CPU/CUDA: Gemma 2 FlashAttention support (#8542)

* CPU/CUDA: Gemma 2 FlashAttention support

* apply logit_softcap to scale in kernel

* disable logit softcapping tests on Metal

* remove metal check
This commit is contained in:
Johannes Gäßler 2024-08-24 21:34:59 +02:00 committed by GitHub
parent 8f824ffe8e
commit e11bd856d5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 319 additions and 79 deletions

View File

@ -1760,7 +1760,8 @@ extern "C" {
struct ggml_tensor * v, struct ggml_tensor * v,
struct ggml_tensor * mask, struct ggml_tensor * mask,
float scale, float scale,
float max_bias); float max_bias,
float logit_softcap);
GGML_API void ggml_flash_attn_ext_set_prec( GGML_API void ggml_flash_attn_ext_set_prec(
struct ggml_tensor * a, struct ggml_tensor * a,

View File

@ -22,6 +22,7 @@ typedef void (* fattn_kernel_t)(
const float m0, const float m0,
const float m1, const float m1,
const uint32_t n_head_log2, const uint32_t n_head_log2,
const float logit_softcap,
const int ne00, const int ne00,
const int ne01, const int ne01,
const int ne02, const int ne02,
@ -659,9 +660,15 @@ void launch_fattn(
float scale = 1.0f; float scale = 1.0f;
float max_bias = 0.0f; float max_bias = 0.0f;
float logit_softcap = 0.0f;
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float)); memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float)); memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
memcpy(&logit_softcap, (float *) KQV->op_params + 2, sizeof(float));
if (logit_softcap != 0.0f) {
scale /= logit_softcap;
}
const uint32_t n_head = Q->ne[2]; const uint32_t n_head = Q->ne[2];
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head)); const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
@ -675,7 +682,7 @@ void launch_fattn(
V_data, V_data,
mask ? ((const char *) mask->data) : nullptr, mask ? ((const char *) mask->data) : nullptr,
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr, (parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
scale, max_bias, m0, m1, n_head_log2, scale, max_bias, m0, m1, n_head_log2, logit_softcap,
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
K->ne[0], K->ne[1], K->ne[2], K->ne[3], K->ne[0], K->ne[1], K->ne[2], K->ne[3],
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,

View File

@ -4,7 +4,7 @@
#define FATTN_KQ_STRIDE_TILE_F16 64 #define FATTN_KQ_STRIDE_TILE_F16 64
template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size template<int D, int ncols, int nwarps, int parallel_blocks, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1) __launch_bounds__(nwarps*WARP_SIZE, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
@ -20,6 +20,7 @@ static __global__ void flash_attn_tile_ext_f16(
const float m0, const float m0,
const float m1, const float m1,
const uint32_t n_head_log2, const uint32_t n_head_log2,
const float logit_softcap,
const int ne00, const int ne00,
const int ne01, const int ne01,
const int ne02, const int ne02,
@ -44,6 +45,12 @@ static __global__ void flash_attn_tile_ext_f16(
const int ne2, const int ne2,
const int ne3) { const int ne3) {
#ifdef FP16_AVAILABLE #ifdef FP16_AVAILABLE
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
//In this kernel Q, K, V are matrices while i, j, k are matrix indices. //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on. const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
@ -154,7 +161,13 @@ static __global__ void flash_attn_tile_ext_f16(
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y; const int j_KQ = j_KQ_0 + threadIdx.y;
half sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]); half sum;
if (use_logit_softcap) {
const float2 tmp = __half22float2(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
sum = logit_softcap * tanhf(tmp.x + tmp.y);
} else {
sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
}
sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f); sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum); kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum);
@ -270,20 +283,20 @@ static __global__ void flash_attn_tile_ext_f16(
#endif // FP16_AVAILABLE #endif // FP16_AVAILABLE
} }
template <int cols_per_block, int parallel_blocks> template <int cols_per_block, int parallel_blocks, bool use_logit_softcap>
void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0]; const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) { switch (Q->ne[0]) {
case 64: { case 64: {
constexpr int D = 64; constexpr int D = 64;
constexpr int nwarps = 8; constexpr int nwarps = 8;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>; fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
} break; } break;
case 128: { case 128: {
constexpr int D = 128; constexpr int D = 128;
constexpr int nwarps = 8; constexpr int nwarps = 8;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>; fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
} break; } break;
default: { default: {
@ -296,24 +309,45 @@ void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_ten
const ggml_tensor * KQV = dst; const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0]; const ggml_tensor * Q = dst->src[0];
const int32_t precision = KQV->op_params[2]; const int32_t precision = KQV->op_params[3];
GGML_ASSERT(precision == GGML_PREC_DEFAULT); GGML_ASSERT(precision == GGML_PREC_DEFAULT);
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] <= 16) { if (Q->ne[1] <= 16) {
constexpr int cols_per_block = 16; constexpr int cols_per_block = 16;
constexpr int parallel_blocks = 4; constexpr int parallel_blocks = 4;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst); if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
}
return; return;
} }
if (Q->ne[1] <= 32) { if (Q->ne[1] <= 32) {
constexpr int cols_per_block = 32; constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 4; constexpr int parallel_blocks = 4;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst); if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
}
return; return;
} }
constexpr int cols_per_block = 32; constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 1; constexpr int parallel_blocks = 1;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst); if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
}
} }

View File

@ -4,7 +4,7 @@
#define FATTN_KQ_STRIDE_TILE_F32 32 #define FATTN_KQ_STRIDE_TILE_F32 32
template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size template<int D, int ncols, int nwarps, int parallel_blocks, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1) __launch_bounds__(nwarps*WARP_SIZE, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
@ -20,6 +20,7 @@ static __global__ void flash_attn_tile_ext_f32(
const float m0, const float m0,
const float m1, const float m1,
const uint32_t n_head_log2, const uint32_t n_head_log2,
const float logit_softcap,
const int ne00, const int ne00,
const int ne01, const int ne01,
const int ne02, const int ne02,
@ -43,6 +44,12 @@ static __global__ void flash_attn_tile_ext_f32(
const int ne1, const int ne1,
const int ne2, const int ne2,
const int ne3) { const int ne3) {
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
//In this kernel Q, K, V are matrices while i, j, k are matrix indices. //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on. const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
@ -151,6 +158,10 @@ static __global__ void flash_attn_tile_ext_f32(
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y; const int j_KQ = j_KQ_0 + threadIdx.y;
if (use_logit_softcap) {
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] = logit_softcap * tanhf(sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
}
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f; sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]); kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
@ -267,20 +278,20 @@ static __global__ void flash_attn_tile_ext_f32(
} }
} }
template <int cols_per_block, int parallel_blocks> template <int cols_per_block, int parallel_blocks, bool use_logit_softcap>
void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0]; const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) { switch (Q->ne[0]) {
case 64: { case 64: {
constexpr int D = 64; constexpr int D = 64;
constexpr int nwarps = 8; constexpr int nwarps = 8;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>; fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
} break; } break;
case 128: { case 128: {
constexpr int D = 128; constexpr int D = 128;
constexpr int nwarps = 8; constexpr int nwarps = 8;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>; fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
} break; } break;
default: { default: {
@ -290,23 +301,45 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
} }
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0]; const ggml_tensor * Q = dst->src[0];
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] <= 16) { if (Q->ne[1] <= 16) {
constexpr int cols_per_block = 16; constexpr int cols_per_block = 16;
constexpr int parallel_blocks = 4; constexpr int parallel_blocks = 4;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst); if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
}
return; return;
} }
if (Q->ne[1] <= 32) { if (Q->ne[1] <= 32) {
constexpr int cols_per_block = 32; constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 4; constexpr int parallel_blocks = 4;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst); if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
}
return; return;
} }
constexpr int cols_per_block = 32; constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 1; constexpr int parallel_blocks = 1;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst); if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
}
} }

View File

@ -1,7 +1,7 @@
#include "common.cuh" #include "common.cuh"
#include "fattn-common.cuh" #include "fattn-common.cuh"
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V> // D == head size template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(D, 1) __launch_bounds__(D, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
@ -17,6 +17,7 @@ static __global__ void flash_attn_vec_ext_f16(
const float m0, const float m0,
const float m1, const float m1,
const uint32_t n_head_log2, const uint32_t n_head_log2,
const float logit_softcap,
const int ne00, const int ne00,
const int ne01, const int ne01,
const int ne02, const int ne02,
@ -41,6 +42,12 @@ static __global__ void flash_attn_vec_ext_f16(
const int ne2, const int ne2,
const int ne3) { const int ne3) {
#ifdef FP16_AVAILABLE #ifdef FP16_AVAILABLE
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
//In this kernel Q, K, V are matrices while i, j, k are matrix indices. //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
constexpr vec_dot_KQ_f16_t vec_dot_KQ = get_vec_dot_KQ_f16<D>(type_K); constexpr vec_dot_KQ_f16_t vec_dot_KQ = get_vec_dot_KQ_f16<D>(type_K);
@ -190,6 +197,11 @@ static __global__ void flash_attn_vec_ext_f16(
for (int j = 0; j < ncols; ++j) { for (int j = 0; j < ncols; ++j) {
half sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_h2[j], Q_i32[j], Q_ds[j]); half sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_h2[j], Q_i32[j], Q_ds[j]);
sum = warp_reduce_sum(sum); sum = warp_reduce_sum(sum);
if (use_logit_softcap) {
sum = logit_softcap*tanhf(sum);
}
sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f); sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
if (ncols == 1) { if (ncols == 1) {
@ -286,10 +298,10 @@ static __global__ void flash_attn_vec_ext_f16(
#endif // FP16_AVAILABLE #endif // FP16_AVAILABLE
} }
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V> template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
constexpr int nwarps = D/WARP_SIZE; constexpr int nwarps = D/WARP_SIZE;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks, type_K, type_V>; fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>;
constexpr bool need_f16_K = D != 128; constexpr bool need_f16_K = D != 128;
constexpr bool need_f16_V = D != 128 && D != 64; constexpr bool need_f16_V = D != 128 && D != 64;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V); launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V);
@ -297,48 +309,81 @@ void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx,
template <int D, ggml_type type_K, ggml_type type_V> template <int D, ggml_type type_K, ggml_type type_V>
void ggml_cuda_flash_attn_ext_vec_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { void ggml_cuda_flash_attn_ext_vec_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_tensor * KQV = dst; const ggml_tensor * KQV = dst;
ggml_tensor * Q = dst->src[0]; const ggml_tensor * Q = dst->src[0];
ggml_tensor * K = dst->src[1]; const ggml_tensor * K = dst->src[1];
ggml_tensor * V = dst->src[2]; const ggml_tensor * V = dst->src[2];
const int32_t precision = KQV->op_params[2]; const int32_t precision = KQV->op_params[3];
GGML_ASSERT(precision == GGML_PREC_DEFAULT); GGML_ASSERT(precision == GGML_PREC_DEFAULT);
GGML_ASSERT(K->type == type_K); GGML_ASSERT(K->type == type_K);
GGML_ASSERT(V->type == type_V); GGML_ASSERT(V->type == type_V);
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] == 1) { if (Q->ne[1] == 1) {
constexpr int cols_per_block = 1; constexpr int cols_per_block = 1;
constexpr int parallel_blocks = 4; constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst); if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return; return;
} }
if (Q->ne[1] == 2) { if (Q->ne[1] == 2) {
constexpr int cols_per_block = 2; constexpr int cols_per_block = 2;
constexpr int parallel_blocks = 4; constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst); if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return; return;
} }
if (Q->ne[1] <= 4) { if (Q->ne[1] <= 4) {
constexpr int cols_per_block = 4; constexpr int cols_per_block = 4;
constexpr int parallel_blocks = 4; constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst); if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return; return;
} }
if (Q->ne[1] <= 8) { if (Q->ne[1] <= 8) {
constexpr int cols_per_block = 8; constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 4; constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst); if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return; return;
} }
constexpr int cols_per_block = 8; constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 1; constexpr int parallel_blocks = 1;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst); if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
} }
#define DECL_FATTN_VEC_F16_CASE(D, type_K, type_V) \ #define DECL_FATTN_VEC_F16_CASE(D, type_K, type_V) \

View File

@ -1,7 +1,7 @@
#include "common.cuh" #include "common.cuh"
#include "fattn-common.cuh" #include "fattn-common.cuh"
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V> // D == head size template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(D, 1) __launch_bounds__(D, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
@ -17,6 +17,7 @@ static __global__ void flash_attn_vec_ext_f32(
const float m0, const float m0,
const float m1, const float m1,
const uint32_t n_head_log2, const uint32_t n_head_log2,
const float logit_softcap,
const int ne00, const int ne00,
const int ne01, const int ne01,
const int ne02, const int ne02,
@ -40,6 +41,12 @@ static __global__ void flash_attn_vec_ext_f32(
const int ne1, const int ne1,
const int ne2, const int ne2,
const int ne3) { const int ne3) {
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
//In this kernel Q, K, V are matrices while i, j, k are matrix indices. //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
constexpr vec_dot_KQ_f32_t vec_dot_KQ = get_vec_dot_KQ_f32<D>(type_K); constexpr vec_dot_KQ_f32_t vec_dot_KQ = get_vec_dot_KQ_f32<D>(type_K);
@ -180,6 +187,11 @@ static __global__ void flash_attn_vec_ext_f32(
for (int j = 0; j < ncols; ++j) { for (int j = 0; j < ncols; ++j) {
float sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_f2[j], Q_i32[j], Q_ds[j]); float sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_f2[j], Q_i32[j], Q_ds[j]);
sum = warp_reduce_sum(sum); sum = warp_reduce_sum(sum);
if (use_logit_softcap) {
sum = logit_softcap*tanhf(sum);
}
sum += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f; sum += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum); kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum);
@ -267,10 +279,10 @@ static __global__ void flash_attn_vec_ext_f32(
} }
} }
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V> template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
constexpr int nwarps = D/WARP_SIZE; constexpr int nwarps = D/WARP_SIZE;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks, type_K, type_V>; fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>;
constexpr bool need_f16_K = D != 128; constexpr bool need_f16_K = D != 128;
constexpr bool need_f16_V = D != 128 && D != 64; constexpr bool need_f16_V = D != 128 && D != 64;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V); launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V);
@ -278,44 +290,78 @@ void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx,
template <int D, ggml_type type_K, ggml_type type_V> template <int D, ggml_type type_K, ggml_type type_V>
void ggml_cuda_flash_attn_ext_vec_f32_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { void ggml_cuda_flash_attn_ext_vec_f32_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_tensor * Q = dst->src[0]; const ggml_tensor * KQV = dst;
ggml_tensor * K = dst->src[1]; const ggml_tensor * Q = dst->src[0];
ggml_tensor * V = dst->src[2]; const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
GGML_ASSERT(K->type == type_K); GGML_ASSERT(K->type == type_K);
GGML_ASSERT(V->type == type_V); GGML_ASSERT(V->type == type_V);
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] == 1) { if (Q->ne[1] == 1) {
constexpr int cols_per_block = 1; constexpr int cols_per_block = 1;
constexpr int parallel_blocks = 4; constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst); if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return; return;
} }
if (Q->ne[1] == 2) { if (Q->ne[1] == 2) {
constexpr int cols_per_block = 2; constexpr int cols_per_block = 2;
constexpr int parallel_blocks = 4; constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst); if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return; return;
} }
if (Q->ne[1] <= 4) { if (Q->ne[1] <= 4) {
constexpr int cols_per_block = 4; constexpr int cols_per_block = 4;
constexpr int parallel_blocks = 4; constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst); if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return; return;
} }
if (Q->ne[1] <= 8) { if (Q->ne[1] <= 8) {
constexpr int cols_per_block = 8; constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 4; constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst); if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return; return;
} }
constexpr int cols_per_block = 8; constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 1; constexpr int parallel_blocks = 1;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst); if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
} }
#define DECL_FATTN_VEC_F32_CASE(D, type_K, type_V) \ #define DECL_FATTN_VEC_F32_CASE(D, type_K, type_V) \

View File

@ -6,7 +6,7 @@
#endif // FP16_MMA_AVAILABLE #endif // FP16_MMA_AVAILABLE
// D == head size, VKQ_stride == num VKQ rows calculated in parallel: // D == head size, VKQ_stride == num VKQ rows calculated in parallel:
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t> template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t, bool use_logit_softcap>
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1) __launch_bounds__(nwarps*WARP_SIZE, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
@ -22,6 +22,7 @@ static __global__ void flash_attn_ext_f16(
const float m0, const float m0,
const float m1, const float m1,
const uint32_t n_head_log2, const uint32_t n_head_log2,
const float logit_softcap,
const int ne00, const int ne00,
const int ne01, const int ne01,
const int ne02, const int ne02,
@ -46,6 +47,12 @@ static __global__ void flash_attn_ext_f16(
const int ne2, const int ne2,
const int ne3) { const int ne3) {
#ifdef FP16_MMA_AVAILABLE #ifdef FP16_MMA_AVAILABLE
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
//In this kernel Q, K, V are matrices while i, j, k are matrix indices. //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on. const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
@ -85,6 +92,8 @@ static __global__ void flash_attn_ext_f16(
const half slopeh = __float2half(slopef); const half slopeh = __float2half(slopef);
const half2 slope2 = make_half2(slopef, slopef); const half2 slope2 = make_half2(slopef, slopef);
const half2 logit_softcap_2 = make_half2(logit_softcap, logit_softcap);
frag_b Q_b[D/16][ncols/frag_n]; frag_b Q_b[D/16][ncols/frag_n];
// A single buffer for temporarily holding tiles of KQ and VKQ parts: // A single buffer for temporarily holding tiles of KQ and VKQ parts:
@ -194,6 +203,10 @@ static __global__ void flash_attn_ext_f16(
const int k = k0 + threadIdx.x; const int k = k0 + threadIdx.x;
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k]; KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
if (use_logit_softcap) {
KQ_f_tmp[k0/WARP_SIZE] = logit_softcap*tanhf(KQ_f_tmp[k0/WARP_SIZE]);
}
} }
float KQ_max_new = KQ_max_f[j0/nwarps]; float KQ_max_new = KQ_max_f[j0/nwarps];
@ -237,6 +250,15 @@ static __global__ void flash_attn_ext_f16(
const int k = k0 + threadIdx.x; const int k = k0 + threadIdx.x;
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k]; KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
if (use_logit_softcap) {
// There is no dedicated tangens hyperbolicus function for half2.
KQ2_tmp[k0/WARP_SIZE] = h2exp(KQ2_tmp[k0/WARP_SIZE]*make_half2(2.0f, 2.0f));
KQ2_tmp[k0/WARP_SIZE] = (KQ2_tmp[k0/WARP_SIZE] - make_half2(1.0f, 1.0f))
/(KQ2_tmp[k0/WARP_SIZE] + make_half2(1.0f, 1.0f));
KQ2_tmp[k0/WARP_SIZE] *= logit_softcap_2;
}
} }
half2 KQ_max_new = KQ_max_h2[j0/nwarps]; half2 KQ_max_new = KQ_max_h2[j0/nwarps];
@ -427,6 +449,7 @@ static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
template <int D, int cols_per_block, typename KQ_acc_t> template <int D, int cols_per_block, typename KQ_acc_t>
void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0]; const ggml_tensor * Q = dst->src[0];
constexpr int nwarps = 4; constexpr int nwarps = 4;
@ -435,20 +458,50 @@ void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggm
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3]; const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm; const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (4*blocks_num_pb1 < 2*nsm) { if (4*blocks_num_pb1 < 2*nsm) {
constexpr int parallel_blocks = 4; constexpr int parallel_blocks = 4;
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>; fattn_kernel_t fattn_kernel;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
} else {
constexpr bool use_logit_softcap = true;
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
}
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
return; return;
} }
if (2*blocks_num_pb1 < 2*nsm) { if (2*blocks_num_pb1 < 2*nsm) {
constexpr int parallel_blocks = 2; constexpr int parallel_blocks = 2;
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>; fattn_kernel_t fattn_kernel;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
} else {
constexpr bool use_logit_softcap = true;
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
}
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
return; return;
} }
constexpr int parallel_blocks = 1; constexpr int parallel_blocks = 1;
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>; fattn_kernel_t fattn_kernel;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
} else {
constexpr bool use_logit_softcap = true;
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
}
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true); launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
} }

View File

@ -13,7 +13,7 @@ static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, g
const ggml_tensor * KQV = dst; const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0]; const ggml_tensor * Q = dst->src[0];
const int32_t precision = KQV->op_params[2]; const int32_t precision = KQV->op_params[3];
if (precision != GGML_PREC_DEFAULT) { if (precision != GGML_PREC_DEFAULT) {
if (Q->ne[1] <= 32 || Q->ne[0] > 128) { if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
@ -301,7 +301,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
ggml_cuda_set_device(ctx.device); ggml_cuda_set_device(ctx.device);
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc; const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const int32_t precision = KQV->op_params[2]; const int32_t precision = KQV->op_params[3];
// On AMD the tile kernels perform poorly, use the vec kernel instead: // On AMD the tile kernels perform poorly, use the vec kernel instead:
if (cc >= CC_OFFSET_AMD) { if (cc >= CC_OFFSET_AMD) {

View File

@ -802,6 +802,15 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_context * ctx
if (op->src[0]->ne[0] == 256) { if (op->src[0]->ne[0] == 256) {
return false; return false;
} }
{
float logit_softcap;
memcpy(&logit_softcap, ((const float *) op->op_params) + 2, sizeof(logit_softcap));
if (logit_softcap != 0.0f) {
return false;
}
}
return ctx->support_simdgroup_mm; // TODO: over-restricted for vec-kernels return ctx->support_simdgroup_mm; // TODO: over-restricted for vec-kernels
case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID: case GGML_OP_MUL_MAT_ID:

View File

@ -7095,7 +7095,8 @@ struct ggml_tensor * ggml_flash_attn_ext(
struct ggml_tensor * v, struct ggml_tensor * v,
struct ggml_tensor * mask, struct ggml_tensor * mask,
float scale, float scale,
float max_bias) { float max_bias,
float logit_softcap) {
GGML_ASSERT(ggml_can_mul_mat(k, q)); GGML_ASSERT(ggml_can_mul_mat(k, q));
// TODO: check if vT can be multiplied by (k*qT) // TODO: check if vT can be multiplied by (k*qT)
@ -7122,7 +7123,7 @@ struct ggml_tensor * ggml_flash_attn_ext(
int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] }; int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
float params[] = { scale, max_bias }; float params[] = { scale, max_bias, logit_softcap };
ggml_set_op_params(result, params, sizeof(params)); ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_FLASH_ATTN_EXT; result->op = GGML_OP_FLASH_ATTN_EXT;
@ -7142,7 +7143,7 @@ void ggml_flash_attn_ext_set_prec(
const int32_t prec_i32 = (int32_t) prec; const int32_t prec_i32 = (int32_t) prec;
ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second ggml_set_op_params_i32(a, 3, prec_i32); // scale is on first pos, max_bias on second
} }
// ggml_flash_attn_back // ggml_flash_attn_back
@ -15273,9 +15274,15 @@ static void ggml_compute_forward_flash_attn_ext_f16(
float scale = 1.0f; float scale = 1.0f;
float max_bias = 0.0f; float max_bias = 0.0f;
float logit_softcap = 0.0f;
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float)); memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float)); memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
if (logit_softcap != 0) {
scale /= logit_softcap;
}
const uint32_t n_head = neq2; const uint32_t n_head = neq2;
const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head)); const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
@ -15339,7 +15346,13 @@ static void ggml_compute_forward_flash_attn_ext_f16(
const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3); const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1); kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
s = s*scale + mv; // scale KQ value and apply mask s = s*scale; // scale KQ value
if (logit_softcap != 0.0f) {
s = logit_softcap*tanhf(s);
}
s += mv; // apply mask
const float Mold = M; const float Mold = M;
@ -15348,7 +15361,7 @@ static void ggml_compute_forward_flash_attn_ext_f16(
const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3)); const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
if (v->type== GGML_TYPE_F16) { if (v->type == GGML_TYPE_F16) {
if (s > M) { if (s > M) {
// s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
M = s; M = s;
@ -15415,7 +15428,7 @@ static void ggml_compute_forward_flash_attn_ext(
const struct ggml_tensor * v, const struct ggml_tensor * v,
const struct ggml_tensor * mask, const struct ggml_tensor * mask,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
switch (dst->op_params[2]) { switch (dst->op_params[3]) {
case GGML_PREC_DEFAULT: case GGML_PREC_DEFAULT:
case GGML_PREC_F32: case GGML_PREC_F32:
{ {

View File

@ -8874,7 +8874,8 @@ static struct ggml_tensor * llm_build_kqv(
0); 0);
cb(v, "v", il); cb(v, "v", il);
cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias); cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) { if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32); ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
@ -17533,12 +17534,6 @@ struct llama_context * llama_new_context_with_model(
params.flash_attn = false; params.flash_attn = false;
} }
if (params.flash_attn && model->hparams.attn_soft_cap) {
LLAMA_LOG_WARN("%s: flash_attn is not compatible with attn_soft_cap - forcing off\n", __func__);
params.flash_attn = false;
}
if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) { if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) {
LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__); LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__);
params.flash_attn = false; params.flash_attn = false;

View File

@ -1652,19 +1652,20 @@ struct test_flash_attn_ext : public test_case {
const bool mask; // use mask const bool mask; // use mask
const float max_bias; // ALiBi const float max_bias; // ALiBi
const float logit_softcap; // Gemma 2
const ggml_type type_KV; const ggml_type type_KV;
std::string vars() override { std::string vars() override {
return VARS_TO_STR7(hs, nh, kv, nb, mask, max_bias, type_KV); return VARS_TO_STR8(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV);
} }
double max_nmse_err() override { double max_nmse_err() override {
return 5e-4; return 5e-4;
} }
test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, bool mask = true, float max_bias = 0.0f, ggml_type type_KV = GGML_TYPE_F16) test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_type type_KV = GGML_TYPE_F16)
: hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), type_KV(type_KV) {} : hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), type_KV(type_KV) {}
ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * build_graph(ggml_context * ctx) override {
const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV)); const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV));
@ -1673,7 +1674,7 @@ struct test_flash_attn_ext : public test_case {
ggml_tensor * k = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1); ggml_tensor * k = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1);
ggml_tensor * v = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1); ggml_tensor * v = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1);
ggml_tensor * m = mask ? ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1) : nullptr; ggml_tensor * m = mask ? ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1) : nullptr;
ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias); ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias, logit_softcap);
return out; return out;
} }
}; };
@ -2437,11 +2438,14 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
for (bool mask : { true, false } ) { for (bool mask : { true, false } ) {
for (float max_bias : { 0.0f, 8.0f }) { for (float max_bias : { 0.0f, 8.0f }) {
if (!mask && max_bias > 0.0f) continue; if (!mask && max_bias > 0.0f) continue;
for (float logit_softcap : {0.0f, 10.0f}) {
if (hs != 128 && logit_softcap != 0.0f) continue;
for (int nh : { 32, }) { for (int nh : { 32, }) {
for (int kv : { 512, 1024, }) { for (int kv : { 512, 1024, }) {
for (int nb : { 1, 2, 4, 8, }) { for (int nb : { 1, 2, 4, 8, }) {
for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) { for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, type_KV)); test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV));
}
} }
} }
} }