From ea2c85d5d2a93d39d0172222917f3195f0e456ff Mon Sep 17 00:00:00 2001 From: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com> Date: Wed, 6 Sep 2023 02:49:11 -0600 Subject: [PATCH] convert-llama-ggml-to-gguf: Try to handle files older than GGJTv3 (#3023) * convert-llama-ggmlv3-to-gguf: Try to handle files older than GGJTv3 * Better error messages for files that cannot be converted * Add file type to GGUF output * Rename to convert-llama-ggml-to-gguf.py * Include original file type information in description * Improve some informational output --- ...o-gguf.py => convert-llama-ggml-to-gguf.py | 168 ++++++++++++++---- 1 file changed, 133 insertions(+), 35 deletions(-) rename convert-llama-ggmlv3-to-gguf.py => convert-llama-ggml-to-gguf.py (68%) diff --git a/convert-llama-ggmlv3-to-gguf.py b/convert-llama-ggml-to-gguf.py similarity index 68% rename from convert-llama-ggmlv3-to-gguf.py rename to convert-llama-ggml-to-gguf.py index 08ba0c490..b5d3e0b3c 100755 --- a/convert-llama-ggmlv3-to-gguf.py +++ b/convert-llama-ggml-to-gguf.py @@ -5,6 +5,7 @@ import argparse import math import struct import sys +from enum import IntEnum from pathlib import Path import numpy as np @@ -34,10 +35,35 @@ GGML_QUANT_SIZES = { gguf.GGMLQuantizationType.Q8_K : (256, 4 + QK_K + QK_K // 8), } +class GGMLFormat(IntEnum): + GGML = 0 + GGMF = 1 + GGJT = 2 + +class GGMLFType(IntEnum): + ALL_F32 = 0 + MOSTLY_F16 = 1 + MOSTLY_Q4_0 = 2 + MOSTLY_Q4_1 = 3 + MOSTLY_Q4_1_SOME_F16 = 4 + MOSTLY_Q8_0 = 7 + MOSTLY_Q5_0 = 8 + MOSTLY_Q5_1 = 9 + MOSTLY_Q2_K = 10 + MOSTLY_Q3_K_S = 11 + MOSTLY_Q3_K_M = 12 + MOSTLY_Q3_K_L = 13 + MOSTLY_Q4_K_S = 14 + MOSTLY_Q4_K_M = 15 + MOSTLY_Q5_K_S = 16 + MOSTLY_Q5_K_M = 17 + MOSTLY_Q6_K = 18 + class Hyperparameters: def __init__(self): - self.n_vocab = self.n_embd = self.n_mult = self.n_head = self.n_layer = self.n_rot = self.ftype = 0 - self.n_ff = 0 + self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0 + self.n_layer = self.n_rot = self.n_ff = 0 + self.ftype = GGMLFType.ALL_F32 def set_n_ff(self, model): ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight') @@ -53,16 +79,21 @@ class Hyperparameters: self.n_head, self.n_layer, self.n_rot, - self.ftype, + ftype, ) = struct.unpack('<7I', data[offset:offset + (4 * 7)]) + try: + self.ftype = GGMLFType(ftype) + except ValueError: + raise ValueError(f'Invalid ftype {ftype}') return 4 * 7 def __str__(self): - return f'' + return f'' class Vocab: - def __init__(self): + def __init__(self, load_scores = True): self.items = [] + self.load_scores = load_scores def load(self, data, offset, n_vocab): orig_offset = offset @@ -70,20 +101,24 @@ class Vocab: itemlen = struct.unpack(' 3: + raise ValueError(f'Cannot handle unexpected GGJT file version {version}') + self.file_format = GGMLFormat.GGJT + self.format_version = version + return 8 + raise ValueError(f"Unexpected file magic {magic!r}! This doesn't look like a GGML format file.") + + def validate_conversion(self, ftype): + err = '' + if (self.file_format < GGMLFormat.GGJT or self.format_version < 2): + if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16): + err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.' + elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2): + if ftype in ( GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1, + GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0): + err = 'Q4 and Q8 quantizations changed in GGJTv3.' + if len(err) > 0: + raise ValueError(f'{err} Sorry, your {self.file_format.name}v{self.format_version} file of type {ftype.name} is not eligible for conversion.') def load(self, data, offset): offset += self.validate_header(data, offset) hp = Hyperparameters() offset += hp.load(data, offset) - vocab = Vocab() + print(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}') + self.validate_conversion(hp.ftype) + vocab = Vocab(load_scores = self.file_format > GGMLFormat.GGML) offset += vocab.load(data, offset, hp.n_vocab) tensors: list[Tensor] = [] tensor_map = {} while offset < len(data): - tensor = Tensor() + tensor = Tensor(use_padding = self.file_format > GGMLFormat.GGMF) offset += tensor.load(data, offset) tensor_map[tensor.name] = len(tensors) tensors.append(tensor) @@ -168,7 +235,10 @@ class GGMLToGGUF: def save(self): print('* Preparing to save GGUF file') - gguf_writer = gguf.GGUFWriter(self.cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False) + gguf_writer = gguf.GGUFWriter( + self.cfg.output, + gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], + use_temp_file = False ) self.add_params(gguf_writer) self.add_vocab(gguf_writer) if self.special_vocab is not None: @@ -185,7 +255,10 @@ class GGMLToGGUF: def add_params(self, gguf_writer): hp = self.model.hyperparameters cfg = self.cfg - desc = cfg.desc if cfg.desc is not None else 'converted from legacy GGJTv3 format' + if cfg.desc is not None: + desc = cfg.desc + else: + desc = f'converted from legacy {self.model.file_format.name}v{self.model.format_version} {hp.ftype.name} format' try: # Filenames aren't necessarily valid UTF8. name = cfg.name if cfg.name is not None else cfg.input.name @@ -195,6 +268,7 @@ class GGMLToGGUF: if name is not None: gguf_writer.add_name(name) gguf_writer.add_description(desc) + gguf_writer.add_file_type(int(hp.ftype)) if self.params_override is not None: po = self.params_override assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch' @@ -231,7 +305,8 @@ class GGMLToGGUF: tokens.append(vbytes) scores.append(score) toktypes.append(ttype) - assert len(tokens) == hp.n_vocab, f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}' + assert len(tokens) == hp.n_vocab, \ + f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}' gguf_writer.add_token_list(tokens) gguf_writer.add_token_scores(scores) if len(toktypes) > 0: @@ -283,7 +358,11 @@ class GGMLToGGUF: tempdims[1] = tempdims[0] tempdims[0] = temp # print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}') - gguf_writer.add_tensor(mapped_name, data[tensor.start_offset:tensor.start_offset + tensor.len_bytes], raw_shape = tempdims, raw_dtype = tensor.dtype) + gguf_writer.add_tensor( + mapped_name, + data[tensor.start_offset:tensor.start_offset + tensor.len_bytes], + raw_shape = tempdims, + raw_dtype = tensor.dtype ) def handle_metadata(cfg, hp): import convert @@ -305,32 +384,46 @@ def handle_metadata(cfg, hp): params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path) else: raise ValueError('Unable to load metadata') - vocab = convert.load_vocab(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir, cfg.vocabtype) + vocab = convert.load_vocab( + cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir, + cfg.vocabtype ) # FIXME: Respect cfg.vocab_dir? svocab = gguf.SpecialVocab(cfg.model_metadata_dir) convert.check_vocab_size(params, vocab) return (params, vocab, svocab) def handle_args(): - parser = argparse.ArgumentParser(description = 'Convert GGMLv3 models to GGUF') - parser.add_argument('--input', '-i', type = Path, required = True, help = 'Input GGMLv3 filename') - parser.add_argument('--output', '-o', type = Path, required = True, help ='Output GGUF filename') - parser.add_argument('--name', help = 'Set model name') - parser.add_argument('--desc', help = 'Set model description') - parser.add_argument('--gqa', type = int, default = 1, help = 'grouped-query attention factor (use 8 for LLaMA2 70B)') - parser.add_argument('--eps', default = '5.0e-06', help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2') - parser.add_argument('--context-length', '-c', type=int, default = 2048, help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096') - parser.add_argument('--model-metadata-dir', '-m', type = Path, help ='Load HuggingFace/.pth vocab and metadata from the specified directory') - parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir") - parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)", default="spm") + parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF') + parser.add_argument('--input', '-i', type = Path, required = True, + help = 'Input GGMLv3 filename') + parser.add_argument('--output', '-o', type = Path, required = True, + help ='Output GGUF filename') + parser.add_argument('--name', + help = 'Set model name') + parser.add_argument('--desc', + help = 'Set model description') + parser.add_argument('--gqa', type = int, default = 1, + help = 'grouped-query attention factor (use 8 for LLaMA2 70B)') + parser.add_argument('--eps', default = '5.0e-06', + help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2') + parser.add_argument('--context-length', '-c', type=int, default = 2048, + help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096') + parser.add_argument('--model-metadata-dir', '-m', type = Path, + help ='Load HuggingFace/.pth vocab and metadata from the specified directory') + parser.add_argument("--vocab-dir", type=Path, + help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir") + parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm", + help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)") return parser.parse_args() def main(): cfg = handle_args() print(f'* Using config: {cfg}') print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n') + if cfg.model_metadata_dir is None and (cfg.gqa == 1 or cfg.eps == '5.0e-06'): + print('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".') data = np.memmap(cfg.input, mode = 'r') - model = GGMLV3Model() + model = GGMLModel() print('* Scanning GGML input file') offset = model.load(data, 0) print(f'* GGML model hyperparameters: {model.hyperparameters}') @@ -345,7 +438,12 @@ def main(): print(f'* Special vocab: {special_vocab}') else: print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n') - converter = GGMLToGGUF(model, data, cfg, params_override = params_override, vocab_override = vocab_override, special_vocab = special_vocab) + if model.file_format == GGMLFormat.GGML: + print('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!') + converter = GGMLToGGUF(model, data, cfg, + params_override = params_override, + vocab_override = vocab_override, + special_vocab = special_vocab ) converter.save() print(f'* Successful completion. Output saved to: {cfg.output}')