||||||
if (n_gpu_layers > n_layer + 2) {
|
if (n_gpu_layers > (int)n_layer + 2) {
|
||||||
ggml_cuda_assign_buffers_no_scratch(cache.k);
|
ggml_cuda_assign_buffers_no_scratch(cache.k);
|
||||||
}
|
}
|
||||||
#endif // GGML_USE_CUBLAS
|
#endif // GGML_USE_CUBLAS
|
||||||
@ -2692,14 +2692,16 @@ static struct ggml_cgraph * llm_build_llama(
|
|||||||
|
|
||||||
// KQ_scale
|
// KQ_scale
|
||||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||||
|
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
|
||||||
ggml_allocr_alloc(lctx.alloc, KQ_scale);
|
ggml_allocr_alloc(lctx.alloc, KQ_scale);
|
||||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head)));
|
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head)));
|
||||||
}
|
}
|
||||||
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
|
|
||||||
|
|
||||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||||
|
offload_func_kq(KQ_mask);
|
||||||
|
ggml_set_name(KQ_mask, "KQ_mask");
|
||||||
ggml_allocr_alloc(lctx.alloc, KQ_mask);
|
ggml_allocr_alloc(lctx.alloc, KQ_mask);
|
||||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
float * data = (float *) KQ_mask->data;
|
float * data = (float *) KQ_mask->data;
|
||||||
@ -2722,6 +2724,7 @@ static struct ggml_cgraph * llm_build_llama(
|
|||||||
// KQ_pos - contains the positions
|
// KQ_pos - contains the positions
|
||||||
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||||
offload_func_kq(KQ_pos);
|
offload_func_kq(KQ_pos);
|
||||||
|
ggml_set_name(KQ_pos, "KQ_pos");
|
||||||
ggml_allocr_alloc(lctx.alloc, KQ_pos);
|
ggml_allocr_alloc(lctx.alloc, KQ_pos);
|
||||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
int * data = (int *) KQ_pos->data;
|
int * data = (int *) KQ_pos->data;
|
||||||
@ -2734,6 +2737,7 @@ static struct ggml_cgraph * llm_build_llama(
|
|||||||
if (do_rope_shift) {
|
if (do_rope_shift) {
|
||||||
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
|
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
|
||||||
offload_func_kq(K_shift);
|
offload_func_kq(K_shift);
|
||||||
|
ggml_set_name(K_shift, "K_shift");
|
||||||
ggml_allocr_alloc(lctx.alloc, K_shift);
|
ggml_allocr_alloc(lctx.alloc, K_shift);
|
||||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
int * data = (int *) K_shift->data;
|
int * data = (int *) K_shift->data;
|
||||||
@ -2743,14 +2747,16 @@ static struct ggml_cgraph * llm_build_llama(
|
|||||||
}
|
}
|
||||||
|
|
||||||
for (int il = 0; il < n_layer; ++il) {
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
ggml_build_forward_expand(gf,
|
struct ggml_tensor * tmp =
|
||||||
ggml_rope_custom_inplace(ctx0,
|
ggml_rope_custom_inplace(ctx0,
|
||||||
ggml_view_3d(ctx0, kv_self.k,
|
ggml_view_3d(ctx0, kv_self.k,
|
||||||
n_embd_head, n_head_kv, n_ctx,
|
n_embd_head, n_head_kv, n_ctx,
|
||||||
ggml_element_size(kv_self.k)*n_embd_head,
|
ggml_element_size(kv_self.k)*n_embd_head,
|
||||||
ggml_element_size(kv_self.k)*n_embd_gqa,
|
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||||
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
|
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
|
||||||
K_shift, n_embd_head, 0, 0, freq_base, freq_scale));
|
K_shift, n_embd_head, 0, 0, freq_base, freq_scale);
|
||||||
|
offload_func_kq(tmp);
|
||||||
|
ggml_build_forward_expand(gf, tmp);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -3078,14 +3084,16 @@ static struct ggml_cgraph * llm_build_baichaun(
|
|||||||
|
|
||||||
// KQ_scale
|
// KQ_scale
|
||||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||||
|
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
|
||||||
ggml_allocr_alloc(lctx.alloc, KQ_scale);
|
ggml_allocr_alloc(lctx.alloc, KQ_scale);
|
||||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
|
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||||
}
|
}
|
||||||
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
|
|
||||||
|
|
||||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||||
|
offload_func_kq(KQ_mask);
|
||||||
|
ggml_set_name(KQ_mask, "KQ_mask");
|
||||||
ggml_allocr_alloc(lctx.alloc, KQ_mask);
|
ggml_allocr_alloc(lctx.alloc, KQ_mask);
|
||||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
float * data = (float *) KQ_mask->data;
|
float * data = (float *) KQ_mask->data;
|
||||||
@ -3108,6 +3116,7 @@ static struct ggml_cgraph * llm_build_baichaun(
|
|||||||
// KQ_pos - contains the positions
|
// KQ_pos - contains the positions
|
||||||
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||||
offload_func_kq(KQ_pos);
|
offload_func_kq(KQ_pos);
|
||||||
|
ggml_set_name(KQ_pos, "KQ_pos");
|
||||||
ggml_allocr_alloc(lctx.alloc, KQ_pos);
|
ggml_allocr_alloc(lctx.alloc, KQ_pos);
|
||||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
int * data = (int *) KQ_pos->data;
|
int * data = (int *) KQ_pos->data;
|
||||||
@ -3120,6 +3129,7 @@ static struct ggml_cgraph * llm_build_baichaun(
|
|||||||
if (do_rope_shift) {
|
if (do_rope_shift) {
|
||||||
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
|
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
|
||||||
offload_func_kq(K_shift);
|
offload_func_kq(K_shift);
|
||||||
|
ggml_set_name(K_shift, "K_shift");
|
||||||
ggml_allocr_alloc(lctx.alloc, K_shift);
|
ggml_allocr_alloc(lctx.alloc, K_shift);
|
||||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
int * data = (int *) K_shift->data;
|
int * data = (int *) K_shift->data;
|
||||||
@ -3129,14 +3139,16 @@ static struct ggml_cgraph * llm_build_baichaun(
|
|||||||
}
|
}
|
||||||
|
|
||||||
for (int il = 0; il < n_layer; ++il) {
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
ggml_build_forward_expand(gf,
|
struct ggml_tensor * tmp =
|
||||||
ggml_rope_custom_inplace(ctx0,
|
ggml_rope_custom_inplace(ctx0,
|
||||||
ggml_view_3d(ctx0, kv_self.k,
|
ggml_view_3d(ctx0, kv_self.k,
|
||||||
n_embd_head, n_head_kv, n_ctx,
|
n_embd_head, n_head_kv, n_ctx,
|
||||||
ggml_element_size(kv_self.k)*n_embd_head,
|
ggml_element_size(kv_self.k)*n_embd_head,
|
||||||
ggml_element_size(kv_self.k)*n_embd_gqa,
|
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||||
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
|
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
|
||||||
K_shift, n_embd_head, 0, 0, freq_base, freq_scale));
|
K_shift, n_embd_head, 0, 0, freq_base, freq_scale);
|
||||||
|
offload_func_kq(tmp);
|
||||||
|
ggml_build_forward_expand(gf, tmp);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -3484,14 +3496,16 @@ static struct ggml_cgraph * llm_build_falcon(
|
|||||||
|
|
||||||
// KQ_scale
|
// KQ_scale
|
||||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||||
|
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
|
||||||
ggml_allocr_alloc(lctx.alloc, KQ_scale);
|
ggml_allocr_alloc(lctx.alloc, KQ_scale);
|
||||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
|
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||||
}
|
}
|
||||||
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
|
|
||||||
|
|
||||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||||
|
offload_func_kq(KQ_mask);
|
||||||
|
ggml_set_name(KQ_mask, "KQ_mask");
|
||||||
ggml_allocr_alloc(lctx.alloc, KQ_mask);
|
ggml_allocr_alloc(lctx.alloc, KQ_mask);
|
||||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
float * data = (float *) KQ_mask->data;
|
float * data = (float *) KQ_mask->data;
|
||||||
@ -3514,6 +3528,7 @@ static struct ggml_cgraph * llm_build_falcon(
|
|||||||
// KQ_pos - contains the positions
|
// KQ_pos - contains the positions
|
||||||
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||||
offload_func_kq(KQ_pos);
|
offload_func_kq(KQ_pos);
|
||||||
|
ggml_set_name(KQ_pos, "KQ_pos");
|
||||||
ggml_allocr_alloc(lctx.alloc, KQ_pos);
|
ggml_allocr_alloc(lctx.alloc, KQ_pos);
|
||||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
int * data = (int *) KQ_pos->data;
|
int * data = (int *) KQ_pos->data;
|
||||||
@ -3526,6 +3541,7 @@ static struct ggml_cgraph * llm_build_falcon(
|
|||||||
if (do_rope_shift) {
|
if (do_rope_shift) {
|
||||||
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
|
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
|
||||||
offload_func_kq(K_shift);
|
offload_func_kq(K_shift);
|
||||||
|
ggml_set_name(K_shift, "K_shift");
|
||||||
ggml_allocr_alloc(lctx.alloc, K_shift);
|
ggml_allocr_alloc(lctx.alloc, K_shift);
|
||||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
int * data = (int *) K_shift->data;
|
int * data = (int *) K_shift->data;
|
||||||
@ -3535,14 +3551,16 @@ static struct ggml_cgraph * llm_build_falcon(
|
|||||||
}
|
}
|
||||||
|
|
||||||
for (int il = 0; il < n_layer; ++il) {
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
ggml_build_forward_expand(gf,
|
struct ggml_tensor * tmp =
|
||||||
ggml_rope_custom_inplace(ctx0,
|
ggml_rope_custom_inplace(ctx0,
|
||||||
ggml_view_3d(ctx0, kv_self.k,
|
ggml_view_3d(ctx0, kv_self.k,
|
||||||
n_embd_head, n_head_kv, n_ctx,
|
n_embd_head, n_head_kv, n_ctx,
|
||||||
ggml_element_size(kv_self.k)*n_embd_head,
|
ggml_element_size(kv_self.k)*n_embd_head,
|
||||||
ggml_element_size(kv_self.k)*n_embd_gqa,
|
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||||
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
|
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
|
||||||
K_shift, n_embd_head, 2, 0, freq_base, freq_scale));
|
K_shift, n_embd_head, 2, 0, freq_base, freq_scale);
|
||||||
|
offload_func_kq(tmp);
|
||||||
|
ggml_build_forward_expand(gf, tmp);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -3832,14 +3850,15 @@ static struct ggml_cgraph * llm_build_starcoder(
|
|||||||
|
|
||||||
// KQ_scale
|
// KQ_scale
|
||||||
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
|
||||||
|
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
|
||||||
ggml_allocr_alloc(lctx.alloc, KQ_scale);
|
ggml_allocr_alloc(lctx.alloc, KQ_scale);
|
||||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
|
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
|
||||||
}
|
}
|
||||||
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
|
|
||||||
|
|
||||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||||
|
ggml_set_name(KQ_mask, "KQ_mask");
|
||||||
ggml_allocr_alloc(lctx.alloc, KQ_mask);
|
ggml_allocr_alloc(lctx.alloc, KQ_mask);
|
||||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||||
float * data = (float *) KQ_mask->data;
|
float * data = (float *) KQ_mask->data;
|
||||||
@ -4118,6 +4137,7 @@ static int llama_decode_internal(
|
|||||||
ggml_tensor * node = gf->leafs[i];
|
ggml_tensor * node = gf->leafs[i];
|
||||||
if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
|
if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
|
||||||
ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
|
ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
|
||||||
|
ggml_cuda_copy_to_device(node);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user