diff --git a/convert-gptneox-h5-to-gguf.py b/convert-gptneox-h5-to-gguf.py index ac4b2ff88..a8a0c7e2d 100644 --- a/convert-gptneox-h5-to-gguf.py +++ b/convert-gptneox-h5-to-gguf.py @@ -1,4 +1,4 @@ -# Quick and dirty HF gptneox--> gguf conversion +# HF gptneox--> gguf conversion import gguf import gguf_tensor_map as tmap @@ -9,7 +9,8 @@ import json import numpy as np from typing import Any, List from pathlib import Path -from transformers import AutoTokenizer, AutoModelForCausalLM +import torch +from transformers import AutoTokenizer # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py def bytes_to_unicode(): @@ -33,6 +34,15 @@ def bytes_to_unicode(): cs = [chr(n) for n in cs] return dict(zip(bs, cs)) +def count_model_parts(dir_model: str) -> int: + num_parts = 0 + for filename in os.listdir(dir_model): + if filename.startswith("pytorch_model-"): + num_parts += 1 + + if num_parts > 0: + print("gguf: found " + str(num_parts) + " model parts") + return num_parts if len(sys.argv) < 3: print("Usage: convert-h5-to-ggml.py dir-model ftype\n") @@ -70,9 +80,8 @@ if hparams["architectures"][0] != "GPTNeoXForCausalLM": print("Model architecture not supported: " + hparams["architectures"][0] ) sys.exit() - -model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True) -list_vars = model.state_dict() +# get number of model parts +num_parts = count_model_parts(dir_model) gguf_writer = gguf.GGUFWriter.open(fname_out) @@ -183,37 +192,58 @@ tensor_map = tmap.get_tensor_map(block_count) # tensor info print("gguf: get tensor metadata") -for name in list_vars.keys(): - data = list_vars[name].squeeze().numpy() +if num_parts == 0: + part_names = ("pytorch_model.bin",) +else: + part_names = ( + f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) + ) - # we don't need these - if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"): - continue +for part_name in part_names: + print("gguf: loading model part '"+ part_name + "'") + model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") - # map tensor names - if name.endswith(".weight") and name[:-7] in tensor_map: - name = tensor_map[name[:-7]] + ".weight" - elif name.endswith(".bias") and name[:-5] in tensor_map: - name = tensor_map[name[:-5]] + ".bias" - else: - print( "Can not map tensor '" + name + "'" ) - sys.exit() + for name in model_part.keys(): + data = model_part[name] - n_dims = len(data.shape) - data_dtype = data.dtype + # we don't need these + if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"): + continue -# print( name + " dims " + str(n_dims) + " dtype " + str(data.dtype) ) - - if data.dtype != np.float16 and data.dtype != np.float32: # convert any unsupported data types to float32 - data_dtype = np.float32 - elif ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + if data.dtype != torch.float16 and data.dtype != torch.float32: + data = data.to(torch.float32) + + data = data.squeeze().numpy() + + # map tensor names + if name.endswith(".weight") and name[:-7] in tensor_map: + name = tensor_map[name[:-7]] + ".weight" + elif name.endswith(".bias") and name[:-5] in tensor_map: + name = tensor_map[name[:-5]] + ".bias" + else: + print( "Can not map tensor '" + name + "'" ) + sys.exit() + + n_dims = len(data.shape) + data_dtype = data.dtype + + # if f32 desired, convert any float16 to float32 + if ftype == 0 and data.dtype == np.float16: + data_dtype = np.float32 + + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 + if ftype == 1 and data.dtype == np.float16 and n_dims == 1: + data_dtype = np.float32 + # if f16 desired, convert any float32 2-dim weight tensors to float16 - data_dtype = np.float16 + if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data_dtype = np.float16 - data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4 + data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4 + + gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes) - gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes) print("gguf: write header") gguf_writer.write_header_to_file() @@ -225,24 +255,59 @@ gguf_writer.write_ti_data_to_file() # tensor data print("gguf: convert and write tensor data") -for name in list_vars.keys(): - data = list_vars[name].squeeze().numpy() +if num_parts == 0: + part_names = ("pytorch_model.bin",) +else: + part_names = ( + f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) + ) - # we don't need these - if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"): - continue +for part_name in part_names: + print("gguf: loading model part '"+ part_name + "'") + model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") - n_dims = len(data.shape) - data_dtype = data.dtype + for name in model_part.keys(): + data = model_part[name] + + old_dtype = data.dtype + + # we don't need these + if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"): + continue - if data_dtype != np.float16 and data_dtype != np.float32: # convert any unsupported data types to float32 - data = data.astype(np.float32) - elif ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: - # if f16 desired, convert any float32 2-dim weight tensors to float16 - data = data.astype(np.float16) + if data.dtype != torch.float16 and data.dtype != torch.float32: + data = data.to(torch.float32) - gguf_writer.write_tensor_to_file(data) + data = data.squeeze().numpy() + + # map tensor names + if name.endswith(".weight") and name[:-7] in tensor_map: + name = tensor_map[name[:-7]] + ".weight" + elif name.endswith(".bias") and name[:-5] in tensor_map: + name = tensor_map[name[:-5]] + ".bias" + else: + print( "Can not map tensor '" + name + "'" ) + sys.exit() + + n_dims = len(data.shape) + data_dtype = data.dtype + + # if f32 desired, convert any float16 to float32 + if ftype == 0 and data.dtype == np.float16: + data = data.astype(np.float32) + + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 + if ftype == 1 and data_dtype == np.float16 and n_dims == 1: + data = data.astype(np.float32) + + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data = data.astype(np.float16) + + print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype)) + + gguf_writer.write_tensor_to_file(data) gguf_writer.close()