diff --git a/gguf.py b/gguf.py index 2ae5e88cf..72c223da0 100644 --- a/gguf.py +++ b/gguf.py @@ -11,55 +11,55 @@ from typing import Any, IO, List # constants # -GGUF_MAGIC = 0x47475546 -GGUF_VERSION = 1 +GGUF_MAGIC = 0x47475546 +GGUF_VERSION = 1 GGUF_DEFAULT_ALIGNMENT = 32 # general -KEY_GENERAL_ARCHITECTURE = "general.architecture" +KEY_GENERAL_ARCHITECTURE = "general.architecture" KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version" -KEY_GENERAL_ALIGNMENT = "general.alignment" -KEY_GENERAL_NAME = "general.name" -KEY_GENERAL_AUTHOR = "general.author" -KEY_GENERAL_URL = "general.url" -KEY_GENERAL_DESCRIPTION = "general.description" -KEY_GENERAL_LICENSE = "general.license" -KEY_GENERAL_SOURCE_URL = "general.source.url" -KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository" +KEY_GENERAL_ALIGNMENT = "general.alignment" +KEY_GENERAL_NAME = "general.name" +KEY_GENERAL_AUTHOR = "general.author" +KEY_GENERAL_URL = "general.url" +KEY_GENERAL_DESCRIPTION = "general.description" +KEY_GENERAL_LICENSE = "general.license" +KEY_GENERAL_SOURCE_URL = "general.source.url" +KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository" # LLM -KEY_LLM_CONTEXT_LENGTH = "{arch}.context_length" -KEY_LLM_EMBEDDING_LENGTH = "{arch}.embedding_length" -KEY_LLM_BLOCK_COUNT = "{arch}.block_count" -KEY_LLM_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length" +KEY_LLM_CONTEXT_LENGTH = "{arch}.context_length" +KEY_LLM_EMBEDDING_LENGTH = "{arch}.embedding_length" +KEY_LLM_BLOCK_COUNT = "{arch}.block_count" +KEY_LLM_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length" KEY_LLM_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual" -KEY_LLM_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout" +KEY_LLM_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout" # attention -KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count" -KEY_ATTENTION_HEAD_COUNT_KV = "{arch}.attention.head_count_kv" -KEY_ATTENTION_MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias" -KEY_ATTENTION_CLAMP_KQV = "{arch}.attention.clamp_kqv" -KEY_ATTENTION_LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon" +KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count" +KEY_ATTENTION_HEAD_COUNT_KV = "{arch}.attention.head_count_kv" +KEY_ATTENTION_MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias" +KEY_ATTENTION_CLAMP_KQV = "{arch}.attention.clamp_kqv" +KEY_ATTENTION_LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon" KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon" # RoPE KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count" -KEY_ROPE_SCALE = "{arch}.rope.scale" +KEY_ROPE_SCALE = "{arch}.rope.scale" # tokenization -KEY_TOKENIZER_MODEL = "tokenizer.ggml.model" -KEY_TOKENIZER_LIST = "tokenizer.ggml.tokens" +KEY_TOKENIZER_MODEL = "tokenizer.ggml.model" +KEY_TOKENIZER_LIST = "tokenizer.ggml.tokens" KEY_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type" -KEY_TOKENIZER_SCORES = "tokenizer.ggml.scores" -KEY_TOKENIZER_MERGES = "tokenizer.ggml.merges" -KEY_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id" -KEY_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id" -KEY_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id" -KEY_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id" -KEY_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id" -KEY_TOKENIZER_HF_JSON = "tokenizer.huggingface.json" -KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world" +KEY_TOKENIZER_SCORES = "tokenizer.ggml.scores" +KEY_TOKENIZER_MERGES = "tokenizer.ggml.merges" +KEY_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id" +KEY_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id" +KEY_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id" +KEY_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id" +KEY_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id" +KEY_TOKENIZER_HF_JSON = "tokenizer.huggingface.json" +KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world" # # recommended mapping of model tensor names for storage in gguf @@ -96,41 +96,41 @@ class MODEL_TENSOR(IntEnum): MODEL_ARCH_NAMES = { - MODEL_ARCH.LLAMA: "llama", - MODEL_ARCH.FALCON: "falcon", - MODEL_ARCH.GPT2: "gpt2", - MODEL_ARCH.GPTJ: "gptj", + MODEL_ARCH.LLAMA: "llama", + MODEL_ARCH.FALCON: "falcon", + MODEL_ARCH.GPT2: "gpt2", + MODEL_ARCH.GPTJ: "gptj", MODEL_ARCH.GPTNEOX: "gptneox", - MODEL_ARCH.MPT: "mpt", + MODEL_ARCH.MPT: "mpt", } MODEL_TENSOR_NAMES = { MODEL_ARCH.LLAMA: { - MODEL_TENSOR.TOKEN_EMBD: "token_embd", - MODEL_TENSOR.OUTPUT_NORM: "output_norm", - MODEL_TENSOR.OUTPUT: "output", - MODEL_TENSOR.ROPE_FREQS: "rope_freqs", - MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", - MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", - MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", - MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", - MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", + MODEL_TENSOR.TOKEN_EMBD: "token_embd", + MODEL_TENSOR.OUTPUT_NORM: "output_norm", + MODEL_TENSOR.OUTPUT: "output", + MODEL_TENSOR.ROPE_FREQS: "rope_freqs", + MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", + MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", + MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", + MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", + MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", - MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", - MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", - MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", - MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", + MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", + MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", + MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", + MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", }, MODEL_ARCH.FALCON: { - MODEL_TENSOR.TOKEN_EMBD: "token_embd", + MODEL_TENSOR.TOKEN_EMBD: "token_embd", MODEL_TENSOR.OUTPUT_NORM: "output_norm", - MODEL_TENSOR.OUTPUT: "output", - MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", + MODEL_TENSOR.OUTPUT: "output", + MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", - MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", - MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", - MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", - MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", + MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", + MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", + MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", + MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", }, MODEL_ARCH.GPT2: { # TODO @@ -162,11 +162,11 @@ def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict: # Token embeddings mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.TOKEN_EMBD, None) - tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox - tensor_map["transformer.wte"] = mapped_to # gpt2 mpt + tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox + tensor_map["transformer.wte"] = mapped_to # gpt2 mpt tensor_map["transformer.word_embeddings"] = mapped_to # falcon - tensor_map["model.embed_tokens"] = mapped_to # llama-hf - tensor_map["tok_embeddings"] = mapped_to # llama-pth + tensor_map["model.embed_tokens"] = mapped_to # llama-hf + tensor_map["tok_embeddings"] = mapped_to # llama-pth # Position embeddings mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.POS_EMBD, None) @@ -177,17 +177,17 @@ def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict: mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT, None) tensor_map["embed_out"] = mapped_to # gptneox - tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf - tensor_map["output"] = mapped_to # llama-pth + tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf + tensor_map["output"] = mapped_to # llama-pth # Output norm mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT_NORM, None) tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox - tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon - tensor_map["transformer.norm_f"] = mapped_to # mpt - tensor_map["model.norm"] = mapped_to # llama-hf - tensor_map["norm"] = mapped_to # llama-pth + tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon + tensor_map["transformer.norm_f"] = mapped_to # mpt + tensor_map["model.norm"] = mapped_to # llama-hf + tensor_map["norm"] = mapped_to # llama-pth # Rope frequencies mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ROPE_FREQS, None) @@ -202,12 +202,12 @@ def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict: mapped_to = mapped_to.format(bid=i) if mapped_to else None tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox - tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2 - tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt - tensor_map["transformer.h."+str(i)+".input_layernorm"] = mapped_to # falcon7b - tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b - tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth + tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2 + tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt + tensor_map["transformer.h."+str(i)+".input_layernorm"] = mapped_to # falcon7b + tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b + tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf + tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth # Attention norm 2 mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM_2, None) @@ -219,9 +219,9 @@ def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict: mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_QKV, None) mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None - tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox - tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2 - tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt + tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox + tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2 + tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon # Attention query @@ -229,38 +229,38 @@ def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict: mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth + tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth # Attention key mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_K, None) mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth + tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth # Attention value mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_V, None) mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth + tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth # Attention output mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_OUT, None) mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None - tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox - tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2 - tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt + tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox + tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2 + tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon - tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth + tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf + tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth # Rotary embeddings mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_ROT_EMBD, None) mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None - tensor_map["model.layers."+str(i)+".self_attn.rotary_emb.inv_freq"] = mapped_to # llama-hf + tensor_map["model.layers."+str(i)+".self_attn.rotary_emb.inv_freq"] = mapped_to # llama-hf tensor_map["layers."+str(i)+".attention.inner_attention.rope.freqs"] = mapped_to # llama-pth # Feed-forward norm @@ -268,39 +268,39 @@ def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict: mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox - tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2 - tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt - tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth + tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2 + tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt + tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf + tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth # Feed-forward up mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_UP, None) mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox - tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2 - tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt - tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon - tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth + tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2 + tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt + tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon + tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf + tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth # Feed-forward gate mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_GATE, None) mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth + tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth # Feed-forward down mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_DOWN, None) mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox - tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2 - tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt - tensor_map["transformer.h."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # falcon - tensor_map["model.layers."+str(i)+".mlp.down_proj"] = mapped_to # llama-hf - tensor_map["layers."+str(i)+".feed_forward.w2"] = mapped_to # llama-pth + tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2 + tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt + tensor_map["transformer.h."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # falcon + tensor_map["model.layers."+str(i)+".mlp.down_proj"] = mapped_to # llama-hf + tensor_map["layers."+str(i)+".feed_forward.w2"] = mapped_to # llama-pth return tensor_map @@ -315,16 +315,16 @@ class GGMLQuantizationType(IntEnum): class GGUFValueType(IntEnum): - UINT8 = 0 - INT8 = 1 - UINT16 = 2 - INT16 = 3 - UINT32 = 4 - INT32 = 5 + UINT8 = 0 + INT8 = 1 + UINT16 = 2 + INT16 = 3 + UINT32 = 4 + INT32 = 5 FLOAT32 = 6 - BOOL = 7 - STRING = 8 - ARRAY = 9 + BOOL = 7 + STRING = 8 + ARRAY = 9 @staticmethod def get_type(val):