mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-22 09:39:08 +01:00
per-layer KV
This commit is contained in:
parent
ff5a3f0c09
commit
e9bcf66a5c
107
llama.cpp
107
llama.cpp
@ -1035,6 +1035,9 @@ struct llama_kv_cache {
|
||||
|
||||
struct ggml_tensor * k = NULL;
|
||||
struct ggml_tensor * v = NULL;
|
||||
std::vector<ggml_tensor*> k_l; // per layer
|
||||
|
||||
std::vector<ggml_tensor*> v_l;
|
||||
|
||||
struct ggml_context * ctx = NULL;
|
||||
|
||||
@ -1239,6 +1242,7 @@ static bool llama_kv_cache_init(
|
||||
cache.cells.clear();
|
||||
cache.cells.resize(n_ctx);
|
||||
|
||||
|
||||
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
|
||||
|
||||
struct ggml_init_params params;
|
||||
@ -1248,34 +1252,48 @@ static bool llama_kv_cache_init(
|
||||
|
||||
cache.ctx = ggml_init(params);
|
||||
|
||||
size_t vram_kv_cache = 0;
|
||||
|
||||
if (!cache.ctx) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
|
||||
cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
|
||||
ggml_set_name(cache.k, "cache_k");
|
||||
ggml_set_name(cache.v, "cache_v");
|
||||
// cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
|
||||
// cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
|
||||
// ggml_set_name(cache.k, "cache_k");
|
||||
// ggml_set_name(cache.v, "cache_v");
|
||||
|
||||
(void) n_gpu_layers;
|
||||
cache.k_l.reserve(n_layer);
|
||||
cache.v_l.reserve(n_layer);
|
||||
|
||||
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||
|
||||
for (uint32_t i = 0; i < n_layer; i++) {
|
||||
ggml_tensor * k = ggml_new_tensor_1d(cache.ctx, wtype, n_embd*n_ctx);
|
||||
ggml_tensor * v = ggml_new_tensor_1d(cache.ctx, wtype, n_embd*n_ctx);
|
||||
ggml_format_name(k, "cache_k_l%d", i);
|
||||
ggml_format_name(v, "cache_v_l%d", i);
|
||||
cache.k_l.push_back(k);
|
||||
cache.v_l.push_back(v);
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
size_t vram_kv_cache = 0;
|
||||
if ((int)i >= i_gpu_start) {
|
||||
ggml_cuda_assign_buffers_no_scratch(k);
|
||||
LLAMA_LOG_INFO("%s: offloading k[%d] cache to GPU\n", __func__, i);
|
||||
vram_kv_cache += ggml_nbytes(k);
|
||||
|
||||
if (n_gpu_layers > (int)n_layer + 1) {
|
||||
ggml_cuda_assign_buffers_no_scratch(cache.v);
|
||||
LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__);
|
||||
vram_kv_cache += ggml_nbytes(cache.v);
|
||||
ggml_cuda_assign_buffers_no_scratch(v);
|
||||
LLAMA_LOG_INFO("%s: offloading v[%d] cache to GPU\n", __func__, i);
|
||||
vram_kv_cache += ggml_nbytes(v);
|
||||
}
|
||||
if (n_gpu_layers > (int)n_layer + 2) {
|
||||
ggml_cuda_assign_buffers_no_scratch(cache.k);
|
||||
LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__);
|
||||
vram_kv_cache += ggml_nbytes(cache.k);
|
||||
#endif // GGML_USE_CUBLAS
|
||||
}
|
||||
|
||||
if (vram_kv_cache > 0) {
|
||||
LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
|
||||
}
|
||||
#endif // GGML_USE_CUBLAS
|
||||
|
||||
(void) n_gpu_layers;
|
||||
|
||||
return true;
|
||||
}
|
||||
@ -2634,17 +2652,17 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
// offload functions set the tensor output backend to GPU
|
||||
// tensors are GPU-accelerated if any input or the output has been offloaded
|
||||
offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
|
||||
offload_func_t offload_func_kq = llama_nop;
|
||||
offload_func_t offload_func_v = llama_nop;
|
||||
offload_func_t offload_func_kq = llama_nop;
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
if (n_gpu_layers > n_layer) {
|
||||
offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
|
||||
}
|
||||
if (n_gpu_layers > n_layer + 1) {
|
||||
if (n_gpu_layers > 0) {
|
||||
offload_func_v = ggml_cuda_assign_buffers_no_alloc;
|
||||
}
|
||||
if (n_gpu_layers > n_layer + 2) {
|
||||
if (n_gpu_layers > 0) {
|
||||
offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
|
||||
}
|
||||
#endif // GGML_USE_CUBLAS
|
||||
@ -2708,11 +2726,11 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * tmp =
|
||||
ggml_rope_custom_inplace(ctx0,
|
||||
ggml_view_3d(ctx0, kv_self.k,
|
||||
ggml_view_3d(ctx0, kv_self.k_l[il],
|
||||
n_embd_head, n_head_kv, n_ctx,
|
||||
ggml_element_size(kv_self.k)*n_embd_head,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
|
||||
ggml_element_size(kv_self.k_l[il])*n_embd_head,
|
||||
ggml_element_size(kv_self.k_l[il])*n_embd_gqa,
|
||||
0),
|
||||
K_shift, n_embd_head, 0, 0, freq_base, freq_scale);
|
||||
offload_func_kq(tmp);
|
||||
ggml_build_forward_expand(gf, tmp);
|
||||
@ -2723,10 +2741,14 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
ggml_format_name(inpL, "layer_inp_%d", il);
|
||||
|
||||
offload_func_t offload_func = llama_nop;
|
||||
offload_func_v = llama_nop;
|
||||
offload_func_kq = llama_nop;
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
if (il >= i_gpu_start) {
|
||||
offload_func = ggml_cuda_assign_buffers_no_alloc;
|
||||
offload_func_v = ggml_cuda_assign_buffers_no_alloc;
|
||||
offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
|
||||
}
|
||||
#endif // GGML_USE_CUBLAS
|
||||
|
||||
@ -2775,13 +2797,13 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
offload_func_v(Vcur);
|
||||
ggml_set_name(Vcur, "Vcur");
|
||||
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k_l[il], n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k_l[il])*n_embd_gqa)*(kv_head));
|
||||
offload_func_kq(k);
|
||||
ggml_set_name(k, "k");
|
||||
|
||||
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
|
||||
( n_ctx)*ggml_element_size(kv_self.v),
|
||||
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
|
||||
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v_l[il], n_tokens, n_embd_gqa,
|
||||
( n_ctx)*ggml_element_size(kv_self.v_l[il]),
|
||||
kv_head*ggml_element_size(kv_self.v_l[il]));
|
||||
offload_func_v(v);
|
||||
ggml_set_name(v, "v");
|
||||
|
||||
@ -2795,11 +2817,11 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
ggml_set_name(Q, "Q");
|
||||
|
||||
struct ggml_tensor * K =
|
||||
ggml_view_3d(ctx0, kv_self.k,
|
||||
ggml_view_3d(ctx0, kv_self.k_l[il],
|
||||
n_embd_head, n_kv, n_head_kv,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||
ggml_element_size(kv_self.k)*n_embd_head,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
|
||||
ggml_element_size(kv_self.k_l[il])*n_embd_gqa,
|
||||
ggml_element_size(kv_self.k_l[il])*n_embd_head,
|
||||
0);
|
||||
offload_func_kq(K);
|
||||
ggml_set_name(K, "K");
|
||||
|
||||
@ -2826,11 +2848,11 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
|
||||
// split cached V into n_head heads
|
||||
struct ggml_tensor * V =
|
||||
ggml_view_3d(ctx0, kv_self.v,
|
||||
ggml_view_3d(ctx0, kv_self.v_l[il],
|
||||
n_kv, n_embd_head, n_head_kv,
|
||||
ggml_element_size(kv_self.v)*n_ctx,
|
||||
ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
|
||||
ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
|
||||
ggml_element_size(kv_self.v_l[il])*n_ctx,
|
||||
ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head,
|
||||
0);
|
||||
offload_func_v(V);
|
||||
ggml_set_name(V, "V");
|
||||
|
||||
@ -6872,7 +6894,14 @@ struct llama_context * llama_new_context_with_model(
|
||||
}
|
||||
|
||||
{
|
||||
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
|
||||
// const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
|
||||
size_t memory_size = 0;
|
||||
for (auto & k : ctx->kv_self.k_l) {
|
||||
memory_size += ggml_nbytes(k);
|
||||
}
|
||||
for (auto & v : ctx->kv_self.v_l) {
|
||||
memory_size += ggml_nbytes(v);
|
||||
}
|
||||
LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
@ -6946,8 +6975,12 @@ struct llama_context * llama_new_context_with_model(
|
||||
}
|
||||
|
||||
size_t kv_vram_size = 0;
|
||||
add_tensor(ctx->kv_self.k, kv_vram_size);
|
||||
add_tensor(ctx->kv_self.v, kv_vram_size);
|
||||
for (auto & k : ctx->kv_self.k_l) {
|
||||
add_tensor(k, kv_vram_size);
|
||||
}
|
||||
for (auto & v : ctx->kv_self.v_l) {
|
||||
add_tensor(v, kv_vram_size);
|
||||
}
|
||||
|
||||
size_t ctx_vram_size = alloc_size + kv_vram_size;
|
||||
size_t total_vram_size = model_vram_size + ctx_vram_size;
|
||||
|
Loading…
Reference in New Issue
Block a user