mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-26 06:10:29 +01:00
parent
1bde94dd02
commit
edc265661c
@ -374,6 +374,8 @@ node index.js
|
||||
|
||||
`min_keep`: If greater than 0, force samplers to return N possible tokens at minimum. Default: `0`
|
||||
|
||||
`t_max_predict_ms`: Set a time limit in milliseconds for the prediction (a.k.a. text-generation) phase. The timeout will trigger if the generation takes more than the specified time (measured since the first token was generated) and if a new-line character has already been generated. Useful for FIM applications. Default: `0`, which is disabled.
|
||||
|
||||
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:`. In this case, `[img-12]` will be replaced by the embeddings of the image with id `12` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
|
||||
|
||||
`id_slot`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot. Default: `-1`
|
||||
|
@ -128,9 +128,12 @@ struct slot_params {
|
||||
bool stream = true;
|
||||
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
|
||||
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
|
||||
int64_t t_max_prompt_ms = -1; // TODO: implement
|
||||
int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
|
||||
|
||||
std::vector<std::string> antiprompt;
|
||||
|
||||
@ -175,6 +178,7 @@ struct server_slot {
|
||||
server_task_cmpl_type cmpl_type = SERVER_TASK_CMPL_TYPE_NORMAL;
|
||||
|
||||
bool has_next_token = true;
|
||||
bool has_new_line = false;
|
||||
bool truncated = false;
|
||||
bool stopped_eos = false;
|
||||
bool stopped_word = false;
|
||||
@ -210,6 +214,7 @@ struct server_slot {
|
||||
|
||||
n_prompt_tokens = 0;
|
||||
generated_text = "";
|
||||
has_new_line = false;
|
||||
truncated = false;
|
||||
stopped_eos = false;
|
||||
stopped_word = false;
|
||||
@ -874,6 +879,8 @@ struct server_context {
|
||||
slot.sparams.seed = json_value(data, "seed", default_sparams.seed);
|
||||
slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
|
||||
slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
|
||||
//slot.params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", default_params.t_max_prompt_ms); // TODO: implement
|
||||
slot.params.t_max_predict_ms = json_value(data, "t_max_predict_ms", default_params.t_max_predict_ms);
|
||||
|
||||
// process "json_schema" and "grammar"
|
||||
if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
|
||||
@ -1101,6 +1108,20 @@ struct server_context {
|
||||
SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
|
||||
}
|
||||
|
||||
// if we have already seen a new line, we stop after a certain time limit
|
||||
if (slot.has_new_line && slot.params.t_max_predict_ms > 0 &&
|
||||
(ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
|
||||
slot.stopped_limit = true;
|
||||
slot.has_next_token = false;
|
||||
|
||||
SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
|
||||
}
|
||||
|
||||
// check if there is a new line in the generated text
|
||||
if (result.text_to_send.find('\n') != std::string::npos) {
|
||||
slot.has_new_line = true;
|
||||
}
|
||||
|
||||
// if context shift is disabled, we stop when it reaches the context limit
|
||||
if (slot.n_past >= slot.n_ctx) {
|
||||
slot.truncated = true;
|
||||
@ -1250,6 +1271,7 @@ struct server_context {
|
||||
{"tokens_evaluated", slot.n_prompt_tokens},
|
||||
{"generation_settings", get_formated_generation(slot)},
|
||||
{"prompt", slot.prompt},
|
||||
{"has_new_line", slot.has_new_line},
|
||||
{"truncated", slot.truncated},
|
||||
{"stopped_eos", slot.stopped_eos},
|
||||
{"stopped_word", slot.stopped_word},
|
||||
@ -1576,6 +1598,7 @@ struct server_context {
|
||||
slot_data["prompt"] = slot.prompt;
|
||||
slot_data["next_token"] = {
|
||||
{"has_next_token", slot.has_next_token},
|
||||
{"has_new_line", slot.has_new_line},
|
||||
{"n_remain", slot.n_remaining},
|
||||
{"n_decoded", slot.n_decoded},
|
||||
{"stopped_eos", slot.stopped_eos},
|
||||
@ -1914,6 +1937,13 @@ struct server_context {
|
||||
auto prefix_tokens = tokenize(slot.params.input_prefix, false, false);
|
||||
auto suffix_tokens = tokenize(slot.params.input_suffix, false, false);
|
||||
|
||||
// for now pick context to fit in a single batch (ratio prefix:suffix = 3:1, TODO: configurable?)
|
||||
const int n_suffix_take = std::min<int>(suffix_tokens.size(), n_batch/4);
|
||||
const int n_prefix_take = std::min<int>(prefix_tokens.size(), (n_batch - 3) - n_suffix_take);
|
||||
|
||||
prefix_tokens.erase(prefix_tokens.begin(), prefix_tokens.begin() + prefix_tokens.size() - n_prefix_take);
|
||||
suffix_tokens.resize(n_suffix_take);
|
||||
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_fim_pre(model));
|
||||
suffix_tokens.insert(suffix_tokens.begin(), llama_token_fim_suf(model));
|
||||
|
||||
@ -1936,9 +1966,17 @@ struct server_context {
|
||||
|
||||
SLT_INF(slot, "prompt tokenized, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
|
||||
|
||||
// print prompt tokens:
|
||||
for (int i = 0; i < (int) prompt_tokens.size(); i++) {
|
||||
SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
|
||||
// print prompt tokens (for debugging)
|
||||
if (1) {
|
||||
// first 16 tokens (avoid flooding logs)
|
||||
for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
|
||||
SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
|
||||
}
|
||||
} else {
|
||||
// all
|
||||
for (int i = 0; i < (int) prompt_tokens.size(); i++) {
|
||||
SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
// empty prompt passed -> release the slot and send empty response
|
||||
|
Loading…
Reference in New Issue
Block a user