mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 22:08:55 +01:00
perplexity : fix integer overflow (#9783)
* perplexity : fix integer overflow ggml-ci * perplexity : keep n_vocab as int and make appropriate casts ggml-ci
This commit is contained in:
parent
3dc48fe75a
commit
e7022064ab
@ -169,7 +169,7 @@ static void process_logits(
|
||||
break;
|
||||
}
|
||||
lock.unlock();
|
||||
const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
|
||||
const results_log_softmax results = log_softmax(n_vocab, logits + size_t(i)*n_vocab, tokens[i+1]);
|
||||
const double v = -results.log_softmax;
|
||||
local_nll += v;
|
||||
local_nll2 += v*v;
|
||||
@ -203,7 +203,7 @@ static void process_logits(std::ostream& out, int n_vocab, const float * logits,
|
||||
break;
|
||||
}
|
||||
lock.unlock();
|
||||
const double v = log_softmax(n_vocab, logits + i*n_vocab, log_probs.data() + i*nv, tokens[i+1]);
|
||||
const double v = log_softmax(n_vocab, logits + size_t(i)*n_vocab, log_probs.data() + i*nv, tokens[i+1]);
|
||||
local_nll += v;
|
||||
local_nll2 += v*v;
|
||||
}
|
||||
@ -281,7 +281,9 @@ static std::pair<double, float> log_softmax(int n_vocab, const float * logits, c
|
||||
kld.sum_kld += sum;
|
||||
kld.sum_kld2 += sum*sum;
|
||||
++kld.count;
|
||||
if (imax == imax_base) ++kld.n_same_top;
|
||||
if (imax == imax_base) {
|
||||
++kld.n_same_top;
|
||||
}
|
||||
|
||||
const float p_base = expf(-nll_base);
|
||||
const float p = expf(-nll);
|
||||
@ -323,7 +325,7 @@ static void process_logits(int n_vocab, const float * logits, const int * tokens
|
||||
break;
|
||||
}
|
||||
lock.unlock();
|
||||
std::pair<double, float> v = log_softmax(n_vocab, logits + i*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld);
|
||||
std::pair<double, float> v = log_softmax(n_vocab, logits + size_t(i)*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld);
|
||||
kld_values[i] = (float)v.first;
|
||||
p_diff_values[i] = v.second;
|
||||
}
|
||||
@ -383,9 +385,10 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
|
||||
|
||||
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
int count = 0;
|
||||
double nll = 0.0;
|
||||
|
||||
@ -424,8 +427,8 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
|
||||
}
|
||||
|
||||
const auto batch_logits = llama_get_logits(ctx);
|
||||
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
||||
const auto * batch_logits = llama_get_logits(ctx);
|
||||
logits.insert(logits.end(), batch_logits, batch_logits + size_t(batch_size) * n_vocab);
|
||||
|
||||
if (j == 0) {
|
||||
tokens[batch_start] = token_org;
|
||||
@ -447,11 +450,10 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
||||
|
||||
//LOG_DBG("%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
|
||||
for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) {
|
||||
|
||||
// Calculate probability of next token, given the previous ones.
|
||||
const std::vector<float> tok_logits(
|
||||
logits.begin() + (j + 0) * n_vocab,
|
||||
logits.begin() + (j + 1) * n_vocab);
|
||||
logits.begin() + size_t(j + 0) * n_vocab,
|
||||
logits.begin() + size_t(j + 1) * n_vocab);
|
||||
|
||||
const float prob = softmax(tok_logits)[tokens[start + j + 1]];
|
||||
logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]];
|
||||
@ -521,9 +523,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
const int n_chunk_max = tokens.size() / n_ctx;
|
||||
|
||||
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
int count = 0;
|
||||
double nll = 0.0;
|
||||
double nll2 = 0.0;
|
||||
@ -538,7 +541,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
|
||||
std::vector<float> logits;
|
||||
if (num_batches > 1) {
|
||||
logits.reserve((size_t)n_ctx * n_vocab);
|
||||
logits.reserve(size_t(n_ctx) * n_vocab);
|
||||
}
|
||||
|
||||
LOG_INF("%s: calculating perplexity over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
|
||||
@ -620,7 +623,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
|
||||
if (num_batches > 1 && n_outputs > 0) {
|
||||
const auto * batch_logits = llama_get_logits(ctx);
|
||||
logits.insert(logits.end(), batch_logits, batch_logits + n_outputs * n_vocab);
|
||||
logits.insert(logits.end(), batch_logits, batch_logits + size_t(n_outputs) * n_vocab);
|
||||
}
|
||||
}
|
||||
|
||||
@ -661,7 +664,9 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
} else {
|
||||
double av = nll/count;
|
||||
double av2 = nll2/count - av*av;
|
||||
if (av2 > 0) av2 = sqrt(av2/(count-1));
|
||||
if (av2 > 0) {
|
||||
av2 = sqrt(av2/(count-1));
|
||||
}
|
||||
LOG("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
|
||||
}
|
||||
}
|
||||
@ -686,10 +691,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
||||
return {tokens, ppl, logit_history, prob_history};
|
||||
}
|
||||
|
||||
static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int32_t n_batch, int32_t n_vocab) {
|
||||
static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<float> & batch_logits, int n_batch, int n_vocab) {
|
||||
int prev_outputs = 0;
|
||||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
||||
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
||||
for (int i = 0; i < (int) batch.n_tokens; i += n_batch) {
|
||||
const int n_tokens = std::min<int>(n_batch, batch.n_tokens - i);
|
||||
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
@ -713,7 +718,7 @@ static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<
|
||||
n_outputs += batch_view.logits[i] != 0;
|
||||
}
|
||||
|
||||
memcpy(batch_logits.data() + prev_outputs*n_vocab, llama_get_logits(ctx), n_outputs*n_vocab*sizeof(float));
|
||||
memcpy(batch_logits.data() + size_t(prev_outputs)*n_vocab, llama_get_logits(ctx), size_t(n_outputs)*n_vocab*sizeof(float));
|
||||
|
||||
prev_outputs += n_outputs;
|
||||
}
|
||||
@ -728,7 +733,9 @@ static void compute_logprobs(const float * batch_logits, int n_vocab, std::vecto
|
||||
if (eval_results.size() != eval_pairs.size()) {
|
||||
eval_results.resize(eval_pairs.size());
|
||||
}
|
||||
if (eval_pairs.empty()) return;
|
||||
if (eval_pairs.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
size_t max_threads = std::min((eval_pairs.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK, workers.size());
|
||||
|
||||
@ -736,11 +743,13 @@ static void compute_logprobs(const float * batch_logits, int n_vocab, std::vecto
|
||||
auto compute = [&counter, &eval_pairs, &eval_results, batch_logits, n_vocab] () {
|
||||
float local_logprobs[K_TOKEN_CHUNK];
|
||||
while (true) {
|
||||
size_t first = counter.fetch_add(K_TOKEN_CHUNK, std::memory_order_relaxed);
|
||||
if (first >= eval_results.size()) break;
|
||||
size_t last = std::min(first + K_TOKEN_CHUNK, eval_results.size());
|
||||
const size_t first = counter.fetch_add(K_TOKEN_CHUNK, std::memory_order_relaxed);
|
||||
if (first >= eval_results.size()) {
|
||||
break;
|
||||
}
|
||||
const size_t last = std::min(first + K_TOKEN_CHUNK, eval_results.size());
|
||||
for (size_t i = first; i < last; ++i) {
|
||||
auto logits = batch_logits + eval_pairs[i].first * n_vocab;
|
||||
const auto * logits = batch_logits + eval_pairs[i].first * n_vocab;
|
||||
float max_logit = logits[0];
|
||||
for (int j = 1; j < n_vocab; ++j) {
|
||||
max_logit = std::max(max_logit, logits[j]);
|
||||
@ -877,10 +886,11 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
double acc = 0.0f;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
const int max_tasks_per_batch = 32;
|
||||
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
|
||||
|
||||
@ -888,7 +898,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
std::vector<float> tok_logits(n_vocab);
|
||||
// TODO: this could be made smaller; it's currently the worst-case size
|
||||
std::vector<float> batch_logits(n_vocab*n_ctx);
|
||||
std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
|
||||
|
||||
std::vector<std::pair<size_t, llama_token>> eval_pairs;
|
||||
std::vector<float> eval_results;
|
||||
@ -975,7 +985,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||
auto & hs_cur = hs_data[i];
|
||||
|
||||
// get the logits of the last token of the common prefix
|
||||
std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*hs_cur.i_logits, n_vocab*sizeof(float));
|
||||
std::memcpy(tok_logits.data(), batch_logits.data() + hs_cur.i_logits*n_vocab, n_vocab*sizeof(float));
|
||||
|
||||
const auto first_probs = softmax(tok_logits);
|
||||
|
||||
@ -1158,10 +1168,11 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
LOG_INF("%s : calculating winogrande score over selected tasks.\n", __func__);
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
const int max_tasks_per_batch = 128;
|
||||
const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
|
||||
|
||||
@ -1169,7 +1180,7 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
std::vector<float> tok_logits(n_vocab);
|
||||
// TODO: this could be made smaller; it's currently the worst-case size
|
||||
std::vector<float> batch_logits(n_vocab*n_ctx);
|
||||
std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
|
||||
|
||||
std::vector<std::pair<size_t, llama_token>> eval_pairs;
|
||||
std::vector<float> eval_results;
|
||||
@ -1509,17 +1520,18 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
|
||||
LOG("\ntask\tacc_norm\n");
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
const int max_tasks_per_batch = 32;
|
||||
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));
|
||||
|
||||
llama_batch batch = llama_batch_init(n_ctx, 0, max_seq);
|
||||
|
||||
std::vector<float> tok_logits(n_vocab);
|
||||
std::vector<float> batch_logits(n_vocab*n_ctx);
|
||||
std::vector<float> batch_logits(size_t(n_ctx)*n_vocab);
|
||||
|
||||
std::vector<std::pair<size_t, llama_token>> eval_pairs;
|
||||
std::vector<float> eval_results;
|
||||
@ -1627,7 +1639,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
||||
//LOG("\n common_prefix: %zu\n", cur_task.common_prefix);
|
||||
|
||||
// get the logits of the last token of the common prefix
|
||||
std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*cur_task.i_logits, n_vocab*sizeof(float));
|
||||
std::memcpy(tok_logits.data(), batch_logits.data() + cur_task.i_logits*n_vocab, n_vocab*sizeof(float));
|
||||
|
||||
const auto first_probs = softmax(tok_logits);
|
||||
|
||||
@ -1709,7 +1721,8 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
__func__, params.logits_file.c_str(), n_ctx, params.n_ctx);
|
||||
}
|
||||
|
||||
int n_vocab, n_chunk;
|
||||
int n_vocab;
|
||||
int n_chunk;
|
||||
in.read((char *)&n_vocab, sizeof(n_vocab));
|
||||
in.read((char *)&n_chunk, sizeof(n_chunk));
|
||||
if (in.fail()) {
|
||||
@ -1720,7 +1733,7 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
LOG_ERR("%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx)));
|
||||
}
|
||||
|
||||
std::vector<llama_token> tokens(n_ctx * n_chunk);
|
||||
std::vector<llama_token> tokens(size_t(n_ctx) * n_chunk);
|
||||
if (in.read((char *)tokens.data(), tokens.size()*sizeof(tokens[0])).fail()) {
|
||||
LOG_ERR("%s: failed reading evaluation tokens from %s\n", __func__, params.logits_file.c_str());
|
||||
return;
|
||||
@ -1737,7 +1750,7 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
std::vector<float> p_diff_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
|
||||
std::vector<float> logits;
|
||||
if (num_batches > 1) {
|
||||
logits.reserve(n_ctx * n_vocab);
|
||||
logits.reserve(size_t(n_ctx) * n_vocab);
|
||||
}
|
||||
|
||||
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
|
||||
@ -1801,7 +1814,7 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
if (num_batches > 1) {
|
||||
const auto * batch_logits = llama_get_logits(ctx);
|
||||
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
||||
logits.insert(logits.end(), batch_logits, batch_logits + size_t(batch_size) * n_vocab);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1822,7 +1835,7 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
|
||||
|
||||
const int first = n_ctx/2;
|
||||
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
|
||||
process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
|
||||
process_logits(n_vocab, all_logits + size_t(first)*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
|
||||
workers, log_probs_uint16, kld, kld_ptr, p_diff_ptr);
|
||||
p_diff_ptr += n_ctx - 1 - first;
|
||||
kld_ptr += n_ctx - 1 - first;
|
||||
|
Loading…
Reference in New Issue
Block a user