mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 09:59:18 +01:00
add gptneox gguf example
This commit is contained in:
parent
4ed98bf1ab
commit
e9192b0135
173
convert-gptneox-h5-to-gguf.py
Normal file
173
convert-gptneox-h5-to-gguf.py
Normal file
@ -0,0 +1,173 @@
|
|||||||
|
# Quick and dirty HF gptneox--> gguf conversion
|
||||||
|
|
||||||
|
import gguf
|
||||||
|
import sys
|
||||||
|
import struct
|
||||||
|
import json
|
||||||
|
import numpy as np
|
||||||
|
from typing import Any, List
|
||||||
|
from pathlib import Path
|
||||||
|
from transformers import AutoModelForCausalLM
|
||||||
|
|
||||||
|
|
||||||
|
if len(sys.argv) < 3:
|
||||||
|
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
|
||||||
|
print(" ftype == 0 -> float32")
|
||||||
|
print(" ftype == 1 -> float16")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
|
||||||
|
# output in the same directory as the model
|
||||||
|
dir_model = sys.argv[1]
|
||||||
|
fname_out = sys.argv[1] + "/ggml-model.bin"
|
||||||
|
|
||||||
|
|
||||||
|
# possible tensor data types
|
||||||
|
# ftype == 0 -> float32
|
||||||
|
# ftype == 1 -> float16
|
||||||
|
#
|
||||||
|
# map from ftype to string
|
||||||
|
ftype_str = ["f32", "f16"]
|
||||||
|
|
||||||
|
ftype = 1
|
||||||
|
if len(sys.argv) > 2:
|
||||||
|
ftype = int(sys.argv[2])
|
||||||
|
if ftype < 0 or ftype > 1:
|
||||||
|
print("Invalid ftype: " + str(ftype))
|
||||||
|
sys.exit(1)
|
||||||
|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
|
||||||
|
|
||||||
|
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
|
||||||
|
list_vars = model.state_dict()
|
||||||
|
|
||||||
|
# count tensors to be converted
|
||||||
|
tensor_count = 0
|
||||||
|
for name in list_vars.keys():
|
||||||
|
# we don't need these
|
||||||
|
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
||||||
|
continue
|
||||||
|
tensor_count += 1
|
||||||
|
|
||||||
|
gguf_writer = gguf.GGUFWriter.open(fname_out)
|
||||||
|
|
||||||
|
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
||||||
|
hparams = json.load(f)
|
||||||
|
|
||||||
|
# This mmust be changed when adding/deleting kv
|
||||||
|
kv_count = 14
|
||||||
|
|
||||||
|
print("tensors " + str(tensor_count) + " kv " + str(kv_count))
|
||||||
|
|
||||||
|
print("write gguf header")
|
||||||
|
|
||||||
|
gguf_writer.write_header(tensor_count, kv_count)
|
||||||
|
|
||||||
|
print("write gguf hparams")
|
||||||
|
|
||||||
|
llm_arch = "gptneox"
|
||||||
|
|
||||||
|
gguf_writer.write_name("pythia-70b-deduped")
|
||||||
|
gguf_writer.write_description("gguf test model")
|
||||||
|
gguf_writer.write_architecture(llm_arch)
|
||||||
|
gguf_writer.write_context_length(llm_arch, hparams["max_position_embeddings"])
|
||||||
|
gguf_writer.write_embedding_length(llm_arch, hparams["hidden_size"])
|
||||||
|
gguf_writer.write_layer_count(llm_arch, hparams["num_hidden_layers"])
|
||||||
|
gguf_writer.write_feed_forward_length(llm_arch, hparams["intermediate_size"])
|
||||||
|
gguf_writer.write_rope_dimension_count(llm_arch, int( hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])) )
|
||||||
|
gguf_writer.write_head_count(llm_arch, hparams["num_attention_heads"])
|
||||||
|
gguf_writer.write_parallel_residual(llm_arch, hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
||||||
|
gguf_writer.write_layer_norm_eps(llm_arch, hparams["layer_norm_eps"])
|
||||||
|
|
||||||
|
# TOKENIZATION
|
||||||
|
|
||||||
|
print("write gguf tokenizer")
|
||||||
|
|
||||||
|
tokens: List[str] = []
|
||||||
|
merges: List[str] = []
|
||||||
|
|
||||||
|
if Path(dir_model + "/tokenizer.json").is_file():
|
||||||
|
# vocab type gpt2
|
||||||
|
print("Adding gpt2 tokenizer vocab")
|
||||||
|
|
||||||
|
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
|
||||||
|
tokenizer = json.load(f)
|
||||||
|
|
||||||
|
for key in tokenizer["model"]["vocab"]:
|
||||||
|
tokens.append(key)
|
||||||
|
|
||||||
|
merges = tokenizer["model"]["merges"]
|
||||||
|
|
||||||
|
gguf_writer.write_tokenizer_model("gpt2")
|
||||||
|
gguf_writer.write_token_list(tokens)
|
||||||
|
gguf_writer.write_token_merges(merges)
|
||||||
|
|
||||||
|
# TENSORS
|
||||||
|
|
||||||
|
# tensor info
|
||||||
|
print("write gguf tensor info")
|
||||||
|
|
||||||
|
for name in list_vars.keys():
|
||||||
|
data = list_vars[name].squeeze().numpy()
|
||||||
|
|
||||||
|
# we don't need these
|
||||||
|
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
||||||
|
continue
|
||||||
|
|
||||||
|
n_dims = len(data.shape)
|
||||||
|
|
||||||
|
# ftype == 0 -> float32, ftype == 1 -> float16
|
||||||
|
ftype_cur = 0
|
||||||
|
if ftype != 0:
|
||||||
|
if name.endswith(".weight") and n_dims == 2:
|
||||||
|
data = data.astype(np.float16)
|
||||||
|
ftype_cur = 1
|
||||||
|
else:
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
ftype_cur = 0
|
||||||
|
else:
|
||||||
|
if data.dtype != np.float32:
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
ftype_cur = 0
|
||||||
|
|
||||||
|
gguf_writer.write_tensor_info(name, data)
|
||||||
|
|
||||||
|
|
||||||
|
# tensor data
|
||||||
|
print("write gguf tensor data")
|
||||||
|
|
||||||
|
for name in list_vars.keys():
|
||||||
|
data = list_vars[name].squeeze().numpy()
|
||||||
|
print("Process tensor: " + name + " with shape: ", data.shape)
|
||||||
|
|
||||||
|
# we don't need these
|
||||||
|
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
||||||
|
print(" Skip tensor: " + name)
|
||||||
|
continue
|
||||||
|
|
||||||
|
n_dims = len(data.shape)
|
||||||
|
|
||||||
|
# ftype == 0 -> float32, ftype == 1 -> float16
|
||||||
|
ftype_cur = 0
|
||||||
|
if ftype != 0:
|
||||||
|
if name.endswith(".weight") and n_dims == 2:
|
||||||
|
print(" Converting to float16")
|
||||||
|
data = data.astype(np.float16)
|
||||||
|
ftype_cur = 1
|
||||||
|
else:
|
||||||
|
print(" Converting to float32")
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
ftype_cur = 0
|
||||||
|
else:
|
||||||
|
if data.dtype != np.float32:
|
||||||
|
print(" Converting to float32")
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
ftype_cur = 0
|
||||||
|
|
||||||
|
gguf_writer.write_tensor(data)
|
||||||
|
|
||||||
|
gguf_writer.close()
|
||||||
|
|
||||||
|
|
||||||
|
print("Done. Output file: " + fname_out)
|
||||||
|
print("")
|
601
gptneox-common.cpp
Normal file
601
gptneox-common.cpp
Normal file
@ -0,0 +1,601 @@
|
|||||||
|
#include "gptneox-common.h"
|
||||||
|
|
||||||
|
#include <cmath>
|
||||||
|
#include <cstring>
|
||||||
|
#include <fstream>
|
||||||
|
#include <regex>
|
||||||
|
#include <locale>
|
||||||
|
#include <codecvt>
|
||||||
|
#include <sstream>
|
||||||
|
|
||||||
|
#if defined(_MSC_VER)
|
||||||
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// Function to check if the next argument exists
|
||||||
|
std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
|
||||||
|
if (i + 1 < argc && argv[i + 1][0] != '-') {
|
||||||
|
return argv[++i];
|
||||||
|
} else {
|
||||||
|
fprintf(stderr, "error: %s requires one argument.\n", flag.c_str());
|
||||||
|
gpt_print_usage(argc, argv, params);
|
||||||
|
exit(0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||||
|
for (int i = 1; i < argc; i++) {
|
||||||
|
std::string arg = argv[i];
|
||||||
|
|
||||||
|
if (arg == "-s" || arg == "--seed") {
|
||||||
|
params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||||
|
} else if (arg == "-t" || arg == "--threads") {
|
||||||
|
params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||||
|
} else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
|
||||||
|
params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||||
|
} else if (arg == "-p" || arg == "--prompt") {
|
||||||
|
params.prompt = get_next_arg(i, argc, argv, arg, params);
|
||||||
|
} else if (arg == "-n" || arg == "--n_predict") {
|
||||||
|
params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||||
|
} else if (arg == "--top_k") {
|
||||||
|
params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||||
|
} else if (arg == "--top_p") {
|
||||||
|
params.top_p = std::stof(get_next_arg(i, argc, argv, arg, params));
|
||||||
|
} else if (arg == "--temp") {
|
||||||
|
params.temp = std::stof(get_next_arg(i, argc, argv, arg, params));
|
||||||
|
} else if (arg == "--repeat-last-n") {
|
||||||
|
params.repeat_last_n = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||||
|
} else if (arg == "--repeat-penalty") {
|
||||||
|
params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params));
|
||||||
|
} else if (arg == "-b" || arg == "--batch_size") {
|
||||||
|
params.n_batch= std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||||
|
} else if (arg == "-m" || arg == "--model") {
|
||||||
|
params.model = get_next_arg(i, argc, argv, arg, params);
|
||||||
|
} else if (arg == "-i" || arg == "--interactive") {
|
||||||
|
params.interactive = true;
|
||||||
|
} else if (arg == "-ip" || arg == "--interactive-port") {
|
||||||
|
params.interactive = true;
|
||||||
|
params.interactive_port = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
||||||
|
} else if (arg == "-h" || arg == "--help") {
|
||||||
|
gpt_print_usage(argc, argv, params);
|
||||||
|
exit(0);
|
||||||
|
} else if (arg == "-f" || arg == "--file") {
|
||||||
|
get_next_arg(i, argc, argv, arg, params);
|
||||||
|
std::ifstream file(argv[i]);
|
||||||
|
if (!file) {
|
||||||
|
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
|
||||||
|
if (params.prompt.back() == '\n') {
|
||||||
|
params.prompt.pop_back();
|
||||||
|
}
|
||||||
|
} else if (arg == "-tt" || arg == "--token_test") {
|
||||||
|
params.token_test = get_next_arg(i, argc, argv, arg, params);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||||
|
gpt_print_usage(argc, argv, params);
|
||||||
|
exit(0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||||
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||||
|
fprintf(stderr, "\n");
|
||||||
|
fprintf(stderr, "options:\n");
|
||||||
|
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||||
|
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
||||||
|
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||||
|
fprintf(stderr, " -ngl N, --gpu-layers N number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers);
|
||||||
|
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
|
||||||
|
fprintf(stderr, " prompt to start generation with (default: random)\n");
|
||||||
|
fprintf(stderr, " -f FNAME, --file FNAME\n");
|
||||||
|
fprintf(stderr, " load prompt from a file\n");
|
||||||
|
fprintf(stderr, " -tt TOKEN_TEST, --token_test TOKEN_TEST\n");
|
||||||
|
fprintf(stderr, " test tokenization\n");
|
||||||
|
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
|
||||||
|
fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
|
||||||
|
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
|
||||||
|
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
|
||||||
|
fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled)\n", params.repeat_last_n);
|
||||||
|
fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty);
|
||||||
|
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||||
|
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
||||||
|
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
||||||
|
fprintf(stderr, "\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string gpt_random_prompt(std::mt19937 & rng) {
|
||||||
|
const int r = rng() % 10;
|
||||||
|
switch (r) {
|
||||||
|
case 0: return "So";
|
||||||
|
case 1: return "Once upon a time";
|
||||||
|
case 2: return "When";
|
||||||
|
case 3: return "The";
|
||||||
|
case 4: return "After";
|
||||||
|
case 5: return "If";
|
||||||
|
case 6: return "import";
|
||||||
|
case 7: return "He";
|
||||||
|
case 8: return "She";
|
||||||
|
case 9: return "They";
|
||||||
|
default: return "To";
|
||||||
|
}
|
||||||
|
|
||||||
|
return "The";
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string trim(const std::string & s) {
|
||||||
|
std::regex e("^\\s+|\\s+$");
|
||||||
|
return std::regex_replace(s, e, "");
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string replace(const std::string & s, const std::string & from, const std::string & to) {
|
||||||
|
std::string result = s;
|
||||||
|
size_t pos = 0;
|
||||||
|
while ((pos = result.find(from, pos)) != std::string::npos) {
|
||||||
|
result.replace(pos, from.length(), to);
|
||||||
|
pos += to.length();
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
void gpt_vocab::add_special_token(const std::string & token) {
|
||||||
|
special_tokens.push_back(token);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::map<std::string, int32_t> json_parse(const std::string & fname) {
|
||||||
|
std::map<std::string, int32_t> result;
|
||||||
|
|
||||||
|
// read file into string
|
||||||
|
std::string json;
|
||||||
|
{
|
||||||
|
std::ifstream ifs(fname);
|
||||||
|
if (!ifs) {
|
||||||
|
fprintf(stderr, "Failed to open %s\n", fname.c_str());
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
|
||||||
|
json = std::string((std::istreambuf_iterator<char>(ifs)),
|
||||||
|
(std::istreambuf_iterator<char>()));
|
||||||
|
}
|
||||||
|
|
||||||
|
if (json[0] != '{') {
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
// parse json
|
||||||
|
{
|
||||||
|
bool has_key = false;
|
||||||
|
bool in_token = false;
|
||||||
|
|
||||||
|
std::string str_key = "";
|
||||||
|
std::string str_val = "";
|
||||||
|
|
||||||
|
int n = json.size();
|
||||||
|
for (int i = 1; i < n; ++i) {
|
||||||
|
if (!in_token) {
|
||||||
|
if (json[i] == ' ') continue;
|
||||||
|
if (json[i] == '"') {
|
||||||
|
in_token = true;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if (json[i] == '\\' && i+1 < n) {
|
||||||
|
if (has_key == false) {
|
||||||
|
str_key += json[i];
|
||||||
|
} else {
|
||||||
|
str_val += json[i];
|
||||||
|
}
|
||||||
|
++i;
|
||||||
|
} else if (json[i] == '"') {
|
||||||
|
if (has_key == false) {
|
||||||
|
has_key = true;
|
||||||
|
++i;
|
||||||
|
while (json[i] == ' ') ++i;
|
||||||
|
++i; // :
|
||||||
|
while (json[i] == ' ') ++i;
|
||||||
|
if (json[i] != '\"') {
|
||||||
|
while (json[i] != ',' && json[i] != '}') {
|
||||||
|
str_val += json[i++];
|
||||||
|
}
|
||||||
|
has_key = false;
|
||||||
|
} else {
|
||||||
|
in_token = true;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
has_key = false;
|
||||||
|
}
|
||||||
|
|
||||||
|
str_key = ::replace(str_key, "\\u0120", " " ); // \u0120 -> space
|
||||||
|
str_key = ::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
|
||||||
|
str_key = ::replace(str_key, "\\\"", "\""); // \\\" -> "
|
||||||
|
|
||||||
|
try {
|
||||||
|
result[str_key] = std::stoi(str_val);
|
||||||
|
} catch (...) {
|
||||||
|
//fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
|
||||||
|
|
||||||
|
}
|
||||||
|
str_key = "";
|
||||||
|
str_val = "";
|
||||||
|
in_token = false;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
if (has_key == false) {
|
||||||
|
str_key += json[i];
|
||||||
|
} else {
|
||||||
|
str_val += json[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string convert_to_utf8(const std::wstring & input) {
|
||||||
|
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
|
||||||
|
return converter.to_bytes(input);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
std::wstring convert_to_wstring(const std::string & input) {
|
||||||
|
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
|
||||||
|
return converter.from_bytes(input);
|
||||||
|
}
|
||||||
|
|
||||||
|
void gpt_split_words(std::string str, std::vector<std::string>& words) {
|
||||||
|
const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
||||||
|
const std::regex re(pattern);
|
||||||
|
std::smatch m;
|
||||||
|
|
||||||
|
while (std::regex_search(str, m, re)) {
|
||||||
|
for (auto x : m) {
|
||||||
|
words.push_back(x);
|
||||||
|
}
|
||||||
|
str = m.suffix();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
|
||||||
|
std::vector<std::string> words;
|
||||||
|
|
||||||
|
// first split the text into words
|
||||||
|
{
|
||||||
|
std::string str = text;
|
||||||
|
|
||||||
|
// Generate the subpattern from the special_tokens vector if it's not empty
|
||||||
|
if (!vocab.special_tokens.empty()) {
|
||||||
|
const std::regex escape(R"([\[\\\^\$\.\|\?\*\+\(\)\{\}])");
|
||||||
|
std::string special_tokens_subpattern;
|
||||||
|
for (const auto & token : vocab.special_tokens) {
|
||||||
|
if (!special_tokens_subpattern.empty()) {
|
||||||
|
special_tokens_subpattern += "|";
|
||||||
|
}
|
||||||
|
special_tokens_subpattern += std::regex_replace(token, escape, R"(\$&)");
|
||||||
|
}
|
||||||
|
|
||||||
|
std::regex re(special_tokens_subpattern);
|
||||||
|
std::smatch m;
|
||||||
|
// Split the text by special tokens.
|
||||||
|
while (std::regex_search(str, m, re)) {
|
||||||
|
// Split the substrings in-between special tokens into words.
|
||||||
|
gpt_split_words(m.prefix(), words);
|
||||||
|
// Add matched special tokens as words.
|
||||||
|
for (auto x : m) {
|
||||||
|
words.push_back(x);
|
||||||
|
}
|
||||||
|
str = m.suffix();
|
||||||
|
}
|
||||||
|
// Remaining text without special tokens will be handled below.
|
||||||
|
}
|
||||||
|
|
||||||
|
gpt_split_words(str, words);
|
||||||
|
}
|
||||||
|
|
||||||
|
// find the longest token that forms each word in words:
|
||||||
|
std::vector<gpt_vocab::id> tokens;
|
||||||
|
for (const auto & word : words) {
|
||||||
|
for (int i = 0; i < (int) word.size(); ){
|
||||||
|
for (int j = word.size() - 1; j >= i; j--){
|
||||||
|
auto cand = word.substr(i, j-i+1);
|
||||||
|
auto it = vocab.token_to_id.find(cand);
|
||||||
|
if (it != vocab.token_to_id.end()){ // word.substr(i, j-i+1) in vocab
|
||||||
|
tokens.push_back(it->second);
|
||||||
|
i = j + 1;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
else if (j == i){ // word.substr(i, 1) has no matching
|
||||||
|
fprintf(stderr, "%s: unknown token '%s'\n", __func__, word.substr(i, 1).data());
|
||||||
|
i++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return tokens;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<gpt_vocab::id> parse_tokens_from_string(const std::string& input, char delimiter) {
|
||||||
|
std::vector<gpt_vocab::id> output;
|
||||||
|
std::stringstream ss(input);
|
||||||
|
std::string token;
|
||||||
|
|
||||||
|
while (std::getline(ss, token, delimiter)) {
|
||||||
|
output.push_back(std::stoi(token));
|
||||||
|
}
|
||||||
|
|
||||||
|
return output;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::map<std::string, std::vector<gpt_vocab::id>> extract_tests_from_file(const std::string & fpath_test){
|
||||||
|
if (fpath_test.empty()){
|
||||||
|
fprintf(stderr, "%s : No test file found.\n", __func__);
|
||||||
|
return std::map<std::string, std::vector<gpt_vocab::id>>();
|
||||||
|
}
|
||||||
|
|
||||||
|
std::map<std::string, std::vector<gpt_vocab::id>> tests;
|
||||||
|
|
||||||
|
auto fin = std::ifstream(fpath_test, std::ios_base::in);
|
||||||
|
const char * delimeter = " => ";
|
||||||
|
const char del_tok = ',';
|
||||||
|
std::string line;
|
||||||
|
while (std::getline(fin, line)) {
|
||||||
|
size_t delimiterPos = line.find(delimeter);
|
||||||
|
if (delimiterPos != std::string::npos) {
|
||||||
|
std::string text = line.substr(0, delimiterPos);
|
||||||
|
std::string s_tokens = line.substr(delimiterPos + std::strlen(delimeter));
|
||||||
|
tests[text] = parse_tokens_from_string(s_tokens, del_tok);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return tests;
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test){
|
||||||
|
std::map<std::string, std::vector<gpt_vocab::id>> tests = extract_tests_from_file(fpath_test);
|
||||||
|
|
||||||
|
size_t n_fails = 0;
|
||||||
|
|
||||||
|
for (const auto & test : tests) {
|
||||||
|
std::vector<gpt_vocab::id> tokens = gpt_tokenize(vocab, test.first);
|
||||||
|
|
||||||
|
if (tokens != test.second){
|
||||||
|
n_fails++;
|
||||||
|
|
||||||
|
// print out failure cases
|
||||||
|
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test.first.c_str());
|
||||||
|
fprintf(stderr, "%s : tokens in hf: ", __func__);
|
||||||
|
for (const auto & t : test.second) {
|
||||||
|
fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
|
||||||
|
}
|
||||||
|
fprintf(stderr, "\n");
|
||||||
|
fprintf(stderr, "%s : tokens in ggml: ", __func__);
|
||||||
|
for (const auto & t : tokens) {
|
||||||
|
fprintf(stderr, "%s(%d), ", vocab.id_to_token[t].c_str(), t);
|
||||||
|
}
|
||||||
|
fprintf(stderr, "\n");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(stderr, "%s : %zu tests failed out of %zu tests.\n", __func__, n_fails, tests.size());
|
||||||
|
}
|
||||||
|
|
||||||
|
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
|
||||||
|
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
|
||||||
|
|
||||||
|
vocab.token_to_id = ::json_parse(fname);
|
||||||
|
|
||||||
|
for (const auto & kv : vocab.token_to_id) {
|
||||||
|
vocab.id_to_token[kv.second] = kv.first;
|
||||||
|
}
|
||||||
|
|
||||||
|
printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
|
||||||
|
|
||||||
|
// print the vocabulary
|
||||||
|
//for (auto kv : vocab.token_to_id) {
|
||||||
|
// printf("'%s' -> %d\n", kv.first.data(), kv.second);
|
||||||
|
//}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
gpt_vocab::id gpt_sample_top_k_top_p(
|
||||||
|
const gpt_vocab & vocab,
|
||||||
|
const float * logits,
|
||||||
|
int top_k,
|
||||||
|
double top_p,
|
||||||
|
double temp,
|
||||||
|
std::mt19937 & rng) {
|
||||||
|
int n_logits = vocab.id_to_token.size();
|
||||||
|
|
||||||
|
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
||||||
|
logits_id.reserve(n_logits);
|
||||||
|
|
||||||
|
{
|
||||||
|
const double scale = 1.0/temp;
|
||||||
|
for (int i = 0; i < n_logits; ++i) {
|
||||||
|
logits_id.push_back(std::make_pair(logits[i]*scale, i));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// find the top K tokens
|
||||||
|
std::partial_sort(
|
||||||
|
logits_id.begin(),
|
||||||
|
logits_id.begin() + top_k, logits_id.end(),
|
||||||
|
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
||||||
|
return a.first > b.first;
|
||||||
|
});
|
||||||
|
|
||||||
|
logits_id.resize(top_k);
|
||||||
|
|
||||||
|
double maxl = -INFINITY;
|
||||||
|
for (const auto & kv : logits_id) {
|
||||||
|
maxl = std::max(maxl, kv.first);
|
||||||
|
}
|
||||||
|
|
||||||
|
// compute probs for the top K tokens
|
||||||
|
std::vector<double> probs;
|
||||||
|
probs.reserve(logits_id.size());
|
||||||
|
|
||||||
|
double sum = 0.0;
|
||||||
|
for (const auto & kv : logits_id) {
|
||||||
|
double p = exp(kv.first - maxl);
|
||||||
|
probs.push_back(p);
|
||||||
|
sum += p;
|
||||||
|
}
|
||||||
|
|
||||||
|
// normalize the probs
|
||||||
|
for (auto & p : probs) {
|
||||||
|
p /= sum;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (top_p < 1.0f) {
|
||||||
|
double cumsum = 0.0f;
|
||||||
|
for (int i = 0; i < top_k; i++) {
|
||||||
|
cumsum += probs[i];
|
||||||
|
if (cumsum >= top_p) {
|
||||||
|
top_k = i + 1;
|
||||||
|
probs.resize(top_k);
|
||||||
|
logits_id.resize(top_k);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
cumsum = 1.0/cumsum;
|
||||||
|
for (int i = 0; i < (int) probs.size(); i++) {
|
||||||
|
probs[i] *= cumsum;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//printf("\n");
|
||||||
|
//for (int i = 0; i < (int) probs.size(); i++) {
|
||||||
|
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
|
||||||
|
//}
|
||||||
|
//exit(0);
|
||||||
|
|
||||||
|
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
||||||
|
int idx = dist(rng);
|
||||||
|
|
||||||
|
return logits_id[idx].second;
|
||||||
|
}
|
||||||
|
|
||||||
|
gpt_vocab::id gpt_sample_top_k_top_p_repeat(
|
||||||
|
const gpt_vocab & vocab,
|
||||||
|
const float * logits,
|
||||||
|
const int32_t * last_n_tokens_data,
|
||||||
|
size_t last_n_tokens_data_size,
|
||||||
|
int top_k,
|
||||||
|
double top_p,
|
||||||
|
double temp,
|
||||||
|
int repeat_last_n,
|
||||||
|
float repeat_penalty,
|
||||||
|
std::mt19937 & rng) {
|
||||||
|
|
||||||
|
int n_logits = vocab.id_to_token.size();
|
||||||
|
|
||||||
|
const auto * plogits = logits;
|
||||||
|
|
||||||
|
const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_data_size);
|
||||||
|
|
||||||
|
if (temp <= 0) {
|
||||||
|
// select the token with the highest logit directly
|
||||||
|
float max_logit = plogits[0];
|
||||||
|
gpt_vocab::id max_id = 0;
|
||||||
|
|
||||||
|
for (int i = 1; i < n_logits; ++i) {
|
||||||
|
if (plogits[i] > max_logit) {
|
||||||
|
max_logit = plogits[i];
|
||||||
|
max_id = i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return max_id;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
||||||
|
logits_id.reserve(n_logits);
|
||||||
|
|
||||||
|
{
|
||||||
|
const float scale = 1.0f/temp;
|
||||||
|
for (int i = 0; i < n_logits; ++i) {
|
||||||
|
// repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
|
||||||
|
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
|
||||||
|
if (repeat_last_n > 0 && std::find(last_n_tokens.end()-repeat_last_n, last_n_tokens.end(), i) != last_n_tokens.end()) {
|
||||||
|
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
|
||||||
|
if (plogits[i] < 0.0f) {
|
||||||
|
logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
|
||||||
|
} else {
|
||||||
|
logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
logits_id.push_back(std::make_pair(plogits[i]*scale, i));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// find the top K tokens
|
||||||
|
std::partial_sort(
|
||||||
|
logits_id.begin(),
|
||||||
|
logits_id.begin() + top_k, logits_id.end(),
|
||||||
|
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
||||||
|
return a.first > b.first;
|
||||||
|
});
|
||||||
|
|
||||||
|
logits_id.resize(top_k);
|
||||||
|
|
||||||
|
double maxl = -INFINITY;
|
||||||
|
for (const auto & kv : logits_id) {
|
||||||
|
maxl = std::max(maxl, kv.first);
|
||||||
|
}
|
||||||
|
|
||||||
|
// compute probs for the top K tokens
|
||||||
|
std::vector<double> probs;
|
||||||
|
probs.reserve(logits_id.size());
|
||||||
|
|
||||||
|
double sum = 0.0;
|
||||||
|
for (const auto & kv : logits_id) {
|
||||||
|
double p = exp(kv.first - maxl);
|
||||||
|
probs.push_back(p);
|
||||||
|
sum += p;
|
||||||
|
}
|
||||||
|
|
||||||
|
// normalize the probs
|
||||||
|
for (auto & p : probs) {
|
||||||
|
p /= sum;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (top_p < 1.0f) {
|
||||||
|
double cumsum = 0.0f;
|
||||||
|
for (int i = 0; i < top_k; i++) {
|
||||||
|
cumsum += probs[i];
|
||||||
|
if (cumsum >= top_p) {
|
||||||
|
top_k = i + 1;
|
||||||
|
probs.resize(top_k);
|
||||||
|
logits_id.resize(top_k);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
cumsum = 1.0/cumsum;
|
||||||
|
for (int i = 0; i < (int) probs.size(); i++) {
|
||||||
|
probs[i] *= cumsum;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// printf("\n");
|
||||||
|
// for (int i = 0; i < (int) probs.size(); i++) {
|
||||||
|
// for (int i = 0; i < 10; i++) {
|
||||||
|
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
|
||||||
|
// }
|
||||||
|
|
||||||
|
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
||||||
|
int idx = dist(rng);
|
||||||
|
|
||||||
|
return logits_id[idx].second;
|
||||||
|
|
||||||
|
}
|
125
gptneox-common.h
Normal file
125
gptneox-common.h
Normal file
@ -0,0 +1,125 @@
|
|||||||
|
// Various helper functions and utilities
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <string>
|
||||||
|
#include <map>
|
||||||
|
#include <vector>
|
||||||
|
#include <random>
|
||||||
|
#include <thread>
|
||||||
|
|
||||||
|
//
|
||||||
|
// CLI argument parsing
|
||||||
|
//
|
||||||
|
|
||||||
|
struct gpt_params {
|
||||||
|
int32_t seed = -1; // RNG seed
|
||||||
|
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||||
|
int32_t n_predict = 200; // new tokens to predict
|
||||||
|
int32_t n_batch = 8; // batch size for prompt processing
|
||||||
|
|
||||||
|
// sampling parameters
|
||||||
|
int32_t top_k = 40;
|
||||||
|
float top_p = 0.9f;
|
||||||
|
float temp = 0.9f;
|
||||||
|
int32_t repeat_last_n = 64;
|
||||||
|
float repeat_penalty = 1.00f;
|
||||||
|
|
||||||
|
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
|
||||||
|
std::string prompt = "";
|
||||||
|
std::string token_test = "";
|
||||||
|
|
||||||
|
bool interactive = false;
|
||||||
|
int32_t interactive_port = -1;
|
||||||
|
|
||||||
|
int32_t n_gpu_layers = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||||
|
|
||||||
|
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||||
|
|
||||||
|
std::string gpt_random_prompt(std::mt19937 & rng);
|
||||||
|
|
||||||
|
//
|
||||||
|
// Vocab utils
|
||||||
|
//
|
||||||
|
|
||||||
|
std::string trim(const std::string & s);
|
||||||
|
|
||||||
|
std::string replace(
|
||||||
|
const std::string & s,
|
||||||
|
const std::string & from,
|
||||||
|
const std::string & to);
|
||||||
|
|
||||||
|
struct gpt_vocab {
|
||||||
|
using id = int32_t;
|
||||||
|
using token = std::string;
|
||||||
|
|
||||||
|
std::map<token, id> token_to_id;
|
||||||
|
std::map<id, token> id_to_token;
|
||||||
|
std::vector<std::string> special_tokens;
|
||||||
|
|
||||||
|
void add_special_token(const std::string & token);
|
||||||
|
};
|
||||||
|
|
||||||
|
// poor-man's JSON parsing
|
||||||
|
std::map<std::string, int32_t> json_parse(const std::string & fname);
|
||||||
|
|
||||||
|
std::string convert_to_utf8(const std::wstring & input);
|
||||||
|
|
||||||
|
std::wstring convert_to_wstring(const std::string & input);
|
||||||
|
|
||||||
|
void gpt_split_words(std::string str, std::vector<std::string>& words);
|
||||||
|
|
||||||
|
// split text into tokens
|
||||||
|
//
|
||||||
|
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
|
||||||
|
//
|
||||||
|
// Regex (Python):
|
||||||
|
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
|
||||||
|
//
|
||||||
|
// Regex (C++):
|
||||||
|
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
|
||||||
|
//
|
||||||
|
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
|
||||||
|
|
||||||
|
// test outputs of gpt_tokenize
|
||||||
|
//
|
||||||
|
// - compare with tokens generated by the huggingface tokenizer
|
||||||
|
// - test cases are chosen based on the model's main language (under 'prompt' directory)
|
||||||
|
// - if all sentences are tokenized identically, print 'All tests passed.'
|
||||||
|
// - otherwise, print sentence, huggingface tokens, ggml tokens
|
||||||
|
//
|
||||||
|
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test);
|
||||||
|
|
||||||
|
// load the tokens from encoder.json
|
||||||
|
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
|
||||||
|
|
||||||
|
// sample next token given probabilities for each embedding
|
||||||
|
//
|
||||||
|
// - consider only the top K tokens
|
||||||
|
// - from them, consider only the top tokens with cumulative probability > P
|
||||||
|
//
|
||||||
|
// TODO: not sure if this implementation is correct
|
||||||
|
// TODO: temperature is not implemented
|
||||||
|
//
|
||||||
|
gpt_vocab::id gpt_sample_top_k_top_p(
|
||||||
|
const gpt_vocab & vocab,
|
||||||
|
const float * logits,
|
||||||
|
int top_k,
|
||||||
|
double top_p,
|
||||||
|
double temp,
|
||||||
|
std::mt19937 & rng);
|
||||||
|
|
||||||
|
gpt_vocab::id gpt_sample_top_k_top_p_repeat(
|
||||||
|
const gpt_vocab & vocab,
|
||||||
|
const float * logits,
|
||||||
|
const int32_t * last_n_tokens_data,
|
||||||
|
size_t last_n_tokens_data_size,
|
||||||
|
int top_k,
|
||||||
|
double top_p,
|
||||||
|
double temp,
|
||||||
|
int repeat_last_n,
|
||||||
|
float repeat_penalty,
|
||||||
|
std::mt19937 & rng);
|
Loading…
Reference in New Issue
Block a user