mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
convert-hf : support direct Q8_0 conversion (#7234)
* convert-hf : support q8_0 conversion * convert-hf : add missing ftype This was messing with the checksums otherwise. * convert-hf : add missing ftype to Baichuan and Xverse I didn't notice these on my first pass.
This commit is contained in:
parent
614d3b914e
commit
ee52225067
@ -240,23 +240,6 @@ class Model:
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
def write_tensors(self):
|
def write_tensors(self):
|
||||||
# same as ggml_compute_fp32_to_bf16 in ggml-impl.h
|
|
||||||
def np_fp32_to_bf16(n: np.ndarray):
|
|
||||||
# force nan to quiet
|
|
||||||
n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n)
|
|
||||||
# flush subnormals to zero
|
|
||||||
n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n)
|
|
||||||
# round to nearest even
|
|
||||||
n = (n + (0x7fff + ((n >> 16) & 1))) >> 16
|
|
||||||
return n.astype(np.int16)
|
|
||||||
|
|
||||||
# Doing this row-wise is much, much faster than element-wise, hence the signature
|
|
||||||
v_fp32_to_bf16 = np.vectorize(np_fp32_to_bf16, otypes=[np.int16], signature="(n)->(n)")
|
|
||||||
if self.lazy:
|
|
||||||
# TODO: find a way to implicitly wrap np.vectorize functions
|
|
||||||
# NOTE: the type is changed to reflect otypes passed to np.vectorize above
|
|
||||||
v_fp32_to_bf16 = gguf.LazyNumpyTensor._wrap_fn(v_fp32_to_bf16, meta_noop=np.int16)
|
|
||||||
|
|
||||||
max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
|
max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
|
||||||
|
|
||||||
for name, data_torch in self.get_tensors():
|
for name, data_torch in self.get_tensors():
|
||||||
@ -309,27 +292,31 @@ class Model:
|
|||||||
))
|
))
|
||||||
|
|
||||||
if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
|
if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
|
||||||
if self.ftype == gguf.LlamaFileType.MOSTLY_F16:
|
if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
|
||||||
|
data = gguf.quantize_bf16(data)
|
||||||
|
assert data.dtype == np.int16
|
||||||
|
data_qtype = gguf.GGMLQuantizationType.BF16
|
||||||
|
|
||||||
|
elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
|
||||||
|
data = gguf.quantize_q8_0(data)
|
||||||
|
assert data.dtype == np.uint8
|
||||||
|
data_qtype = gguf.GGMLQuantizationType.Q8_0
|
||||||
|
|
||||||
|
else: # default to float16 for quantized tensors
|
||||||
if data_dtype != np.float16:
|
if data_dtype != np.float16:
|
||||||
data = data.astype(np.float16)
|
data = data.astype(np.float16)
|
||||||
data_qtype = gguf.GGMLQuantizationType.F16
|
data_qtype = gguf.GGMLQuantizationType.F16
|
||||||
|
|
||||||
elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
|
if data_qtype is None: # by default, convert to float32
|
||||||
if data_dtype != np.float32:
|
|
||||||
data = data.astype(np.float32)
|
|
||||||
data = v_fp32_to_bf16(data.view(np.int32))
|
|
||||||
assert data.dtype == np.int16
|
|
||||||
data_qtype = gguf.GGMLQuantizationType.BF16
|
|
||||||
|
|
||||||
else: # by default, convert to float32
|
|
||||||
if data_dtype != np.float32:
|
if data_dtype != np.float32:
|
||||||
data = data.astype(np.float32)
|
data = data.astype(np.float32)
|
||||||
data_qtype = gguf.GGMLQuantizationType.F32
|
data_qtype = gguf.GGMLQuantizationType.F32
|
||||||
|
|
||||||
assert data_qtype is not None
|
block_size, type_size = gguf.GGML_QUANT_SIZES[data_qtype]
|
||||||
|
|
||||||
# reverse shape to make it similar to the internal ggml dimension order
|
# reverse shape to make it similar to the internal ggml dimension order
|
||||||
shape_str = f"{{{', '.join(str(n) for n in reversed(data.shape))}}}"
|
shape_str = f"""{{{', '.join(str(n) for n in reversed(
|
||||||
|
(*data.shape[:-1], data.shape[-1] * data.dtype.itemsize // type_size * block_size))
|
||||||
|
)}}}"""
|
||||||
|
|
||||||
# n_dims is implicit in the shape
|
# n_dims is implicit in the shape
|
||||||
logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
|
logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
|
||||||
@ -859,6 +846,7 @@ class BaichuanModel(Model):
|
|||||||
self.gguf_writer.add_head_count(head_count)
|
self.gguf_writer.add_head_count(head_count)
|
||||||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||||
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
|
||||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||||
if self.hparams["rope_scaling"].get("type") == "linear":
|
if self.hparams["rope_scaling"].get("type") == "linear":
|
||||||
@ -981,6 +969,7 @@ class XverseModel(Model):
|
|||||||
self.gguf_writer.add_head_count(head_count)
|
self.gguf_writer.add_head_count(head_count)
|
||||||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||||
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
|
||||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||||
if self.hparams["rope_scaling"].get("type") == "linear":
|
if self.hparams["rope_scaling"].get("type") == "linear":
|
||||||
@ -1215,6 +1204,7 @@ class StableLMModel(Model):
|
|||||||
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
|
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
|
||||||
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
||||||
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
|
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
|
||||||
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
|
||||||
_q_norms: list[dict[str, Tensor]] | None = None
|
_q_norms: list[dict[str, Tensor]] | None = None
|
||||||
_k_norms: list[dict[str, Tensor]] | None = None
|
_k_norms: list[dict[str, Tensor]] | None = None
|
||||||
@ -1591,6 +1581,7 @@ class QwenModel(Model):
|
|||||||
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
|
||||||
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
|
||||||
|
|
||||||
@Model.register("Qwen2ForCausalLM")
|
@Model.register("Qwen2ForCausalLM")
|
||||||
@ -1828,6 +1819,7 @@ class PlamoModel(Model):
|
|||||||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||||
self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
|
self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
|
||||||
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
||||||
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
|
||||||
def shuffle_attn_q_weight(self, data_torch):
|
def shuffle_attn_q_weight(self, data_torch):
|
||||||
assert data_torch.size() == (5120, 5120)
|
assert data_torch.size() == (5120, 5120)
|
||||||
@ -2007,6 +1999,7 @@ in chat mode so that the conversation can end normally.")
|
|||||||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||||
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
|
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
|
||||||
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
|
||||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||||
num_heads = self.hparams["num_attention_heads"]
|
num_heads = self.hparams["num_attention_heads"]
|
||||||
@ -2415,25 +2408,15 @@ class LazyTorchTensor(gguf.LazyBase):
|
|||||||
def numpy(self) -> gguf.LazyNumpyTensor:
|
def numpy(self) -> gguf.LazyNumpyTensor:
|
||||||
dtype = self._dtype_map[self.dtype]
|
dtype = self._dtype_map[self.dtype]
|
||||||
return gguf.LazyNumpyTensor(
|
return gguf.LazyNumpyTensor(
|
||||||
meta=np.lib.stride_tricks.as_strided(np.zeros(1, dtype), self.shape, (0 for _ in self.shape)),
|
meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
|
||||||
lazy=self._lazy,
|
lazy=self._lazy,
|
||||||
args=(self,),
|
args=(self,),
|
||||||
func=(lambda s: s[0].numpy())
|
func=(lambda s: s[0].numpy())
|
||||||
)
|
)
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def eager_to_meta(cls, t: Tensor) -> Tensor:
|
def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
|
||||||
if t.is_meta:
|
return torch.empty(size=shape, dtype=dtype, device="meta")
|
||||||
return t
|
|
||||||
return t.detach().to("meta")
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def meta_with_dtype(cls, m: Tensor, dtype: torch.dtype) -> Tensor:
|
|
||||||
m = m.detach()
|
|
||||||
if not m.is_meta:
|
|
||||||
m = m.to("meta")
|
|
||||||
m.dtype = dtype
|
|
||||||
return m
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def __torch_function__(cls, func, types, args=(), kwargs=None):
|
def __torch_function__(cls, func, types, args=(), kwargs=None):
|
||||||
@ -2464,8 +2447,8 @@ def parse_args() -> argparse.Namespace:
|
|||||||
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
|
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--outtype", type=str, choices=["f32", "f16", "bf16", "auto"], default="f16",
|
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
|
||||||
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
|
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--bigendian", action="store_true",
|
"--bigendian", action="store_true",
|
||||||
@ -2523,6 +2506,7 @@ def main() -> None:
|
|||||||
"f32": gguf.LlamaFileType.ALL_F32,
|
"f32": gguf.LlamaFileType.ALL_F32,
|
||||||
"f16": gguf.LlamaFileType.MOSTLY_F16,
|
"f16": gguf.LlamaFileType.MOSTLY_F16,
|
||||||
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
|
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
|
||||||
|
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
|
||||||
"auto": gguf.LlamaFileType.GUESSED,
|
"auto": gguf.LlamaFileType.GUESSED,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -2,5 +2,6 @@ from .constants import *
|
|||||||
from .lazy import *
|
from .lazy import *
|
||||||
from .gguf_reader import *
|
from .gguf_reader import *
|
||||||
from .gguf_writer import *
|
from .gguf_writer import *
|
||||||
|
from .quants import *
|
||||||
from .tensor_mapping import *
|
from .tensor_mapping import *
|
||||||
from .vocab import *
|
from .vocab import *
|
||||||
|
@ -13,6 +13,7 @@ from string import ascii_letters, digits
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from .constants import (
|
from .constants import (
|
||||||
|
GGML_QUANT_SIZES,
|
||||||
GGUF_DEFAULT_ALIGNMENT,
|
GGUF_DEFAULT_ALIGNMENT,
|
||||||
GGUF_MAGIC,
|
GGUF_MAGIC,
|
||||||
GGUF_VERSION,
|
GGUF_VERSION,
|
||||||
@ -195,7 +196,7 @@ class GGUFWriter:
|
|||||||
return ((x + n - 1) // n) * n
|
return ((x + n - 1) // n) * n
|
||||||
|
|
||||||
def add_tensor_info(
|
def add_tensor_info(
|
||||||
self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype[np.float16] | np.dtype[np.float32],
|
self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype,
|
||||||
tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
|
tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
if self.state is not WriterState.EMPTY:
|
if self.state is not WriterState.EMPTY:
|
||||||
@ -208,10 +209,6 @@ class GGUFWriter:
|
|||||||
encoded_name = name.encode("utf-8")
|
encoded_name = name.encode("utf-8")
|
||||||
self.ti_data += self._pack("Q", len(encoded_name))
|
self.ti_data += self._pack("Q", len(encoded_name))
|
||||||
self.ti_data += encoded_name
|
self.ti_data += encoded_name
|
||||||
n_dims = len(tensor_shape)
|
|
||||||
self.ti_data += self._pack("I", n_dims)
|
|
||||||
for i in range(n_dims):
|
|
||||||
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
|
|
||||||
if raw_dtype is None:
|
if raw_dtype is None:
|
||||||
if tensor_dtype == np.float16:
|
if tensor_dtype == np.float16:
|
||||||
dtype = GGMLQuantizationType.F16
|
dtype = GGMLQuantizationType.F16
|
||||||
@ -231,6 +228,15 @@ class GGUFWriter:
|
|||||||
raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
|
raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
|
||||||
else:
|
else:
|
||||||
dtype = raw_dtype
|
dtype = raw_dtype
|
||||||
|
if tensor_dtype == np.uint8:
|
||||||
|
block_size, type_size = GGML_QUANT_SIZES[raw_dtype]
|
||||||
|
if tensor_shape[-1] % type_size != 0:
|
||||||
|
raise ValueError(f"Quantized tensor row size ({tensor_shape[-1]}) is not a multiple of {dtype.name} type size ({type_size})")
|
||||||
|
tensor_shape = tuple(tensor_shape[:-1]) + (tensor_shape[-1] // type_size * block_size,)
|
||||||
|
n_dims = len(tensor_shape)
|
||||||
|
self.ti_data += self._pack("I", n_dims)
|
||||||
|
for i in range(n_dims):
|
||||||
|
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
|
||||||
self.ti_data += self._pack("I", dtype)
|
self.ti_data += self._pack("I", dtype)
|
||||||
self.ti_data += self._pack("Q", self.offset_tensor)
|
self.ti_data += self._pack("Q", self.offset_tensor)
|
||||||
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
|
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
|
||||||
|
@ -6,6 +6,7 @@ from typing import Any, Callable
|
|||||||
from collections import deque
|
from collections import deque
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from numpy._typing import _Shape
|
||||||
from numpy.typing import DTypeLike
|
from numpy.typing import DTypeLike
|
||||||
|
|
||||||
|
|
||||||
@ -110,7 +111,7 @@ class LazyBase(ABC, metaclass=LazyMeta):
|
|||||||
return o
|
return o
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike = False) -> Callable[[Any], Any]:
|
def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike | tuple[DTypeLike, Callable[[tuple[int, ...]], tuple[int, ...]]] = False) -> Callable[[Any], Any]:
|
||||||
def wrapped_fn(*args, **kwargs):
|
def wrapped_fn(*args, **kwargs):
|
||||||
if kwargs is None:
|
if kwargs is None:
|
||||||
kwargs = {}
|
kwargs = {}
|
||||||
@ -130,9 +131,14 @@ class LazyBase(ABC, metaclass=LazyMeta):
|
|||||||
res = args[0]
|
res = args[0]
|
||||||
assert isinstance(res, cls)
|
assert isinstance(res, cls)
|
||||||
res = res._meta
|
res = res._meta
|
||||||
# allow operations to override the dtype
|
# allow operations to override the dtype and shape
|
||||||
if meta_noop is not True:
|
if meta_noop is not True:
|
||||||
res = cls.meta_with_dtype(res, meta_noop)
|
if isinstance(meta_noop, tuple):
|
||||||
|
dtype, shape = meta_noop
|
||||||
|
assert callable(shape)
|
||||||
|
res = cls.meta_with_dtype_and_shape(dtype, shape(res.shape))
|
||||||
|
else:
|
||||||
|
res = cls.meta_with_dtype_and_shape(meta_noop, res.shape)
|
||||||
|
|
||||||
if isinstance(res, cls._tensor_type):
|
if isinstance(res, cls._tensor_type):
|
||||||
def collect_replace(t: LazyBase):
|
def collect_replace(t: LazyBase):
|
||||||
@ -168,7 +174,12 @@ class LazyBase(ABC, metaclass=LazyMeta):
|
|||||||
while _t._data is None:
|
while _t._data is None:
|
||||||
lt = _t._lazy.popleft()
|
lt = _t._lazy.popleft()
|
||||||
if lt._data is not None:
|
if lt._data is not None:
|
||||||
raise ValueError(f"{lt} did not belong in the lazy queue")
|
# Lazy tensor did not belong in the lazy queue.
|
||||||
|
# Weirdly only happens with Bloom models...
|
||||||
|
# likely because tensors aren't unique in the queue.
|
||||||
|
# The final output is still the same as in eager mode,
|
||||||
|
# so it's safe to ignore this.
|
||||||
|
continue
|
||||||
assert lt._func is not None
|
assert lt._func is not None
|
||||||
lt._args = cls._recurse_apply(lt._args, already_eager_to_eager)
|
lt._args = cls._recurse_apply(lt._args, already_eager_to_eager)
|
||||||
lt._data = lt._func(lt._args)
|
lt._data = lt._func(lt._args)
|
||||||
@ -183,12 +194,12 @@ class LazyBase(ABC, metaclass=LazyMeta):
|
|||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def eager_to_meta(cls, t: Any) -> Any:
|
def eager_to_meta(cls, t: Any) -> Any:
|
||||||
return cls.meta_with_dtype(t, t.dtype)
|
return cls.meta_with_dtype_and_shape(t.dtype, t.shape)
|
||||||
|
|
||||||
# must be overridden, meta tensor init is backend-specific
|
# must be overridden, meta tensor init is backend-specific
|
||||||
@classmethod
|
@classmethod
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def meta_with_dtype(cls, m: Any, dtype: Any) -> Any: pass
|
def meta_with_dtype_and_shape(cls, dtype: Any, shape: Any) -> Any: pass
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def from_eager(cls, t: Any) -> Any:
|
def from_eager(cls, t: Any) -> Any:
|
||||||
@ -205,15 +216,15 @@ class LazyNumpyTensor(LazyBase):
|
|||||||
_tensor_type = np.ndarray
|
_tensor_type = np.ndarray
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def meta_with_dtype(cls, m: np.ndarray[Any, Any], dtype: DTypeLike) -> np.ndarray[Any, Any]:
|
def meta_with_dtype_and_shape(cls, dtype: DTypeLike, shape: _Shape) -> np.ndarray[Any, Any]:
|
||||||
# The initial idea was to use np.nan as the fill value,
|
# The initial idea was to use np.nan as the fill value,
|
||||||
# but non-float types like np.int16 can't use that.
|
# but non-float types like np.int16 can't use that.
|
||||||
# So zero it is.
|
# So zero it is.
|
||||||
cheat = np.zeros(1, dtype)
|
cheat = np.zeros(1, dtype)
|
||||||
return np.lib.stride_tricks.as_strided(cheat, m.shape, (0 for _ in m.shape))
|
return np.lib.stride_tricks.as_strided(cheat, shape, (0 for _ in shape))
|
||||||
|
|
||||||
def astype(self, dtype, *args, **kwargs):
|
def astype(self, dtype, *args, **kwargs):
|
||||||
meta = type(self).meta_with_dtype(self._meta, dtype)
|
meta = type(self).meta_with_dtype_and_shape(dtype, self._meta.shape)
|
||||||
full_args = (self, dtype,) + args
|
full_args = (self, dtype,) + args
|
||||||
# very important to pass the shared _lazy deque, or else there's an infinite loop somewhere.
|
# very important to pass the shared _lazy deque, or else there's an infinite loop somewhere.
|
||||||
return type(self)(meta=meta, args=full_args, lazy=self._lazy, func=(lambda a: a[0].astype(*a[1:], **kwargs)))
|
return type(self)(meta=meta, args=full_args, lazy=self._lazy, func=(lambda a: a[0].astype(*a[1:], **kwargs)))
|
||||||
|
109
gguf-py/gguf/quants.py
Normal file
109
gguf-py/gguf/quants.py
Normal file
@ -0,0 +1,109 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
from typing import Callable
|
||||||
|
|
||||||
|
from numpy.typing import DTypeLike
|
||||||
|
|
||||||
|
from .constants import GGML_QUANT_SIZES, GGMLQuantizationType
|
||||||
|
from .lazy import LazyNumpyTensor
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
# same as ggml_compute_fp32_to_bf16 in ggml-impl.h
|
||||||
|
def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray:
|
||||||
|
n = n.astype(np.float32, copy=False).view(np.int32)
|
||||||
|
# force nan to quiet
|
||||||
|
n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n)
|
||||||
|
# flush subnormals to zero
|
||||||
|
n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n)
|
||||||
|
# round to nearest even
|
||||||
|
n = (n + (0x7fff + ((n >> 16) & 1))) >> 16
|
||||||
|
return n.astype(np.int16)
|
||||||
|
|
||||||
|
|
||||||
|
# This is faster than np.vectorize and np.apply_along_axis because it works on more than one row at a time
|
||||||
|
def __apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.ndarray, otype: DTypeLike, oshape: tuple[int, ...]) -> np.ndarray:
|
||||||
|
rows = arr.reshape((-1, arr.shape[-1]))
|
||||||
|
osize = 1
|
||||||
|
for dim in oshape:
|
||||||
|
osize *= dim
|
||||||
|
out = np.empty(shape=osize, dtype=otype)
|
||||||
|
# compute over groups of 16 rows (arbitrary, but seems good for performance)
|
||||||
|
n_groups = rows.shape[0] // 16
|
||||||
|
np.concatenate([func(group).ravel() for group in np.array_split(rows, n_groups)], axis=0, out=out)
|
||||||
|
return out.reshape(oshape)
|
||||||
|
|
||||||
|
|
||||||
|
def __quantize_bf16_array(n: np.ndarray) -> np.ndarray:
|
||||||
|
return __apply_over_grouped_rows(__compute_fp32_to_bf16, arr=n, otype=np.int16, oshape=n.shape)
|
||||||
|
|
||||||
|
|
||||||
|
__quantize_bf16_lazy = LazyNumpyTensor._wrap_fn(__quantize_bf16_array, meta_noop=np.int16)
|
||||||
|
|
||||||
|
|
||||||
|
def quantize_bf16(n: np.ndarray):
|
||||||
|
if type(n) is LazyNumpyTensor:
|
||||||
|
return __quantize_bf16_lazy(n)
|
||||||
|
else:
|
||||||
|
return __quantize_bf16_array(n)
|
||||||
|
|
||||||
|
|
||||||
|
__q8_block_size, __q8_type_size = GGML_QUANT_SIZES[GGMLQuantizationType.Q8_0]
|
||||||
|
|
||||||
|
|
||||||
|
def can_quantize_to_q8_0(n: np.ndarray) -> bool:
|
||||||
|
return n.shape[-1] % __q8_block_size == 0
|
||||||
|
|
||||||
|
|
||||||
|
# round away from zero
|
||||||
|
# ref: https://stackoverflow.com/a/59143326/22827863
|
||||||
|
def np_roundf(n: np.ndarray) -> np.ndarray:
|
||||||
|
a = abs(n)
|
||||||
|
floored = np.floor(a)
|
||||||
|
b = floored + np.floor(2 * (a - floored))
|
||||||
|
return np.sign(n) * b
|
||||||
|
|
||||||
|
|
||||||
|
def __quantize_q8_0_shape_change(s: tuple[int, ...]) -> tuple[int, ...]:
|
||||||
|
return (*s[:-1], s[-1] // __q8_block_size * __q8_type_size)
|
||||||
|
|
||||||
|
|
||||||
|
# Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c
|
||||||
|
def __quantize_q8_0_rows(n: np.ndarray) -> np.ndarray:
|
||||||
|
shape = n.shape
|
||||||
|
assert shape[-1] % __q8_block_size == 0
|
||||||
|
|
||||||
|
n_blocks = n.size // __q8_block_size
|
||||||
|
|
||||||
|
blocks = n.reshape((n_blocks, __q8_block_size)).astype(np.float32, copy=False)
|
||||||
|
|
||||||
|
d = abs(blocks).max(axis=1, keepdims=True) / 127
|
||||||
|
with np.errstate(divide="ignore"):
|
||||||
|
id = np.where(d == 0, 0, 1 / d)
|
||||||
|
qs = np_roundf(blocks * id)
|
||||||
|
|
||||||
|
# (n_blocks, 2)
|
||||||
|
d = d.astype(np.float16).view(np.uint8)
|
||||||
|
# (n_blocks, block_size)
|
||||||
|
qs = qs.astype(np.int8).view(np.uint8)
|
||||||
|
|
||||||
|
assert d.shape[1] + qs.shape[1] == __q8_type_size
|
||||||
|
|
||||||
|
return np.concatenate([d, qs], axis=1).reshape(__quantize_q8_0_shape_change(shape))
|
||||||
|
|
||||||
|
|
||||||
|
def __quantize_q8_0_array(n: np.ndarray) -> np.ndarray:
|
||||||
|
return __apply_over_grouped_rows(__quantize_q8_0_rows, arr=n, otype=np.uint8, oshape=__quantize_q8_0_shape_change(n.shape))
|
||||||
|
|
||||||
|
|
||||||
|
__quantize_q8_0_lazy = LazyNumpyTensor._wrap_fn(
|
||||||
|
__quantize_q8_0_array,
|
||||||
|
meta_noop=(np.uint8, __quantize_q8_0_shape_change),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def quantize_q8_0(data: np.ndarray):
|
||||||
|
if type(data) is LazyNumpyTensor:
|
||||||
|
return __quantize_q8_0_lazy(data)
|
||||||
|
else:
|
||||||
|
return __quantize_q8_0_array(data)
|
Loading…
x
Reference in New Issue
Block a user