mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 12:21:40 +01:00
Added api for getting/setting the kv_cache (#685)
The api provides access methods for retrieving the current memory buffer for the kv_cache and its token number. It also contains a method for setting the kv_cache from a memory buffer. This makes it possible to load/save history - maybe support --cache-prompt paramater as well? Co-authored-by: Pavol Rusnak <pavol@rusnak.io>
This commit is contained in:
parent
c0bb1d3ce2
commit
e986f94829
27
llama.cpp
27
llama.cpp
@ -1668,6 +1668,33 @@ int llama_model_quantize(
|
|||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Returns the KV cache that will contain the context for the
|
||||||
|
// ongoing prediction with the model.
|
||||||
|
const uint8_t * llama_get_kv_cache(struct llama_context * ctx) {
|
||||||
|
return ctx->model.kv_self.buf.data();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Returns the size of the KV cache
|
||||||
|
size_t llama_get_kv_cache_size(struct llama_context * ctx) {
|
||||||
|
return ctx->model.kv_self.buf.size();
|
||||||
|
}
|
||||||
|
|
||||||
|
int llama_get_kv_cache_token_count(struct llama_context * ctx) {
|
||||||
|
return ctx->model.kv_self.n;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Sets the KV cache containing the current context for the model
|
||||||
|
void llama_set_kv_cache(
|
||||||
|
struct llama_context * ctx,
|
||||||
|
const uint8_t * kv_cache,
|
||||||
|
size_t n_size,
|
||||||
|
int n_token_count) {
|
||||||
|
// Make sure we have the same kv cache setup
|
||||||
|
LLAMA_ASSERT(ctx->model.kv_self.buf.size() == n_size);
|
||||||
|
memcpy(ctx->model.kv_self.buf.data(), kv_cache, n_size);
|
||||||
|
ctx->model.kv_self.n = n_token_count;
|
||||||
|
}
|
||||||
|
|
||||||
int llama_eval(
|
int llama_eval(
|
||||||
struct llama_context * ctx,
|
struct llama_context * ctx,
|
||||||
const llama_token * tokens,
|
const llama_token * tokens,
|
||||||
|
17
llama.h
17
llama.h
@ -83,6 +83,23 @@ extern "C" {
|
|||||||
const char * fname_out,
|
const char * fname_out,
|
||||||
int itype);
|
int itype);
|
||||||
|
|
||||||
|
// Returns the KV cache that will contain the context for the
|
||||||
|
// ongoing prediction with the model.
|
||||||
|
LLAMA_API const uint8_t * llama_get_kv_cache(struct llama_context * ctx);
|
||||||
|
|
||||||
|
// Returns the size of the KV cache
|
||||||
|
LLAMA_API size_t llama_get_kv_cache_size(struct llama_context * ctx);
|
||||||
|
|
||||||
|
// Returns the number of tokens in the KV cache
|
||||||
|
LLAMA_API int llama_get_kv_cache_token_count(struct llama_context * ctx);
|
||||||
|
|
||||||
|
// Sets the KV cache containing the current context for the model
|
||||||
|
LLAMA_API void llama_set_kv_cache(
|
||||||
|
struct llama_context * ctx,
|
||||||
|
const uint8_t * kv_cache,
|
||||||
|
size_t n_size,
|
||||||
|
int n_token_count);
|
||||||
|
|
||||||
// Run the llama inference to obtain the logits and probabilities for the next token.
|
// Run the llama inference to obtain the logits and probabilities for the next token.
|
||||||
// tokens + n_tokens is the provided batch of new tokens to process
|
// tokens + n_tokens is the provided batch of new tokens to process
|
||||||
// n_past is the number of tokens to use from previous eval calls
|
// n_past is the number of tokens to use from previous eval calls
|
||||||
|
Loading…
Reference in New Issue
Block a user