diff --git a/Makefile b/Makefile index 918417c77..0967a72f7 100644 --- a/Makefile +++ b/Makefile @@ -862,12 +862,12 @@ llava-cli: examples/llava/llava-cli.cpp examples/llava/clip.h examples/llava/cli $(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp) $(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) -o $@ $(LDFLAGS) -minicpmv-cli: examples/minicpmv/minicpmv-cli.cpp examples/minicpmv/clip.h examples/minicpmv/clip.cpp examples/minicpmv/minicpmv.h examples/minicpmv/minicpmv.cpp examples/minicpmv/minicpmv_wrapper.h examples/minicpmv/minicpmv_wrapper.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) +minicpmv-cli: examples/llava/minicpmv-cli.cpp examples/llava/clip.h examples/llava/clip.cpp examples/llava/llava.h examples/llava/llava.cpp examples/llava/minicpmv_wrapper.h examples/llava/minicpmv_wrapper.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) - $(CXX) $(CXXFLAGS) -c examples/minicpmv/clip.cpp -o $(call GET_OBJ_FILE, examples/minicpmv/clip.cpp) -Wno-cast-qual - $(CXX) $(CXXFLAGS) -c examples/minicpmv/minicpmv.cpp -o $(call GET_OBJ_FILE, examples/minicpmv/minicpmv.cpp) - $(CXX) $(CXXFLAGS) -c examples/minicpmv/minicpmv_wrapper.cpp -o $(call GET_OBJ_FILE, examples/minicpmv/minicpmv_wrapper.cpp) - $(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/minicpmv/clip.cpp examples/minicpmv/minicpmv.cpp examples/minicpmv/minicpmv_wrapper.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/minicpmv/clip.cpp) $(call GET_OBJ_FILE, examples/minicpmv/minicpmv.cpp) $(call GET_OBJ_FILE, examples/minicpmv/minicpmv_wrapper.cpp) -o $@ $(LDFLAGS) + $(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual + $(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp) + $(CXX) $(CXXFLAGS) -c examples/llava/minicpmv_wrapper.cpp -o $(call GET_OBJ_FILE, examples/llava/minicpmv_wrapper.cpp) + $(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp examples/llava/minicpmv_wrapper.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) $(call GET_OBJ_FILE, examples/llava/minicpmv_wrapper.cpp) -o $@ $(LDFLAGS) baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS) $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<) diff --git a/examples/llava/CMakeLists.txt b/examples/llava/CMakeLists.txt index 2985caff8..9d5a9321c 100644 --- a/examples/llava/CMakeLists.txt +++ b/examples/llava/CMakeLists.txt @@ -35,3 +35,8 @@ add_executable(llava-cli llava-cli.cpp) install(TARGETS llava-cli RUNTIME) target_link_libraries(llava-cli PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT}) target_compile_features(llava PRIVATE cxx_std_11) + +add_library(minicpmv_wrapper OBJECT + minicpmv_wrapper.cpp +) +target_link_libraries(minicpmv_wrapper PRIVATE llava ${CMAKE_THREAD_LIBS_INIT}) \ No newline at end of file diff --git a/examples/minicpmv/README.md b/examples/llava/README_minicpmv2.5.md similarity index 100% rename from examples/minicpmv/README.md rename to examples/llava/README_minicpmv2.5.md diff --git a/examples/minicpmv/assets/xiaomi14pro_test.jpeg b/examples/llava/assets/xiaomi14pro_test.jpeg similarity index 100% rename from examples/minicpmv/assets/xiaomi14pro_test.jpeg rename to examples/llava/assets/xiaomi14pro_test.jpeg diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp index 95fbe3d02..9353f5a02 100644 --- a/examples/llava/clip.cpp +++ b/examples/llava/clip.cpp @@ -3,6 +3,7 @@ // I'll gradually clean and extend it // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch #include "clip.h" +#include "common.h" #include "log.h" #include "ggml.h" #include "ggml-alloc.h" @@ -70,26 +71,27 @@ static std::string format(const char * fmt, ...) { // key constants // -#define KEY_FTYPE "general.file_type" -#define KEY_NAME "general.name" -#define KEY_DESCRIPTION "general.description" -#define KEY_HAS_TEXT_ENC "clip.has_text_encoder" -#define KEY_HAS_VIS_ENC "clip.has_vision_encoder" -#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector" -#define KEY_USE_GELU "clip.use_gelu" -#define KEY_N_EMBD "clip.%s.embedding_length" -#define KEY_N_FF "clip.%s.feed_forward_length" -#define KEY_N_BLOCK "clip.%s.block_count" -#define KEY_N_HEAD "clip.%s.attention.head_count" -#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon" -#define KEY_PROJ_DIM "clip.%s.projection_dim" -#define KEY_TOKENS "tokenizer.ggml.tokens" -#define KEY_N_POSITIONS "clip.text.context_length" -#define KEY_IMAGE_SIZE "clip.vision.image_size" -#define KEY_PATCH_SIZE "clip.vision.patch_size" -#define KEY_IMAGE_MEAN "clip.vision.image_mean" -#define KEY_IMAGE_STD "clip.vision.image_std" -#define KEY_PROJ_TYPE "clip.projector_type" +#define KEY_FTYPE "general.file_type" +#define KEY_NAME "general.name" +#define KEY_DESCRIPTION "general.description" +#define KEY_HAS_TEXT_ENC "clip.has_text_encoder" +#define KEY_HAS_VIS_ENC "clip.has_vision_encoder" +#define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector" +#define KEY_HAS_MiniCPMV_PROJ "clip.has_minicpmv_projector" +#define KEY_USE_GELU "clip.use_gelu" +#define KEY_N_EMBD "clip.%s.embedding_length" +#define KEY_N_FF "clip.%s.feed_forward_length" +#define KEY_N_BLOCK "clip.%s.block_count" +#define KEY_N_HEAD "clip.%s.attention.head_count" +#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon" +#define KEY_PROJ_DIM "clip.%s.projection_dim" +#define KEY_TOKENS "tokenizer.ggml.tokens" +#define KEY_N_POSITIONS "clip.text.context_length" +#define KEY_IMAGE_SIZE "clip.vision.image_size" +#define KEY_PATCH_SIZE "clip.vision.patch_size" +#define KEY_IMAGE_MEAN "clip.vision.image_mean" +#define KEY_IMAGE_STD "clip.vision.image_std" +#define KEY_PROJ_TYPE "clip.projector_type" #define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type" #define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints" @@ -122,6 +124,14 @@ static std::string format(const char * fmt, ...) { #define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s" #define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s" #define TN_IMAGE_NEWLINE "model.image_newline" +// MINICPMV +// #define TN_MINICPMV_POS_EMBD "resampler.pos_embed" +#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k" +#define TN_MINICPMV_QUERY "resampler.query" +#define TN_MINICPMV_PROJ "resampler.proj.weight" +#define TN_MINICPMV_KV_PROJ "resampler.kv.weight" +#define TN_MINICPMV_ATTN "resampler.attn.%s.%s" +#define TN_MINICPMV_LN "resampler.ln_%s.%s" enum projector_type { @@ -129,6 +139,7 @@ enum projector_type { PROJECTOR_TYPE_MLP_NORM, PROJECTOR_TYPE_LDP, PROJECTOR_TYPE_LDPV2, + PROJECTOR_TYPE_RESAMPLER, PROJECTOR_TYPE_UNKNOWN, }; @@ -136,6 +147,7 @@ static std::map PROJECTOR_TYPE_NAMES = { { PROJECTOR_TYPE_MLP, "mlp" }, { PROJECTOR_TYPE_LDP, "ldp" }, { PROJECTOR_TYPE_LDPV2, "ldpv2"}, + { PROJECTOR_TYPE_RESAMPLER, "resampler"}, }; @@ -488,12 +500,34 @@ struct clip_vision_model { struct ggml_tensor * mm_model_mlp_2_b; struct ggml_tensor * mm_model_peg_0_w; struct ggml_tensor * mm_model_peg_0_b; + + // MINICPMV projection + // struct ggml_tensor * mm_model_pos_embed; + struct ggml_tensor * mm_model_pos_embed_k; + struct ggml_tensor * mm_model_query; + struct ggml_tensor * mm_model_proj; + struct ggml_tensor * mm_model_kv_proj; + struct ggml_tensor * mm_model_attn_q_w; + struct ggml_tensor * mm_model_attn_q_b; + struct ggml_tensor * mm_model_attn_k_w; + struct ggml_tensor * mm_model_attn_k_b; + struct ggml_tensor * mm_model_attn_v_w; + struct ggml_tensor * mm_model_attn_v_b; + struct ggml_tensor * mm_model_attn_o_w; + struct ggml_tensor * mm_model_attn_o_b; + struct ggml_tensor * mm_model_ln_q_w; + struct ggml_tensor * mm_model_ln_q_b; + struct ggml_tensor * mm_model_ln_kv_w; + struct ggml_tensor * mm_model_ln_kv_b; + struct ggml_tensor * mm_model_ln_post_w; + struct ggml_tensor * mm_model_ln_post_b; }; struct clip_ctx { bool has_text_encoder = false; bool has_vision_encoder = false; bool has_llava_projector = false; + bool has_minicpmv_projector = false; struct clip_vision_model vision_model; projector_type proj_type = PROJECTOR_TYPE_MLP; @@ -520,7 +554,7 @@ struct clip_ctx { ggml_gallocr_t compute_alloc = NULL; }; -static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) { +static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, std::pair load_image_size = {448, 448}) { if (!ctx->has_vision_encoder) { LOG_TEE("This gguf file seems to have no vision encoder\n"); return nullptr; @@ -529,10 +563,15 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 const auto & model = ctx->vision_model; const auto & hparams = model.hparams; - const int image_size = hparams.image_size; - const int patch_size = hparams.patch_size; - const int num_patches = ((image_size / patch_size) * (image_size / patch_size)); - const int num_patches_per_side = image_size / patch_size; GGML_UNUSED(num_patches_per_side); + const int image_size = hparams.image_size; + int image_size_width = image_size; + int image_size_height = image_size; + if (ctx->has_minicpmv_projector) { + image_size_width = load_image_size.first; + image_size_height = load_image_size.second; + } + const int patch_size = hparams.patch_size; + const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0); const int hidden_size = hparams.hidden_size; const int n_head = hparams.n_head; @@ -542,7 +581,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 const int batch_size = imgs->size; - if (ctx->has_llava_projector) { + if (ctx->has_llava_projector || ctx->has_minicpmv_projector) { GGML_ASSERT(batch_size == 1); } @@ -555,7 +594,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph * gf = ggml_new_graph(ctx0); - struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size, image_size, 3, batch_size); + struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size); ggml_set_name(inp_raw, "inp_raw"); ggml_set_input(inp_raw); @@ -563,25 +602,27 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size); inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3)); + struct ggml_tensor * embeddings = inp; + struct ggml_tensor * pos_embed; if (ctx->has_patch_bias) { // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp)); inp = ggml_add(ctx0, inp, model.patch_bias); } - // concat class_embeddings and patch_embeddings - struct ggml_tensor * embeddings = inp; - if (ctx->has_class_embedding) { - embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size); - ggml_set_name(embeddings, "embeddings"); - ggml_set_input(embeddings); - embeddings = ggml_acc(ctx0, embeddings, model.class_embedding, - embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0); - embeddings = ggml_acc(ctx0, embeddings, inp, - embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]); + if(ctx->has_llava_projector){ + // concat class_embeddings and patch_embeddings + if (ctx->has_class_embedding) { + embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size); + ggml_set_name(embeddings, "embeddings"); + ggml_set_input(embeddings); + embeddings = ggml_acc(ctx0, embeddings, model.class_embedding, + embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0); + embeddings = ggml_acc(ctx0, embeddings, inp, + embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]); + } } - struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions); ggml_set_name(positions, "positions"); ggml_set_input(positions); @@ -589,6 +630,14 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 embeddings = ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions)); + if(ctx->has_minicpmv_projector){ + int pos_w = image_size_width/patch_size; + int pos_h = image_size_height/patch_size; + pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1); + ggml_set_name(pos_embed, "pos_embed"); + ggml_set_input(pos_embed); + } + // pre-layernorm if (ctx->has_pre_norm) { embeddings = ggml_norm(ctx0, embeddings, eps); @@ -687,6 +736,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 } // llava projector + if(ctx->has_llava_projector) { embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]); @@ -864,6 +914,65 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]); embeddings = peg_0; } + + else { + GGML_ASSERT(false); + } + } + // minicpmv projector + else if(ctx->has_minicpmv_projector) + { + if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { + struct ggml_tensor * q = model.mm_model_query; + { // layernorm + q = ggml_norm(ctx0, q, eps); + q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b); + } + struct ggml_tensor *k, *v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings); + { // layernorm + v = ggml_norm(ctx0, v, eps); + v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b); + } + { // position + // q = ggml_add(ctx0, q, model.mm_model_pos_embed); + k = ggml_add(ctx0, v, pos_embed); + } + + { // attention + const int hidden_size = 4096; + const int d_head = 128; + const int n_head = hidden_size/d_head; + const int num_query = 96; + + struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b); + Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head)); + struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b); + struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b); + // permute + Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size); + Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); + Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size); + K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size); + K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); + K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size); + V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size); + V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); + V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size); + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + KQ = ggml_soft_max_inplace(ctx0, KQ); + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); + KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size); + KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size); + + embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b); + } + { // layernorm + embeddings = ggml_norm(ctx0, embeddings, eps); + embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b); + } + embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings); + } else { GGML_ASSERT(false); } @@ -878,7 +987,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 } // read and create ggml_context containing the tensors and their data -struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { +struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1, std::pair load_image_size) { struct ggml_context * meta = NULL; struct gguf_init_params params = { @@ -1020,7 +1129,13 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx); } - GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search + idx = gguf_find_key(ctx, KEY_HAS_MiniCPMV_PROJ); + if (idx != -1) { + new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx); + } + + // GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search + GGML_ASSERT(new_clip->has_vision_encoder); GGML_ASSERT(!new_clip->has_text_encoder); @@ -1031,6 +1146,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { LOG_TEE("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder); LOG_TEE("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder); LOG_TEE("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector); + LOG_TEE("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector); LOG_TEE("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0); LOG_TEE("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0); } @@ -1272,6 +1388,27 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight")); vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias")); } + else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) { + // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD); + vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K); + vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY); + vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ); + vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ); + vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight")); + vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight")); + vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight")); + vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias")); + vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias")); + vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias")); + vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight")); + vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias")); + vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight")); + vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias")); + vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight")); + vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias")); + vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight")); + vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias")); + } else { std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type]; throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); @@ -1310,7 +1447,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend)); clip_image_f32_batch batch; batch.size = 1; - ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch); + ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, load_image_size); ggml_gallocr_reserve(new_clip->compute_alloc, gf); size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0); LOG_TEE("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0); @@ -1424,6 +1561,19 @@ static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32* } } +void uhd_normalize_image_u8_to_f32(struct clip_ctx * ctx, const clip_image_u8* src, clip_image_f32* dst) { + dst->nx = src->nx; + dst->ny = src->ny; + dst->buf.resize(src->buf.size()); + const auto & m3 = ctx->image_mean; + const auto & s3 = ctx->image_std; + + for (size_t i = 0; i < src->buf.size(); ++i) { + int c = i % 3; // rgb + dst->buf[i] = (static_cast(src->buf[i]) / 255.0f - m3[c]) / s3[c]; + } +} + inline float clip(float x, float lower, float upper) { return std::max(lower, std::min(x, upper)); } @@ -1807,12 +1957,100 @@ int clip_n_patches(const struct clip_ctx * ctx) { if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) { n_patches /= 4; + } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { + n_patches = 96; } return n_patches; } -bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) { +static std::vector>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector>& pos) { + assert(embed_dim % 2 == 0); + int H = pos.size(); + int W = pos[0].size(); + + std::vector omega(embed_dim / 2); + for (int i = 0; i < embed_dim / 2; ++i) { + omega[i] = 1.0 / pow(10000.0, static_cast(i) / (embed_dim / 2)); + } + + std::vector>> emb(H, std::vector>(W, std::vector(embed_dim))); + for (int h = 0; h < H; ++h) { + for (int w = 0; w < W; ++w) { + for (int d = 0; d < embed_dim / 2; ++d) { + float out_value = pos[h][w] * omega[d]; + emb[h][w][d] = sin(out_value); + emb[h][w][d + embed_dim / 2] = cos(out_value); + } + } + } + + return emb; +} + +static std::vector>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector>>& grid) { + assert(embed_dim % 2 == 0); + std::vector>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2) + std::vector>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2) + + int H = emb_h.size(); + int W = emb_h[0].size(); + std::vector>> emb(H, std::vector>(W, std::vector(embed_dim))); + + for (int h = 0; h < H; ++h) { + for (int w = 0; w < W; ++w) { + for (int d = 0; d < embed_dim / 2; ++d) { + emb[h][w][d] = emb_h[h][w][d]; + emb[h][w][d + embed_dim / 2] = emb_w[h][w][d]; + } + } + } + return emb; +} + +static std::vector> get_2d_sincos_pos_embed(int embed_dim, const std::pair image_size) { + int grid_h_size = image_size.first; + int grid_w_size = image_size.second; + + std::vector grid_h(grid_h_size); + std::vector grid_w(grid_w_size); + + for (int i = 0; i < grid_h_size; ++i) { + grid_h[i] = static_cast(i); + } + for (int i = 0; i < grid_w_size; ++i) { + grid_w[i] = static_cast(i); + } + + std::vector> grid(grid_h_size, std::vector(grid_w_size)); + for (int h = 0; h < grid_h_size; ++h) { + for (int w = 0; w < grid_w_size; ++w) { + grid[h][w] = grid_w[w]; + } + } + std::vector>> grid_2d = {grid, grid}; + for (int h = 0; h < grid_h_size; ++h) { + for (int w = 0; w < grid_w_size; ++w) { + grid_2d[0][h][w] = grid_h[h]; + grid_2d[1][h][w] = grid_w[w]; + } + } + + std::vector>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d); + + int H = image_size.first; + int W = image_size.second; + std::vector> pos_embed_2d(H * W, std::vector(embed_dim)); + for (int h = 0; h < H; ++h) { + for (int w = 0; w < W; ++w) { + pos_embed_2d[w * H + h] = pos_embed_3d[h][w]; + } + } + + return pos_embed_2d; +} + +bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec, std::pair load_image_size) { if (!ctx->has_vision_encoder) { LOG_TEE("This gguf file seems to have no vision encoder\n"); return false; @@ -1821,10 +2059,10 @@ bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f3 clip_image_f32_batch imgs{}; imgs.size = 1; imgs.data = img; - return clip_image_batch_encode(ctx, n_threads, &imgs, vec); + return clip_image_batch_encode(ctx, n_threads, &imgs, vec, load_image_size); } -bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) { +bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec, std::pair load_image_size) { if (!ctx->has_vision_encoder) { LOG_TEE("This gguf file seems to have no vision encoder\n"); return false; @@ -1834,6 +2072,9 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima if (ctx->has_llava_projector) { GGML_ASSERT(batch_size == 1); // TODO: support multiple images } + if (ctx->has_minicpmv_projector) { + GGML_ASSERT(batch_size == 1); + } // build the inference graph ggml_cgraph * gf = clip_image_build_graph(ctx, imgs); @@ -1844,8 +2085,14 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima const auto & hparams = model.hparams; const int image_size = hparams.image_size; + int image_size_width = image_size; + int image_size_height = image_size; + if (ctx->has_minicpmv_projector) { + image_size_width = load_image_size.first; + image_size_height = load_image_size.second; + } const int patch_size = hparams.patch_size; - const int num_patches = ((image_size / patch_size) * (image_size / patch_size)); + const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0); { @@ -1855,7 +2102,9 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima for (size_t i = 0; i < imgs->size; i++) { const int nx = imgs->data[i].nx; const int ny = imgs->data[i].ny; - GGML_ASSERT(nx == image_size && ny == image_size); + if (!ctx->has_minicpmv_projector) { + GGML_ASSERT(nx == image_size && ny == image_size); + } const int n = nx * ny; @@ -1872,37 +2121,74 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw)); free(data); } + if (ctx->has_minicpmv_projector) { + { + // inspired from siglip: + // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit + // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316 + struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); - { - if (ctx->has_class_embedding) { - struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings"); + int* positions_data = (int*)malloc(ggml_nbytes(positions)); + for (int i = 0; i < num_positions; i++) { + positions_data[i] = std::floor(70.0*i/num_positions); + } + ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); + free(positions_data); + } - void* zero_mem = malloc(ggml_nbytes(embeddings)); - memset(zero_mem, 0, ggml_nbytes(embeddings)); - ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings)); - free(zero_mem); + { + // inspired from resampler of Qwen-VL: + // -> https://huggingface.co/Qwen/Qwen-VL/tree/main + // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23 + struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed"); + int pos_w = image_size_width/patch_size; + int pos_h = image_size_height/patch_size; + int embed_dim = 4096; + auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h)); + + float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed)); + for(int i=0;ihas_class_embedding) { + struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings"); - { - struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); - - int* positions_data = (int*)malloc(ggml_nbytes(positions)); - for (int i = 0; i < num_positions; i++) { - positions_data[i] = i; + void* zero_mem = malloc(ggml_nbytes(embeddings)); + memset(zero_mem, 0, ggml_nbytes(embeddings)); + ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings)); + free(zero_mem); + } } - ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); - free(positions_data); - } - { - struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches"); - int* patches_data = (int*)malloc(ggml_nbytes(patches)); - for (int i = 0; i < num_patches; i++) { - patches_data[i] = i + 1; + { + struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); + + int* positions_data = (int*)malloc(ggml_nbytes(positions)); + for (int i = 0; i < num_positions; i++) { + positions_data[i] = i; + } + ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); + free(positions_data); + } + + { + struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches"); + int* patches_data = (int*)malloc(ggml_nbytes(patches)); + for (int i = 0; i < num_patches; i++) { + patches_data[i] = i + 1; + } + ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches)); + free(patches_data); } - ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches)); - free(patches_data); } if (ggml_backend_is_cpu(ctx->backend)) { @@ -2072,6 +2358,9 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) { if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { return ctx->vision_model.mm_3_b->ne[0]; } + if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { + return 4096; + } std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type]; throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); diff --git a/examples/llava/clip.h b/examples/llava/clip.h index ca3631384..232fe50a8 100644 --- a/examples/llava/clip.h +++ b/examples/llava/clip.h @@ -3,6 +3,7 @@ #include #include +#include #ifdef LLAMA_SHARED # if defined(_WIN32) && !defined(__MINGW32__) @@ -36,7 +37,7 @@ struct clip_image_f32_batch { size_t size; }; -CLIP_API struct clip_ctx * clip_model_load (const char * fname, int verbosity); +CLIP_API struct clip_ctx * clip_model_load (const char * fname, int verbosity, std::pair load_image_size = {448, 448}); CLIP_API struct clip_ctx * clip_model_load_cpu(const char * fname, int verbosity); CLIP_API void clip_free(struct clip_ctx * ctx); @@ -71,10 +72,12 @@ CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t byt /** preprocess img and store the result in res_imgs, pad_to_square may be overridden to false depending on model configuration */ CLIP_API bool clip_image_preprocess(struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32_batch * res_imgs ); +CLIP_API void uhd_normalize_image_u8_to_f32(struct clip_ctx * ctx, const clip_image_u8* src, clip_image_f32* dst); + CLIP_API struct ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx); -CLIP_API bool clip_image_encode (struct clip_ctx * ctx, int n_threads, struct clip_image_f32 * img, float * vec); -CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct clip_image_f32_batch * imgs, float * vec); +CLIP_API bool clip_image_encode (struct clip_ctx * ctx, int n_threads, struct clip_image_f32 * img, float * vec, std::pair load_image_size = {448, 448}); +CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct clip_image_f32_batch * imgs, float * vec, std::pair load_image_size = {448, 448}); CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype); diff --git a/examples/llava/llava.cpp b/examples/llava/llava.cpp index 63878d176..0d7324037 100644 --- a/examples/llava/llava.cpp +++ b/examples/llava/llava.cpp @@ -409,3 +409,342 @@ void llava_image_embed_free(struct llava_image_embed * embed) { free(embed->embed); free(embed); } + +static bool encode_image_with_clip_uhd(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) { + // std::vector img_res_v; + // format VectN x H x W x RGB (N x 448 x 448 x 3) + clip_image_f32 * img_res_v = clip_image_f32_init(); + std::pair load_image_size; + load_image_size.first = img->nx; + load_image_size.second = img->ny; + uhd_normalize_image_u8_to_f32(ctx_clip, img, img_res_v); + + const int64_t t_img_enc_start_us = ggml_time_us(); + + const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip); + LOG_TEE("\n%s: mm_patch_merge_type is %s.\n", __func__, mm_patch_merge_type); + + *n_img_pos = clip_n_patches(ctx_clip); + bool encoded = clip_image_encode(ctx_clip, n_threads, img_res_v, image_embd, load_image_size); // image_embd shape is 96 x 4096 + if (!encoded) { + LOG_TEE("Unable to encode image\n"); + return false; + } + LOG_TEE("%s: image embedding created: %d tokens\n", __func__, *n_img_pos); + + const int64_t t_img_enc_end_us = ggml_time_us(); + float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0; + LOG_TEE("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos); + + return true; +} + +static int ensure_divide(int length, int patch_size) { + return std::max(static_cast(std::round(static_cast(length) / patch_size) * patch_size), patch_size); +} + +static std::pair uhd_find_best_resize(std::pair original_size, int scale_resolution, int patch_size, bool allow_upscale = false) { + int width = original_size.first; + int height = original_size.second; + if ((width * height > scale_resolution * scale_resolution) || allow_upscale) { + float r = static_cast(width) / height; + height = static_cast(scale_resolution / std::sqrt(r)); + width = static_cast(height * r); + } + int best_width = ensure_divide(width, patch_size); + int best_height = ensure_divide(height, patch_size); + return std::make_pair(best_width, best_height); +} + +static std::pair uhd_get_refine_size(std::pair original_size, std::pair grid, int scale_resolution, int patch_size, bool allow_upscale = false) { + int width, height; + std::tie(width, height) = original_size; + int grid_x, grid_y; + std::tie(grid_x, grid_y) = grid; + + int refine_width = ensure_divide(width, grid_x); + int refine_height = ensure_divide(height, grid_y); + + int grid_width = refine_width / grid_x; + int grid_height = refine_height / grid_y; + + // auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line) + auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair + int best_grid_width, best_grid_height; + std::tie(best_grid_width, best_grid_height) = best_grid_size; + + // std::pair refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line) + std::pair refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line) + return refine_size; +} + +inline int clip(int x, int lower, int upper) { + return std::max(lower, std::min(x, upper)); +} + +static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) { + const int nx = img.nx; + const int ny = img.ny; + + dst.nx = target_width; + dst.ny = target_height; + dst.buf.resize(3 * target_width * target_height); + + float Cc; + float C[5]; + float d0, d2, d3, a0, a1, a2, a3; + int i, j, k, jj; + int x, y; + float dx, dy; + float tx, ty; + + tx = (float)nx / (float)target_width; + ty = (float)ny / (float)target_height; + + // Bicubic interpolation; adapted from ViT.cpp, inspired from : + // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36 + // -> https://en.wikipedia.org/wiki/Bicubic_interpolation + + for (i = 0; i < target_height; i++) { + for (j = 0; j < target_width; j++) { + x = (int)(tx * j); + y = (int)(ty * i); + + dx = tx * j - x; + dy = ty * i - y; + + for (k = 0; k < 3; k++) { + for (jj = 0; jj <= 3; jj++) { + d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; + d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; + d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; + a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; + + a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; + a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; + a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; + + C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx; + + d0 = C[0] - C[1]; + d2 = C[2] - C[1]; + d3 = C[3] - C[1]; + a0 = C[1]; + a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; + a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; + a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; + Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy; + + const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f); + dst.buf[(i * target_width + j) * 3 + k] = float(Cc2); + } + } + } + } + + return true; +} + +// inspired from LLaVA-UHD: +// -> https://arxiv.org/pdf/2403.11703 +// -> https://github.com/thunlp/LLaVA-UHD +// -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118 +static std::vector> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) { + const std::pair original_size={img->nx,img->ny}; + const int original_width = img->nx; + const int original_height = img->ny; + const float log_ratio = log(1.0*original_width/original_height); // + const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution); + const int multiple = fmin(ceil(ratio), max_slice_nums); + + std::vector> images; + LOG_TEE("%s: multiple %d\n", __func__, multiple); + images.push_back(std::vector()); + + if(multiple <= 1){ + auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true); + clip_image_u8 *source_image = clip_image_u8_init(); + bicubic_resize(*img, *source_image, best_size.first, best_size.second); + // source_image = image.resize(best_size, Image.Resampling.BICUBIC) + images[images.size()-1].push_back(source_image); + } + else if(multiple > 1){ + + std::vector candidate_split_grids_nums; + for (int i : {multiple - 1, multiple, multiple + 1}) { + if (i == 1 || i > max_slice_nums) { + continue; + } + candidate_split_grids_nums.push_back(i); + } + + auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size); + clip_image_u8 *source_image = clip_image_u8_init(); + bicubic_resize(*img, *source_image, best_size.first, best_size.second); + // source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC) + LOG_TEE("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second); + images[images.size()-1].push_back(source_image); + + std::vector> candidate_grids; + + for (int split_grids_nums : candidate_split_grids_nums) { + int m = 1; + while (m <= split_grids_nums) { + if (split_grids_nums % m == 0) { + candidate_grids.emplace_back(m, split_grids_nums / m); + } + ++m; + } + } + + std::pair best_grid{1, 1}; + float min_error = std::numeric_limits::infinity(); + + for (const auto& grid : candidate_grids) { + float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second)); + if (error < min_error) { + best_grid = grid; + min_error = error; + } + } + LOG_TEE("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second); + + auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true); + clip_image_u8 *refine_image = clip_image_u8_init(); + bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second); + + LOG_TEE("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second); + + // split_to_patches + int width = refine_image->nx; + int height = refine_image->ny; + int grid_x = int(width / best_grid.first); + int grid_y = int(height / best_grid.second); + for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){ + images.push_back(std::vector()); + for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){ + clip_image_u8 * patch = clip_image_u8_init(); + patch->nx = grid_x; + patch->ny = grid_y; + patch->buf.resize(3 * patch->nx * patch->ny); + for (int y = patches_i; y < patches_i + grid_y; ++y) { + for (int x = patches_j; x < patches_j + grid_x; ++x) { + const int i = 3 * (y * refine_image->nx + x); + const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j)); + patch->buf[j] = refine_image->buf[i]; + patch->buf[j+1] = refine_image->buf[i+1]; + patch->buf[j+2] = refine_image->buf[i+2]; + } + } + images[images.size()-1].push_back(patch); + } + } + } + return images; +} + +struct uhd_image_embed * llava_image_embed_make_with_bytes_uhd(struct clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img) { + std::vector> imgs = uhd_slice_image(img); + for (size_t i = 0; i < imgs.size(); ++i){ + for (size_t j = 0; j < imgs[i].size(); ++j) { + LOG_TEE("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny); + } + } + struct uhd_image_embed * results = new uhd_image_embed(); + + for (size_t i = 0; i < imgs.size(); ++i){ + results->image_embeds.push_back(std::vector()); + for (size_t j = 0; j < imgs[i].size(); ++j) { + float* image_embed = NULL; + int n_image_pos = 0; + bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, imgs[i][j], &image_embed, &n_image_pos); + if (!image_embed_result) { + LOG_TEE("%s: coulnd't embed the image\n", __func__); + return NULL; + } + + auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed)); + result->embed = image_embed; + result->n_image_pos = n_image_pos; + results->image_embeds[i].push_back(result); + } + } + return results; +} + +bool llava_image_embed_make_with_clip_img_ollama(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) { + auto embeds = llava_image_embed_make_with_bytes_uhd(ctx_clip, n_threads, img); + auto image_embed_slices = embeds->image_embeds; + if (!image_embed_slices[0][0]){ + LOG_TEE("%s: failed to embeding image\n", __func__); + return false; + } + std::string fname = "./examples/minicpm-v2.5/slice_token_for_ollama.raw"; + unsigned char* slice_token; + long image_bytes_length; + auto loaded = load_file_to_bytes(fname.c_str(), &slice_token, &image_bytes_length); + if (!loaded) { + LOG_TEE("%s: failed to load %s\n", __func__, fname.c_str()); + return false; + } + + float * all_image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*61); + int all_n_img_pos=0; + int token_len = clip_n_mmproj_embd(ctx_clip)*sizeof(float); + + std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token, token_len); + std::memcpy(all_image_embd+token_len*all_n_img_pos, image_embed_slices[0][0]->embed, 96*token_len); + all_n_img_pos+=clip_n_patches(ctx_clip); + std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len, token_len); + if (image_embed_slices.size() > 1) { + std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len*2, token_len); + for (size_t i = 1; i < image_embed_slices.size(); ++i) { + for (size_t j = 0; j < image_embed_slices[i].size(); ++j) { + std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token, token_len); + std::memcpy(all_image_embd+token_len*all_n_img_pos, image_embed_slices[i][j]->embed, 96*token_len); + all_n_img_pos+=clip_n_patches(ctx_clip); + std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len, token_len); + if (j == image_embed_slices[i].size() - 1) { + std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len*4, token_len); + } + } + } + std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len*3, token_len); + } + *image_embd_out = all_image_embd; + *n_img_pos_out = all_n_img_pos; + return true; +} + +struct uhd_image_embed * llava_image_embed_make_with_filename_uhd(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) { + unsigned char* image_bytes; + long image_bytes_length; + auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length); + if (!loaded) { + LOG_TEE("%s: failed to load %s\n", __func__, image_path); + return NULL; + } + clip_image_u8 * img = clip_image_u8_init(); + if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) { + clip_image_u8_free(img); + LOG_TEE("%s: can't load image from bytes, is it a valid image?", __func__); + return NULL; + } + + struct uhd_image_embed * embeds = llava_image_embed_make_with_bytes_uhd(ctx_clip, n_threads, img); + + clip_image_u8_free(img); + free(image_bytes); + return embeds; +} + +void llava_image_embed_free_uhd(struct uhd_image_embed * embed) { + for (size_t i = 0; i < embed->image_embeds.size(); ++i){ + for (size_t j = 0; j < embed->image_embeds[i].size(); ++j){ + free(embed->image_embeds[i][j]->embed); + free(embed->image_embeds[i][j]); + } + embed->image_embeds[i] = std::vector(); + } + embed->image_embeds = std::vector>(); +} \ No newline at end of file diff --git a/examples/llava/llava.h b/examples/llava/llava.h index 19212f6e9..420ae15d6 100644 --- a/examples/llava/llava.h +++ b/examples/llava/llava.h @@ -19,6 +19,10 @@ struct clip_ctx; +struct uhd_image_embed { + std::vector> image_embeds; +}; + #ifdef __cplusplus extern "C" { #endif @@ -40,6 +44,13 @@ LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed); /** free an embedding made with llava_image_embed_make_* */ +/** build an image embed from image file bytes */ +LLAVA_API struct uhd_image_embed * llava_image_embed_make_with_bytes_uhd(struct clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img); +/** build an image embed from a path to an image filename */ +LLAVA_API bool llava_image_embed_make_with_clip_img_ollama(struct clip_ctx * ctx_clip, int n_threads, const struct clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out); +LLAVA_API struct uhd_image_embed * llava_image_embed_make_with_filename_uhd(struct clip_ctx * ctx_clip, int n_threads, const char * image_path); +LLAVA_API void llava_image_embed_free_uhd(struct uhd_image_embed * embed); + /** write the image represented by embed into the llama context with batch size n_batch, starting at context pos n_past. on completion, n_past points to the next position in the context after the image embed. */ LLAVA_API bool llava_eval_image_embed(struct llama_context * ctx_llama, const struct llava_image_embed * embed, int n_batch, int * n_past); diff --git a/examples/minicpmv/minicpmv-cli.cpp b/examples/llava/minicpmv-cli.cpp similarity index 99% rename from examples/minicpmv/minicpmv-cli.cpp rename to examples/llava/minicpmv-cli.cpp index 5ba515bb3..befaec8bc 100644 --- a/examples/minicpmv/minicpmv-cli.cpp +++ b/examples/llava/minicpmv-cli.cpp @@ -2,7 +2,7 @@ #include "log.h" #include "common.h" #include "clip.h" -#include "minicpmv.h" +#include "llava.h" #include "minicpmv_wrapper.h" #include "llama.h" diff --git a/examples/minicpmv/minicpmv-convert-image-encoder-to-gguf.py b/examples/llava/minicpmv-convert-image-encoder-to-gguf.py similarity index 100% rename from examples/minicpmv/minicpmv-convert-image-encoder-to-gguf.py rename to examples/llava/minicpmv-convert-image-encoder-to-gguf.py diff --git a/examples/minicpmv/minicpmv-surgery.py b/examples/llava/minicpmv-surgery.py similarity index 100% rename from examples/minicpmv/minicpmv-surgery.py rename to examples/llava/minicpmv-surgery.py diff --git a/examples/minicpmv/minicpmv_wrapper.cpp b/examples/llava/minicpmv_wrapper.cpp similarity index 99% rename from examples/minicpmv/minicpmv_wrapper.cpp rename to examples/llava/minicpmv_wrapper.cpp index 544bf5519..5e1d9b134 100644 --- a/examples/minicpmv/minicpmv_wrapper.cpp +++ b/examples/llava/minicpmv_wrapper.cpp @@ -1,7 +1,7 @@ #include "ggml.h" #include "common.h" #include "clip.h" -#include "minicpmv.h" +#include "llava.h" #include "minicpmv_wrapper.h" #include "llama.h" #include diff --git a/examples/minicpmv/minicpmv_wrapper.h b/examples/llava/minicpmv_wrapper.h similarity index 98% rename from examples/minicpmv/minicpmv_wrapper.h rename to examples/llava/minicpmv_wrapper.h index f6c7b3f14..7bd7b44fe 100644 --- a/examples/minicpmv/minicpmv_wrapper.h +++ b/examples/llava/minicpmv_wrapper.h @@ -3,7 +3,7 @@ #include "common.h" #include "clip.h" -#include "minicpmv.h" +#include "llava.h" #include "llama.h" #ifdef LLAMA_SHARED diff --git a/examples/llava/requirements.txt b/examples/llava/requirements.txt index f80f727a7..43dbc7e19 100644 --- a/examples/llava/requirements.txt +++ b/examples/llava/requirements.txt @@ -1,3 +1,4 @@ -r ../../requirements/requirements-convert.txt pillow~=10.2.0 torch~=2.1.1 +torchvision==0.16.2 \ No newline at end of file diff --git a/examples/minicpmv/CMakeLists.txt b/examples/minicpmv/CMakeLists.txt deleted file mode 100644 index 7f6f3f693..000000000 --- a/examples/minicpmv/CMakeLists.txt +++ /dev/null @@ -1,42 +0,0 @@ -add_library(minicpmv OBJECT - minicpmv.cpp - minicpmv.h - clip.cpp - clip.h - ) - -target_link_libraries(minicpmv PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT}) - -target_include_directories(minicpmv PUBLIC .) -target_include_directories(minicpmv PUBLIC ../..) -target_include_directories(minicpmv PUBLIC ../../common) - -target_compile_features(minicpmv PRIVATE cxx_std_11) - -add_library(minicpmv_static STATIC $) -if (BUILD_SHARED_LIBS) - set_target_properties(minicpmv PROPERTIES POSITION_INDEPENDENT_CODE ON) - target_compile_definitions(minicpmv PRIVATE LLAMA_SHARED LLAMA_BUILD) - add_library(minicpmv_shared SHARED $) - target_link_libraries(minicpmv_shared PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT}) - install(TARGETS minicpmv_shared LIBRARY) -endif() - -if (NOT MSVC) - target_compile_options(minicpmv PRIVATE -Wno-cast-qual) # stb_image.h -endif() - -if(TARGET BUILD_INFO) - add_dependencies(minicpmv BUILD_INFO) -endif() - -set(TARGET minicpmv-cli) -add_executable(minicpmv-cli minicpmv-cli.cpp) -install(TARGETS minicpmv-cli RUNTIME) -target_link_libraries(minicpmv-cli PRIVATE common minicpmv_wrapper minicpmv ${CMAKE_THREAD_LIBS_INIT}) -target_compile_features(minicpmv PRIVATE cxx_std_11) - -add_library(minicpmv_wrapper OBJECT - minicpmv_wrapper.cpp -) -target_link_libraries(minicpmv_wrapper PRIVATE minicpmv ${CMAKE_THREAD_LIBS_INIT}) \ No newline at end of file diff --git a/examples/minicpmv/clip.cpp b/examples/minicpmv/clip.cpp deleted file mode 100644 index b10e9b0c0..000000000 --- a/examples/minicpmv/clip.cpp +++ /dev/null @@ -1,1869 +0,0 @@ -#include "clip.h" -#include "common.h" -#include "log.h" -#include "ggml.h" -#include "ggml-alloc.h" -#include "ggml-backend.h" - -#ifdef GGML_USE_CUDA -#include "ggml-cuda.h" -#endif - -#ifdef GGML_USE_METAL -#include "ggml-metal.h" -#endif - -#define STB_IMAGE_IMPLEMENTATION -#include "stb_image.h" - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -//#define CLIP_DEBUG_FUNCTIONS - -// RGB uint8 image -struct clip_image_u8 { - int nx; - int ny; - - std::vector buf; -}; - -// RGB float32 image (NHWC) -// Memory layout: RGBRGBRGB... -struct clip_image_f32 { - int nx; - int ny; - - std::vector buf; -}; - -static std::string format(const char * fmt, ...) { - va_list ap; - va_list ap2; - va_start(ap, fmt); - va_copy(ap2, ap); - int size = vsnprintf(NULL, 0, fmt, ap); - GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT - std::vector buf(size + 1); - int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); - GGML_ASSERT(size2 == size); - va_end(ap2); - va_end(ap); - return std::string(buf.data(), buf.size()); -} - -// -// key constants -// - -#define KEY_FTYPE "general.file_type" -#define KEY_NAME "general.name" -#define KEY_DESCRIPTION "general.description" -#define KEY_HAS_TEXT_ENC "clip.has_text_encoder" -#define KEY_HAS_VIS_ENC "clip.has_vision_encoder" -#define KEY_HAS_LLAVA_PROJ "clip.has_minicpmv_projector" -#define KEY_USE_GELU "clip.use_gelu" -#define KEY_N_EMBD "clip.%s.embedding_length" -#define KEY_N_FF "clip.%s.feed_forward_length" -#define KEY_N_BLOCK "clip.%s.block_count" -#define KEY_N_HEAD "clip.%s.attention.head_count" -#define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon" -#define KEY_PROJ_DIM "clip.%s.projection_dim" -#define KEY_TOKENS "tokenizer.ggml.tokens" -#define KEY_N_POSITIONS "clip.text.context_length" -#define KEY_IMAGE_SIZE "clip.vision.image_size" -#define KEY_PATCH_SIZE "clip.vision.patch_size" -#define KEY_IMAGE_MEAN "clip.vision.image_mean" -#define KEY_IMAGE_STD "clip.vision.image_std" -#define KEY_PROJ_TYPE "clip.projector_type" - -#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type" -#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints" -#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution" - - -// -// tensor name constants -// - -#define TN_TOKEN_EMBD "%s.token_embd.weight" -// #define TN_POS_EMBD "%s.position_embd" -// // #define TN_CLASS_EMBD "v.class_embd" -// #define TN_PATCH_EMBD "v.patch_embd.proj.%s" -#define TN_POS_EMBD "%s.position_embd.weight" -// #define TN_CLASS_EMBD "v.class_embd" -#define TN_PATCH_EMBD "v.patch_embd.%s" -#define TN_ATTN_K "%s.blk.%d.attn_k.%s" -#define TN_ATTN_Q "%s.blk.%d.attn_q.%s" -#define TN_ATTN_V "%s.blk.%d.attn_v.%s" -#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s" -#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s" -#define TN_FFN_UP "%s.blk.%d.ffn_up.%s" -#define TN_LN_1 "%s.blk.%d.ln1.%s" -#define TN_LN_2 "%s.blk.%d.ln2.%s" -// #define TN_LN_PRE "%s.pre_ln.%s" -#define TN_LN_POST "%s.post_ln.%s" -#define TN_TEXT_PROJ "text_projection.weight" -#define TN_VIS_PROJ "visual_projection.weight" -#define TN_LLAVA_PROJ "mm.%d.%s" -#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s" -#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s" -#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s" -#define TN_IMAGE_NEWLINE "model.image_newline" -// MINICPMV -// #define TN_MINICPMV_POS_EMBD "resampler.pos_embed" -#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k" -#define TN_MINICPMV_QUERY "resampler.query" -#define TN_MINICPMV_PROJ "resampler.proj.weight" -#define TN_MINICPMV_KV_PROJ "resampler.kv.weight" -#define TN_MINICPMV_ATTN "resampler.attn.%s.%s" -#define TN_MINICPMV_LN "resampler.ln_%s.%s" - - -enum projector_type { - PROJECTOR_TYPE_MLP, - PROJECTOR_TYPE_MLP_NORM, - PROJECTOR_TYPE_LDP, - PROJECTOR_TYPE_LDPV2, - PROJECTOR_TYPE_RESAMPLER, - PROJECTOR_TYPE_UNKNOWN, -}; - -static std::map PROJECTOR_TYPE_NAMES = { - { PROJECTOR_TYPE_MLP, "mlp" }, - { PROJECTOR_TYPE_LDP, "ldp" }, - { PROJECTOR_TYPE_LDPV2, "ldpv2"}, - { PROJECTOR_TYPE_RESAMPLER, "resampler"}, -}; - - -// -// utilities to get data from a gguf file -// - -static int get_key_idx(const gguf_context * ctx, const char * key) { - int i = gguf_find_key(ctx, key); - if (i == -1) { - LOG_TEE("key %s not found in file\n", key); - throw std::runtime_error(format("Missing required key: %s", key)); - } - - return i; -} - -static uint32_t get_u32(const gguf_context * ctx, const std::string & key) { - const int i = get_key_idx(ctx, key.c_str()); - - return gguf_get_val_u32(ctx, i); -} - -static float get_f32(const gguf_context * ctx, const std::string & key) { - const int i = get_key_idx(ctx, key.c_str()); - - return gguf_get_val_f32(ctx, i); -} - -static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) { - struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str()); - if (!cur) { - throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str())); - } - - return cur; -} - -static std::string get_ftype(int ftype) { - return ggml_type_name(static_cast(ftype)); -} - -static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) { - switch (type) { - case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]); - case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]); - case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]); - case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]); - case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]); - case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]); - case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]); - case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]); - case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]); - case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]); - case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false"; - default: return format("unknown type %d", type); - } -} - -static void replace_all(std::string & s, const std::string & search, const std::string & replace) { - std::string result; - for (size_t pos = 0; ; pos += search.length()) { - auto new_pos = s.find(search, pos); - if (new_pos == std::string::npos) { - result += s.substr(pos, s.size() - pos); - break; - } - result += s.substr(pos, new_pos - pos) + replace; - pos = new_pos; - } - s = std::move(result); -} - -static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) { - const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i); - - switch (type) { - case GGUF_TYPE_STRING: - return gguf_get_val_str(ctx_gguf, i); - case GGUF_TYPE_ARRAY: - { - const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i); - int arr_n = gguf_get_arr_n(ctx_gguf, i); - const void * data = gguf_get_arr_data(ctx_gguf, i); - std::stringstream ss; - ss << "["; - for (int j = 0; j < arr_n; j++) { - if (arr_type == GGUF_TYPE_STRING) { - std::string val = gguf_get_arr_str(ctx_gguf, i, j); - // escape quotes - replace_all(val, "\\", "\\\\"); - replace_all(val, "\"", "\\\""); - ss << '"' << val << '"'; - } else if (arr_type == GGUF_TYPE_ARRAY) { - ss << "???"; - } else { - ss << gguf_data_to_str(arr_type, data, j); - } - if (j < arr_n - 1) { - ss << ", "; - } - } - ss << "]"; - return ss.str(); - } - default: - return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0); - } -} - -static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") { - size_t tensor_size = ggml_nbytes(tensor); - LOG_TEE("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n", - prefix, ggml_n_dims(tensor), tensor->name, tensor_size, - tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type)); -} - -static projector_type clip_projector_type_from_string(const std::string & name) { - for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT - if (kv.second == name) { - return kv.first; - } - } - return PROJECTOR_TYPE_UNKNOWN; -} - -#ifdef CLIP_DEBUG_FUNCTIONS -static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) { - std::ofstream file(filename, std::ios::binary); - if (!file.is_open()) { - LOG_TEE("Failed to open file for writing: %s\n", filename.c_str()); - return; - } - - // PPM header: P6 format, width, height, and max color value - file << "P6\n" << img.nx << " " << img.ny << "\n255\n"; - - // Write pixel data - for (size_t i = 0; i < img.buf.size(); i += 3) { - // PPM expects binary data in RGB format, which matches our image buffer - file.write(reinterpret_cast(&img.buf[i]), 3); - } - - file.close(); -} - -static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) { - std::ofstream file(filename, std::ios::binary); - if (!file.is_open()) { - LOG_TEE("Failed to open file for writing: %s\n", filename.c_str()); - return; - } - - int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data - int bytesPerPixel = 3; - int widthInBytes = img.nx * bytesPerPixel; - int paddingAmount = (4 - (widthInBytes % 4)) % 4; - int stride = widthInBytes + paddingAmount; - - // Bitmap file header - unsigned char fileHeader[14] = { - 'B','M', // Signature - 0,0,0,0, // Image file size in bytes - 0,0,0,0, // Reserved - 54,0,0,0 // Start of pixel array - }; - - // Total file size - fileSize = 54 + (stride * img.ny); - fileHeader[2] = (unsigned char)(fileSize); - fileHeader[3] = (unsigned char)(fileSize >> 8); - fileHeader[4] = (unsigned char)(fileSize >> 16); - fileHeader[5] = (unsigned char)(fileSize >> 24); - - // Bitmap information header (BITMAPINFOHEADER) - unsigned char infoHeader[40] = { - 40,0,0,0, // Size of this header (40 bytes) - 0,0,0,0, // Image width - 0,0,0,0, // Image height - 1,0, // Number of color planes - 24,0, // Bits per pixel - 0,0,0,0, // No compression - 0,0,0,0, // Image size (can be 0 for no compression) - 0,0,0,0, // X pixels per meter (not specified) - 0,0,0,0, // Y pixels per meter (not specified) - 0,0,0,0, // Total colors (color table not used) - 0,0,0,0 // Important colors (all are important) - }; - - // Width and height in the information header - infoHeader[4] = (unsigned char)(img.nx); - infoHeader[5] = (unsigned char)(img.nx >> 8); - infoHeader[6] = (unsigned char)(img.nx >> 16); - infoHeader[7] = (unsigned char)(img.nx >> 24); - infoHeader[8] = (unsigned char)(img.ny); - infoHeader[9] = (unsigned char)(img.ny >> 8); - infoHeader[10] = (unsigned char)(img.ny >> 16); - infoHeader[11] = (unsigned char)(img.ny >> 24); - - // Write file headers - file.write(reinterpret_cast(fileHeader), sizeof(fileHeader)); - file.write(reinterpret_cast(infoHeader), sizeof(infoHeader)); - - // Pixel data - std::vector padding(3, 0); // Max padding size to be added to each row - for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top - for (int x = 0; x < img.nx; ++x) { - // Each pixel - size_t pixelIndex = (y * img.nx + x) * 3; - unsigned char pixel[3] = { - img.buf[pixelIndex + 2], // BMP stores pixels in BGR format - img.buf[pixelIndex + 1], - img.buf[pixelIndex] - }; - file.write(reinterpret_cast(pixel), 3); - } - // Write padding for the row - file.write(reinterpret_cast(padding.data()), paddingAmount); - } - - file.close(); -} - -// debug function to convert f32 to u8 -static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) { - dst.nx = src.nx; - dst.ny = src.ny; - dst.buf.resize(3 * src.nx * src.ny); - for (size_t i = 0; i < src.buf.size(); ++i) { - dst.buf[i] = static_cast(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255)); - } -} -#endif - - -// -// clip layers -// - -struct clip_hparams { - int32_t image_size; - int32_t patch_size; - int32_t hidden_size; - int32_t n_intermediate; - int32_t projection_dim; - int32_t n_head; - int32_t n_layer; - - float eps; - - char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default) - - int32_t image_grid_pinpoints[32]; - int32_t image_crop_resolution; -}; - -struct clip_layer { - // attention - struct ggml_tensor * k_w; - struct ggml_tensor * k_b; - struct ggml_tensor * q_w; - struct ggml_tensor * q_b; - struct ggml_tensor * v_w; - struct ggml_tensor * v_b; - - struct ggml_tensor * o_w; - struct ggml_tensor * o_b; - - // layernorm 1 - struct ggml_tensor * ln_1_w; - struct ggml_tensor * ln_1_b; - - // ff - struct ggml_tensor * ff_i_w; - struct ggml_tensor * ff_i_b; - - struct ggml_tensor * ff_o_w; - struct ggml_tensor * ff_o_b; - - // layernorm 2 - struct ggml_tensor * ln_2_w; - struct ggml_tensor * ln_2_b; -}; - -struct clip_vision_model { - struct clip_hparams hparams; - - // embeddings - // struct ggml_tensor * class_embedding; - struct ggml_tensor * patch_embeddings_w; - struct ggml_tensor * patch_embeddings_b; - struct ggml_tensor * position_embeddings; - - // struct ggml_tensor * pre_ln_w; - // struct ggml_tensor * pre_ln_b; - - std::vector layers; - - struct ggml_tensor * post_ln_w; - struct ggml_tensor * post_ln_b; - - struct ggml_tensor * projection; - - // LLaVA projection - struct ggml_tensor * mm_0_w = NULL; - struct ggml_tensor * mm_0_b = NULL; - struct ggml_tensor * mm_2_w = NULL; - struct ggml_tensor * mm_2_b = NULL; - - struct ggml_tensor * image_newline = NULL; - - // Yi type models with mlp+normalization projection - struct ggml_tensor * mm_1_w = NULL; // Yi type models have 0, 1, 3, 4 - struct ggml_tensor * mm_1_b = NULL; - struct ggml_tensor * mm_3_w = NULL; - struct ggml_tensor * mm_3_b = NULL; - struct ggml_tensor * mm_4_w = NULL; - struct ggml_tensor * mm_4_b = NULL; - - // MobileVLM projection - struct ggml_tensor * mm_model_mlp_1_w; - struct ggml_tensor * mm_model_mlp_1_b; - struct ggml_tensor * mm_model_mlp_3_w; - struct ggml_tensor * mm_model_mlp_3_b; - struct ggml_tensor * mm_model_block_1_block_0_0_w; - struct ggml_tensor * mm_model_block_1_block_0_1_w; - struct ggml_tensor * mm_model_block_1_block_0_1_b; - struct ggml_tensor * mm_model_block_1_block_1_fc1_w; - struct ggml_tensor * mm_model_block_1_block_1_fc1_b; - struct ggml_tensor * mm_model_block_1_block_1_fc2_w; - struct ggml_tensor * mm_model_block_1_block_1_fc2_b; - struct ggml_tensor * mm_model_block_1_block_2_0_w; - struct ggml_tensor * mm_model_block_1_block_2_1_w; - struct ggml_tensor * mm_model_block_1_block_2_1_b; - struct ggml_tensor * mm_model_block_2_block_0_0_w; - struct ggml_tensor * mm_model_block_2_block_0_1_w; - struct ggml_tensor * mm_model_block_2_block_0_1_b; - struct ggml_tensor * mm_model_block_2_block_1_fc1_w; - struct ggml_tensor * mm_model_block_2_block_1_fc1_b; - struct ggml_tensor * mm_model_block_2_block_1_fc2_w; - struct ggml_tensor * mm_model_block_2_block_1_fc2_b; - struct ggml_tensor * mm_model_block_2_block_2_0_w; - struct ggml_tensor * mm_model_block_2_block_2_1_w; - struct ggml_tensor * mm_model_block_2_block_2_1_b; - - // MobileVLM_V2 projection - struct ggml_tensor * mm_model_mlp_0_w; - struct ggml_tensor * mm_model_mlp_0_b; - struct ggml_tensor * mm_model_mlp_2_w; - struct ggml_tensor * mm_model_mlp_2_b; - struct ggml_tensor * mm_model_peg_0_w; - struct ggml_tensor * mm_model_peg_0_b; - - // MINICPMV projection - // struct ggml_tensor * mm_model_pos_embed; - struct ggml_tensor * mm_model_pos_embed_k; - struct ggml_tensor * mm_model_query; - struct ggml_tensor * mm_model_proj; - struct ggml_tensor * mm_model_kv_proj; - struct ggml_tensor * mm_model_attn_q_w; - struct ggml_tensor * mm_model_attn_q_b; - struct ggml_tensor * mm_model_attn_k_w; - struct ggml_tensor * mm_model_attn_k_b; - struct ggml_tensor * mm_model_attn_v_w; - struct ggml_tensor * mm_model_attn_v_b; - struct ggml_tensor * mm_model_attn_o_w; - struct ggml_tensor * mm_model_attn_o_b; - struct ggml_tensor * mm_model_ln_q_w; - struct ggml_tensor * mm_model_ln_q_b; - struct ggml_tensor * mm_model_ln_kv_w; - struct ggml_tensor * mm_model_ln_kv_b; - struct ggml_tensor * mm_model_ln_post_w; - struct ggml_tensor * mm_model_ln_post_b; -}; - -struct clip_ctx { - bool has_text_encoder = false; - bool has_vision_encoder = false; - bool has_minicpmv_projector = false; - - struct clip_vision_model vision_model; - projector_type proj_type = PROJECTOR_TYPE_MLP; - - float image_mean[3]; - float image_std[3]; - bool use_gelu = false; - int32_t ftype = 1; - - struct gguf_context * ctx_gguf; - struct ggml_context * ctx_data; - - std::vector buf_compute_meta; - - // memory buffers to evaluate the model - ggml_backend_buffer_t params_buffer = NULL; - - ggml_backend_t backend = NULL; - ggml_gallocr_t compute_alloc = NULL; -}; - -static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, std::pair load_image_size = {448, 448}) { - if (!ctx->has_vision_encoder) { - LOG_TEE("This gguf file seems to have no vision encoder\n"); - return nullptr; - } - - const auto & model = ctx->vision_model; - const auto & hparams = model.hparams; - - const int image_size_width = load_image_size.first; - const int image_size_height = load_image_size.second; - const int patch_size = hparams.patch_size; - const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); - const int num_positions = num_patches; - const int hidden_size = hparams.hidden_size; - const int n_head = hparams.n_head; - const int d_head = hidden_size / n_head; - const int n_layer = hparams.n_layer; - const float eps = hparams.eps; - - const int batch_size = imgs->size; - - if (ctx->has_minicpmv_projector) { - GGML_ASSERT(batch_size == 1); - } - - struct ggml_init_params params = { - /*.mem_size =*/ ctx->buf_compute_meta.size(), - /*.mem_buffer =*/ ctx->buf_compute_meta.data(), - /*.no_alloc =*/ true, - }; - - struct ggml_context * ctx0 = ggml_init(params); - struct ggml_cgraph * gf = ggml_new_graph(ctx0); - - LOG_TEE("%s: load_image_size: %d %d\n", __func__, load_image_size.first, load_image_size.second); - struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size); - ggml_set_name(inp_raw, "inp_raw"); - ggml_set_input(inp_raw); - - struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_w, inp_raw, patch_size, patch_size, 0, 0, 1, 1); - - inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size); - inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3)); - inp = ggml_add(ctx0, inp, model.patch_embeddings_b); - - // concat class_embeddings and patch_embeddings - // struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size); - // ggml_set_name(embeddings, "embeddings"); - // ggml_set_input(embeddings); - - // embeddings = ggml_acc(ctx0, embeddings, model.class_embedding, - // embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0); - - // embeddings = ggml_acc(ctx0, embeddings, inp, - // embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]); - - struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions); - ggml_set_name(positions, "positions"); - ggml_set_input(positions); - - struct ggml_tensor * embeddings = - ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions)); - - int pos_w = image_size_width/patch_size; - int pos_h = image_size_height/patch_size; - struct ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1); - ggml_set_name(pos_embed, "pos_embed"); - ggml_set_input(pos_embed); - - // // pre-layernorm - // { - // embeddings = ggml_norm(ctx0, embeddings, eps); - // ggml_set_name(embeddings, "pre_ln"); - - // embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b); - // } - - // loop over layers - for (int il = 0; il < n_layer; il++) { - struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states - - //const size_t nb_q_w = model.layers[il].q_w->nb[0]; - - // layernorm1 - { - cur = ggml_norm(ctx0, cur, eps); - - cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), - model.layers[il].ln_1_b); - } - - // self-attention - { - - struct ggml_tensor * Q = - ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b); - - Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head)); - Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size); - Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); - Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size); - - struct ggml_tensor * K = - ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b); - - K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size); - K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); - K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size); - - struct ggml_tensor * V = - ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b); - - V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size); - V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); - V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size); - - struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); - KQ = ggml_soft_max_inplace(ctx0, KQ); - struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); - KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size); - KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); - - cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size); - } - - // attention output - cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b); - - // re-add the layer input, e.g., residual - cur = ggml_add(ctx0, cur, embeddings); - - embeddings = cur; // embeddings = residual, cur = hidden_states - - // layernorm2 - { - cur = ggml_norm(ctx0, cur, eps); - - cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b); - } - - cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur); - cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b); - - if (ctx->use_gelu) { - cur = ggml_gelu_inplace(ctx0, cur); - } else { - cur = ggml_gelu_quick_inplace(ctx0, cur); - } - - cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur); - cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b); - - // residual 2 - cur = ggml_add(ctx0, embeddings, cur); - - embeddings = cur; - } - - { // post layernorm - embeddings = ggml_norm(ctx0, embeddings, eps); - embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b); - } - - // llava projector - { - // embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]); - - // struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, 64); - // ggml_set_name(patches, "patches"); - // ggml_set_input(patches); - - // shape [1, 576, 1024] - // ne is whcn, ne = [1024, 576, 1, 1] - // embeddings = ggml_get_rows(ctx0, embeddings, patches); - - // print_tensor_info(embeddings, "embeddings"); - - // llava projector - if (ctx->proj_type == PROJECTOR_TYPE_MLP) { - embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); - embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); - - embeddings = ggml_gelu(ctx0, embeddings); - embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); - embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); - - } else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { - embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); - embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); - // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false); - // First LayerNorm - embeddings = ggml_norm(ctx0, embeddings, eps); - embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w), - model.mm_1_b); - - // GELU activation - embeddings = ggml_gelu(ctx0, embeddings); - - // Second linear layer - embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings); - embeddings = ggml_add(ctx0, embeddings, model.mm_3_b); - - // Second LayerNorm - embeddings = ggml_norm(ctx0, embeddings, eps); - embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w), - model.mm_4_b); - } - else if (ctx->proj_type == PROJECTOR_TYPE_LDP) { - // MobileVLM projector - int n_patch = 24; - struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings); - mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b); - mlp_1 = ggml_gelu(ctx0, mlp_1); - struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1); - mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b); - // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1] - - // block 1 - struct ggml_tensor * block_1 = nullptr; - { - // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24] - mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3)); - mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]); - // stride = 1, padding = 1, bias is nullptr - block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1); - - // layer norm - // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] - block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3)); - // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1] - block_1 = ggml_norm(ctx0, block_1, eps); - block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b); - block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); - - // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] - // hardswish - struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1); - - block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0); - // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] - // pointwise conv - block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]); - block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1); - block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b); - block_1 = ggml_relu(ctx0, block_1); - block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1); - block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b); - block_1 = ggml_hardsigmoid(ctx0, block_1); - // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1] - block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]); - block_1 = ggml_mul(ctx0, block_1_hw, block_1); - - int w = block_1->ne[0], h = block_1->ne[1]; - block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]); - block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3)); - - // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1] - block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1); - block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]); - - // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1] - block_1 = ggml_norm(ctx0, block_1, eps); - block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b); - block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); - // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] - // residual - block_1 = ggml_add(ctx0, mlp_3, block_1); - } - - // block_2 - { - // stride = 2 - block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1); - - // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1] - // layer norm - block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3)); - // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1] - block_1 = ggml_norm(ctx0, block_1, eps); - block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b); - block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); - // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1] - // hardswish - struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1); - - // not sure the parameters is right for globalAvgPooling - block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0); - // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] - // pointwise conv - block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]); - block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1); - block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b); - block_1 = ggml_relu(ctx0, block_1); - block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1); - block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b); - block_1 = ggml_hardsigmoid(ctx0, block_1); - - // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] - block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]); - block_1 = ggml_mul(ctx0, block_1_hw, block_1); - - int w = block_1->ne[0], h = block_1->ne[1]; - block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]); - block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3)); - // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1] - block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1); - block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]); - - - // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1] - block_1 = ggml_norm(ctx0, block_1, eps); - block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b); - block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]); - // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1] - } - embeddings = block_1; - } - else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) - { - int n_patch = 24; - struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings); - mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b); - mlp_0 = ggml_gelu(ctx0, mlp_0); - struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0); - mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b); - // mlp_2 ne = [2048, 576, 1, 1] - // // AVG Pool Layer 2*2, strides = 2 - mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3)); - // mlp_2 ne = [576, 2048, 1, 1] - mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]); - // mlp_2 ne [24, 24, 2048, 1] - mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0); - // weight ne = [3, 3, 2048, 1] - struct ggml_tensor * peg_0 = ggml_conv_depthwise_2d(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1); - peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3)); - peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b); - mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3)); - peg_0 = ggml_add(ctx0, peg_0, mlp_2); - peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]); - embeddings = peg_0; - } - else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { - struct ggml_tensor * q = model.mm_model_query; - { // layernorm - q = ggml_norm(ctx0, q, eps); - q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b); - } - struct ggml_tensor *k, *v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings); - { // layernorm - v = ggml_norm(ctx0, v, eps); - v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b); - } - { // position - // q = ggml_add(ctx0, q, model.mm_model_pos_embed); - k = ggml_add(ctx0, v, pos_embed); - } - - { // attention - const int hidden_size = 4096; - const int d_head = 128; - const int n_head = hidden_size/d_head; - const int num_query = 96; - - struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b); - Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head)); - struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b); - struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b); - // permute - Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size); - Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); - Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size); - K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size); - K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); - K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size); - V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size); - V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); - V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size); - struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); - KQ = ggml_soft_max_inplace(ctx0, KQ); - struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); - KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size); - KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); - KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size); - - embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b); - } - { // layernorm - embeddings = ggml_norm(ctx0, embeddings, eps); - embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b); - } - embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings); - } - else { - GGML_ASSERT(false); - } - } - - // build the graph - ggml_build_forward_expand(gf, embeddings); - - ggml_free(ctx0); - - return gf; -} - -// read and create ggml_context containing the tensors and their data -struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1, std::pair load_image_size = {448, 448}) { - struct ggml_context * meta = NULL; - - struct gguf_init_params params = { - /*.no_alloc = */ false, - /*.ctx = */ &meta, - }; - - struct gguf_context * ctx = gguf_init_from_file(fname, params); - if (!ctx) { - throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname)); - } - - if (verbosity >= 1) { - const int n_tensors = gguf_get_n_tensors(ctx); - const int n_kv = gguf_get_n_kv(ctx); - const int ftype = get_u32(ctx, KEY_FTYPE); - const std::string ftype_str = get_ftype(ftype); - const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION); - const std::string description = gguf_get_val_str(ctx, idx_desc); - const int idx_name = gguf_find_key(ctx, KEY_NAME); - if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug - const std::string name = gguf_get_val_str(ctx, idx_name); - LOG_TEE("%s: model name: %s\n", __func__, name.c_str()); - } - LOG_TEE("%s: description: %s\n", __func__, description.c_str()); - LOG_TEE("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx)); - LOG_TEE("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx)); - LOG_TEE("%s: n_tensors: %d\n", __func__, n_tensors); - LOG_TEE("%s: n_kv: %d\n", __func__, n_kv); - LOG_TEE("%s: ftype: %s\n", __func__, ftype_str.c_str()); - LOG_TEE("\n"); - } - const int n_tensors = gguf_get_n_tensors(ctx); - - // kv - const int n_kv = gguf_get_n_kv(ctx); - LOG_TEE("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n", - __func__, n_kv, n_tensors, fname); - { - std::map n_type; - - for (int i = 0; i < n_tensors; i++) { - enum ggml_type type = gguf_get_tensor_type(ctx, i); - - n_type[type]++; - } - - LOG_TEE("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__); - for (int i = 0; i < n_kv; i++) { - const char * name = gguf_get_key(ctx, i); - const enum gguf_type type = gguf_get_kv_type(ctx, i); - const std::string type_name = - type == GGUF_TYPE_ARRAY - ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i)) - : gguf_type_name(type); - - std::string value = gguf_kv_to_str(ctx, i); - const size_t MAX_VALUE_LEN = 40; - if (value.size() > MAX_VALUE_LEN) { - value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str()); - } - replace_all(value, "\n", "\\n"); - - LOG_TEE("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str()); - } - - // print type counts - for (auto & kv : n_type) { - if (kv.second == 0) { - continue; - } - - LOG_TEE("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second); - } - } - - // data - size_t model_size = 0; - { - for (int i = 0; i < n_tensors; ++i) { - const char * name = gguf_get_tensor_name(ctx, i); - const size_t offset = gguf_get_tensor_offset(ctx, i); - enum ggml_type type = gguf_get_tensor_type(ctx, i); - struct ggml_tensor * cur = ggml_get_tensor(meta, name); - size_t tensor_size = ggml_nbytes(cur); - model_size += tensor_size; - if (verbosity >= 3) { - LOG_TEE("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n", - __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type)); - } - } - } - - clip_ctx * new_clip = new clip_ctx; - - // update projector type - { - int idx = gguf_find_key(ctx, KEY_PROJ_TYPE); - if (idx != -1) { - const std::string proj_type = gguf_get_val_str(ctx, idx); - new_clip->proj_type = clip_projector_type_from_string(proj_type); - } else { - new_clip->proj_type = PROJECTOR_TYPE_MLP; - } - - if (new_clip->proj_type == PROJECTOR_TYPE_MLP) { - if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) { - new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM; - } - } - } - -#ifdef GGML_USE_CUDA - new_clip->backend = ggml_backend_cuda_init(0); - LOG_TEE("%s: CLIP using CUDA backend\n", __func__); -#endif - -#ifdef GGML_USE_METAL - new_clip->backend = ggml_backend_metal_init(); - LOG_TEE("%s: CLIP using Metal backend\n", __func__); -#endif - - - if (!new_clip->backend) { - new_clip->backend = ggml_backend_cpu_init(); - LOG_TEE("%s: CLIP using CPU backend\n", __func__); - } - - // model size and capabilities - { - int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC); - new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx); - - idx = get_key_idx(ctx, KEY_HAS_VIS_ENC); - new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx); - - idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ); - if (idx != -1) { - new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx); - } - - GGML_ASSERT(new_clip->has_minicpmv_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search - GGML_ASSERT(new_clip->has_vision_encoder); - GGML_ASSERT(!new_clip->has_text_encoder); - - idx = get_key_idx(ctx, KEY_USE_GELU); - new_clip->use_gelu = gguf_get_val_bool(ctx, idx); - - if (verbosity >= 1) { - LOG_TEE("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder); - LOG_TEE("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder); - LOG_TEE("%s: llava_projector: %d\n", __func__, new_clip->has_minicpmv_projector); - LOG_TEE("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0); - LOG_TEE("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0); - } - } - - LOG_TEE("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors); - - // load tensors - { - std::vector read_buf; - struct ggml_init_params params = { - /*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(), - /*.mem_buffer =*/ NULL, - /*.no_alloc =*/ true, - }; - - new_clip->ctx_data = ggml_init(params); - if (!new_clip->ctx_data) { - LOG_TEE("%s: ggml_init() failed\n", __func__); - clip_free(new_clip); - gguf_free(ctx); - return nullptr; - } - - auto fin = std::ifstream(fname, std::ios::binary); - if (!fin) { - LOG_TEE("cannot open model file for loading tensors\n"); - clip_free(new_clip); - gguf_free(ctx); - return nullptr; - } - - // add tensors to context - for (int i = 0; i < n_tensors; ++i) { - const char * name = gguf_get_tensor_name(ctx, i); - struct ggml_tensor * t = ggml_get_tensor(meta, name); - struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t); - ggml_set_name(cur, name); - } - - // alloc memory and offload data - new_clip->params_buffer = ggml_backend_alloc_ctx_tensors(new_clip->ctx_data, new_clip->backend); - for (int i = 0; i < n_tensors; ++i) { - const char * name = gguf_get_tensor_name(ctx, i); - struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name); - const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i); - fin.seekg(offset, std::ios::beg); - if (!fin) { - LOG_TEE("%s: failed to seek for tensor %s\n", __func__, name); - clip_free(new_clip); - gguf_free(ctx); - return nullptr; - } - int num_bytes = ggml_nbytes(cur); - if (ggml_backend_buffer_is_host(new_clip->params_buffer)) { - // for the CPU and Metal backend, we can read directly into the tensor - fin.read(reinterpret_cast(cur->data), num_bytes); - } else { - // read into a temporary buffer first, then copy to device memory - read_buf.resize(num_bytes); - fin.read(reinterpret_cast(read_buf.data()), num_bytes); - ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes); - } - } - fin.close(); - } - - // vision model - if (new_clip->has_vision_encoder) { - // load vision model - auto & vision_model = new_clip->vision_model; - auto & hparams = vision_model.hparams; - hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision")); - hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision")); - hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision")); - hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision")); - hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE); - hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE); - hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision")); - hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision")); - - try { - int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS); - int n = gguf_get_arr_n(ctx, idx); - const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx); - for (int i = 0; i < 32 && i < n && pinpoints[i] != 0; ++i) { - hparams.image_grid_pinpoints[i] = pinpoints[i]; - } - if (n < 32) - hparams.image_grid_pinpoints[n] = 0; - } catch (std::runtime_error & e) { - hparams.image_grid_pinpoints[0]=0; - } - - try { - int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE); - strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx)); - } catch (std::runtime_error & e) { - strcpy(hparams.mm_patch_merge_type, "flat"); - } - - try { - hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6 - } catch(const std::exception& e) { - hparams.image_crop_resolution = hparams.image_size; - } - - int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN); - int idx_std = get_key_idx(ctx, KEY_IMAGE_STD); - - const float * mean_data = (const float *)gguf_get_arr_data(ctx, idx_mean); - const float * std_data = (const float *)gguf_get_arr_data(ctx, idx_std); - - for (int i = 0; i < 3; ++i) { - new_clip->image_mean[i] = mean_data[i]; - new_clip->image_std[i] = std_data[i]; - } - - if (verbosity >= 2) { - LOG_TEE("\n%s: vision model hparams\n", __func__); - LOG_TEE("image_size %d\n", hparams.image_size); - LOG_TEE("patch_size %d\n", hparams.patch_size); - LOG_TEE("v_hidden_size %d\n", hparams.hidden_size); - LOG_TEE("v_n_intermediate %d\n", hparams.n_intermediate); - LOG_TEE("v_projection_dim %d\n", hparams.projection_dim); - LOG_TEE("v_n_head %d\n", hparams.n_head); - LOG_TEE("v_n_layer %d\n", hparams.n_layer); - LOG_TEE("v_eps %f\n", hparams.eps); - LOG_TEE("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]); - LOG_TEE("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]); - LOG_TEE("v_image_grid_pinpoints: "); - for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) { - LOG_TEE("%d ", hparams.image_grid_pinpoints[i]); - } - LOG_TEE("\n"); - LOG_TEE("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type); - - } - - try { - vision_model.patch_embeddings_w = get_tensor(new_clip->ctx_data, format(TN_PATCH_EMBD, "weight")); - vision_model.patch_embeddings_b = get_tensor(new_clip->ctx_data, format(TN_PATCH_EMBD, "bias")); - // vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD); - vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v")); - // vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight")); - // vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias")); - vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight")); - vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias")); - } catch(const std::exception& e) { - LOG_TEE("%s: failed to load vision model tensors\n", __func__); - } - - // LLaVA projection - if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) { - vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight")); - vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias")); - try { - // Yi-type llava - vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight")); - vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias")); - } catch (std::runtime_error & e) { } - try { - // missing in Yi-type llava - vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight")); - vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias")); - } catch (std::runtime_error & e) { } - try { - // Yi-type llava - vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight")); - vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias")); - } catch (std::runtime_error & e) { } - try { - // Yi-type llava - vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight")); - vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias")); - } catch (std::runtime_error & e) { } - try { - vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE); - // LOG_TEE("%s: image_newline tensor (llava-1.6) found\n", __func__); - } catch (std::runtime_error & e) { } - } else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) { - // MobileVLM projection - vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight")); - vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias")); - vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight")); - vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias")); - vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight")); - vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight")); - vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias")); - vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight")); - vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias")); - vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight")); - vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias")); - vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight")); - vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight")); - vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias")); - vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight")); - vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight")); - vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias")); - vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight")); - vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias")); - vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight")); - vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias")); - vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight")); - vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight")); - vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias")); - } - else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2) - { - // MobilVLM_V2 projection - vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight")); - vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias")); - vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight")); - vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias")); - vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight")); - vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias")); - } - else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) { - // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD); - vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K); - vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY); - vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ); - vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ); - vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight")); - vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight")); - vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight")); - vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias")); - vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias")); - vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias")); - vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight")); - vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias")); - vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight")); - vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias")); - vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight")); - vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias")); - vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight")); - vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias")); - } - else { - std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type]; - throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); - } - - vision_model.layers.resize(hparams.n_layer); - - for (int il = 0; il < hparams.n_layer; ++il) { - auto & layer = vision_model.layers[il]; - layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight")); - layer.q_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "weight")); - layer.v_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "weight")); - layer.o_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight")); - layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "weight")); - layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "weight")); - layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "weight")); - layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "weight")); - layer.k_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "bias")); - layer.q_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "bias")); - layer.v_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "bias")); - layer.o_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias")); - layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "bias")); - layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "bias")); - layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "bias")); - layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "bias")); - } - } - - ggml_free(meta); - - new_clip->ctx_gguf = ctx; - - // measure mem requirement and allocate - { - // todo - new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead()); - new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend)); - clip_image_f32_batch batch; - batch.size = 1; - ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, load_image_size); - ggml_gallocr_reserve(new_clip->compute_alloc, gf); - size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0); - LOG_TEE("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0); - } - - return new_clip; -} - -struct clip_image_u8 * clip_image_u8_init() { - return new clip_image_u8(); -} - -struct clip_image_f32 * clip_image_f32_init() { - return new clip_image_f32(); -} - -void clip_image_u8_free(struct clip_image_u8 * img) { delete img; } -void clip_image_f32_free(struct clip_image_f32 * img) { delete img; } -void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { - if (batch->size > 0) { - delete[] batch->data; - batch->size = 0; - } -} -void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { - if (batch->size > 0) { - delete[] batch->data; - batch->size = 0; - } -} - -static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) { - img->nx = nx; - img->ny = ny; - img->buf.resize(3 * nx * ny); - memcpy(img->buf.data(), data, img->buf.size()); -} - -bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) { - int nx, ny, nc; - auto * data = stbi_load(fname, &nx, &ny, &nc, 3); - if (!data) { - LOG_TEE("%s: failed to load image '%s'\n", __func__, fname); - return false; - } - build_clip_img_from_data(data, nx, ny, img); - stbi_image_free(data); - return true; -} - -bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) { - int nx, ny, nc; - auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3); - if (!data) { - LOG_TEE("%s: failed to decode image bytes\n", __func__); - return false; - } - build_clip_img_from_data(data, nx, ny, img); - stbi_image_free(data); - return true; -} - -void normalize_image_u8_to_f32(struct clip_ctx * ctx, const clip_image_u8* src, clip_image_f32* dst) { - dst->nx = src->nx; - dst->ny = src->ny; - dst->buf.resize(src->buf.size()); - const auto & m3 = ctx->image_mean; - const auto & s3 = ctx->image_std; - - for (size_t i = 0; i < src->buf.size(); ++i) { - int c = i % 3; // rgb - dst->buf[i] = (static_cast(src->buf[i]) / 255.0f - m3[c]) / s3[c]; - } -} - -ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) { - return ctx->vision_model.image_newline; -} - -void clip_free(clip_ctx * ctx) { - ggml_free(ctx->ctx_data); - gguf_free(ctx->ctx_gguf); - - ggml_backend_buffer_free(ctx->params_buffer); - ggml_backend_free(ctx->backend); - ggml_gallocr_free(ctx->compute_alloc); - delete ctx; -} - -size_t clip_embd_nbytes(const struct clip_ctx * ctx) { - return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float); -} - -int32_t clip_image_size(const struct clip_ctx * ctx) { - return ctx->vision_model.hparams.image_size; -} - -int32_t clip_patch_size(const struct clip_ctx * ctx) { - return ctx->vision_model.hparams.patch_size; -} - -int32_t clip_hidden_size(const struct clip_ctx * ctx) { - return ctx->vision_model.hparams.hidden_size; -} - -const char * clip_patch_merge_type(const struct clip_ctx * ctx) { - return ctx->vision_model.hparams.mm_patch_merge_type; -} - -const int32_t * clip_image_grid(const struct clip_ctx * ctx) { - return ctx->vision_model.hparams.image_grid_pinpoints; -} - -int clip_n_patches(const struct clip_ctx * ctx) { - const auto & params = ctx->vision_model.hparams; - - int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size); - - if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) { - n_patches /= 4; - } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { - n_patches = 96; - } - - return n_patches; -} - -static std::vector>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector>& pos) { - assert(embed_dim % 2 == 0); - int H = pos.size(); - int W = pos[0].size(); - - std::vector omega(embed_dim / 2); - for (int i = 0; i < embed_dim / 2; ++i) { - omega[i] = 1.0 / pow(10000.0, static_cast(i) / (embed_dim / 2)); - } - - std::vector>> emb(H, std::vector>(W, std::vector(embed_dim))); - for (int h = 0; h < H; ++h) { - for (int w = 0; w < W; ++w) { - for (int d = 0; d < embed_dim / 2; ++d) { - float out_value = pos[h][w] * omega[d]; - emb[h][w][d] = sin(out_value); - emb[h][w][d + embed_dim / 2] = cos(out_value); - } - } - } - - return emb; -} - -static std::vector>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector>>& grid) { - assert(embed_dim % 2 == 0); - std::vector>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2) - std::vector>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2) - - int H = emb_h.size(); - int W = emb_h[0].size(); - std::vector>> emb(H, std::vector>(W, std::vector(embed_dim))); - - for (int h = 0; h < H; ++h) { - for (int w = 0; w < W; ++w) { - for (int d = 0; d < embed_dim / 2; ++d) { - emb[h][w][d] = emb_h[h][w][d]; - emb[h][w][d + embed_dim / 2] = emb_w[h][w][d]; - } - } - } - return emb; -} - -static std::vector> get_2d_sincos_pos_embed(int embed_dim, const std::pair image_size) { - int grid_h_size = image_size.first; - int grid_w_size = image_size.second; - - std::vector grid_h(grid_h_size); - std::vector grid_w(grid_w_size); - - for (int i = 0; i < grid_h_size; ++i) { - grid_h[i] = static_cast(i); - } - for (int i = 0; i < grid_w_size; ++i) { - grid_w[i] = static_cast(i); - } - - std::vector> grid(grid_h_size, std::vector(grid_w_size)); - for (int h = 0; h < grid_h_size; ++h) { - for (int w = 0; w < grid_w_size; ++w) { - grid[h][w] = grid_w[w]; - } - } - std::vector>> grid_2d = {grid, grid}; - for (int h = 0; h < grid_h_size; ++h) { - for (int w = 0; w < grid_w_size; ++w) { - grid_2d[0][h][w] = grid_h[h]; - grid_2d[1][h][w] = grid_w[w]; - } - } - - std::vector>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d); - - int H = image_size.first; - int W = image_size.second; - std::vector> pos_embed_2d(H * W, std::vector(embed_dim)); - for (int h = 0; h < H; ++h) { - for (int w = 0; w < W; ++w) { - pos_embed_2d[w * H + h] = pos_embed_3d[h][w]; - } - } - - return pos_embed_2d; -} - -bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec, std::pair load_image_size = {448, 448}) { - if (!ctx->has_vision_encoder) { - LOG_TEE("This gguf file seems to have no vision encoder\n"); - return false; - } - - clip_image_f32_batch imgs{}; - imgs.size = 1; - imgs.data = img; - return clip_image_batch_encode(ctx, n_threads, &imgs, vec, load_image_size); -} - -bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec, std::pair load_image_size = {448, 448}) { - if (!ctx->has_vision_encoder) { - LOG_TEE("This gguf file seems to have no vision encoder\n"); - return false; - } - - int batch_size = imgs->size; - if (ctx->has_minicpmv_projector) { - GGML_ASSERT(batch_size == 1); // TODO: support multiple images - } - - // build the inference graph - ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, load_image_size); - ggml_gallocr_alloc_graph(ctx->compute_alloc, gf); - - // set inputs - const auto & model = ctx->vision_model; - const auto & hparams = model.hparams; - - const int image_size_width = load_image_size.first; - const int image_size_height = load_image_size.second; - const int patch_size = hparams.patch_size; - const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); - const int num_positions = num_patches; - - { - struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw"); - float * data = (float *)malloc(ggml_nbytes(inp_raw)); - - for (size_t i = 0; i < imgs->size; i++) { - const int nx = imgs->data[i].nx; - const int ny = imgs->data[i].ny; - // GGML_ASSERT(nx == image_size && ny == image_size); - - const int n = nx * ny; - - for (int b = 0; b < batch_size; b++) { - for (int k = 0; k < 3; k++) { - for (int y = 0; y < ny; y++) { - for (int x = 0; x < nx; x++) { - data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k]; - } - } - } - } - } - ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw)); - free(data); - } - - { - // inspired from siglip: - // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit - // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316 - struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); - - int* positions_data = (int*)malloc(ggml_nbytes(positions)); - for (int i = 0; i < num_positions; i++) { - positions_data[i] = std::floor(70.0*i/num_positions); - } - ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); - free(positions_data); - } - - { - // inspired from resampler of Qwen-VL: - // -> https://huggingface.co/Qwen/Qwen-VL/tree/main - // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23 - struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed"); - int pos_w = image_size_width/patch_size; - int pos_h = image_size_height/patch_size; - int embed_dim = 4096; - auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h)); - - float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed)); - for(int i=0;ibackend)) { - ggml_backend_cpu_set_n_threads(ctx->backend, n_threads); - } - -#ifdef GGML_USE_METAL - if (ggml_backend_is_metal(ctx->backend)) { - ggml_backend_metal_set_n_cb(ctx->backend, n_threads); - } -#endif - - ggml_backend_graph_compute(ctx->backend, gf); - - // the last node is the embedding tensor - struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1]; - - // copy the embeddings to the location passed by the user - ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings)); - - return true; -} - -bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) { - ggml_type type = GGML_TYPE_Q4_1; - - assert(itype < GGML_TYPE_COUNT); - type = static_cast(itype); - - auto * ctx_clip = clip_model_load(fname_inp, 2); - - const auto & ctx_src = ctx_clip->ctx_gguf; - const auto & ctx_data = ctx_clip->ctx_data; - - auto * ctx_out = gguf_init_empty(); - gguf_set_kv(ctx_out, ctx_src); - gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); - gguf_set_val_u32(ctx_out, "general.file_type", itype); - - auto fout = std::ofstream(fname_out, std::ios::binary); - - const int n_tensors = gguf_get_n_tensors(ctx_src); - - for (int i = 0; i < n_tensors; ++i) { - const char * name = gguf_get_tensor_name(ctx_src, i); - struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name); - gguf_add_tensor(ctx_out, cur); - } - - const size_t meta_size = gguf_get_meta_size(ctx_out); - for (size_t i = 0; i < meta_size; ++i) { - fout.put(0); - } - - // regexes of tensor names to be quantized - const std::vector k_names = { - ".*weight", - }; - - std::vector work(512); - std::vector conv_buf(512); - size_t total_size_org = 0; - size_t total_size_new = 0; - - for (int i = 0; i < n_tensors; ++i) { - const std::string name = gguf_get_tensor_name(ctx_src, i); - struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str()); - - enum ggml_type new_type; - void * new_data; - size_t new_size; - - bool quantize = false; - for (const auto & s : k_names) { - if (std::regex_match(name, std::regex(s))) { - quantize = true; - break; - } - } - - // quantize only 2D tensors - quantize &= (ggml_n_dims(cur) == 2); - - if (quantize) { - new_type = type; - if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) { - new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type - // LOG_TEE("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type)); - } - const size_t n_elms = ggml_nelements(cur); - float * f32_data; - - switch (cur->type) { - case GGML_TYPE_F32: - f32_data = (float *)cur->data; - break; - case GGML_TYPE_F16: - if (conv_buf.size() < n_elms) { - conv_buf.resize(n_elms); - } - for (size_t j = 0; j < n_elms; ++j) { - conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]); - } - f32_data = (float *)conv_buf.data(); - break; - default: - LOG_TEE("Please use an input file in f32 or f16\n"); - gguf_free(ctx_out); - return false; - } - - if (work.size() < n_elms * 4) { - work.resize(n_elms * 4); - } - new_data = work.data(); - - new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr); - } else { - new_type = cur->type; - new_data = cur->data; - new_size = ggml_nbytes(cur); - } - const size_t orig_size = ggml_nbytes(cur); - total_size_org += orig_size; - total_size_new += new_size; - gguf_set_tensor_type(ctx_out, name.c_str(), new_type); - gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size); - fout.write((const char *)new_data, new_size); - size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size; - for (size_t j = 0; j < pad; ++j) { - fout.put(0); - } - - LOG_TEE("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize, - orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); - } - - // go back to beginning of file and write the updated metadata - fout.seekp(0, std::ios::beg); - std::vector meta(meta_size); - gguf_get_meta_data(ctx_out, meta.data()); - fout.write((const char *)meta.data(), meta_size); - - fout.close(); - - clip_free(ctx_clip); - gguf_free(ctx_out); - - { - LOG_TEE("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0); - LOG_TEE("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0); - } - - return true; -} - -int clip_n_mmproj_embd(const struct clip_ctx * ctx) { - if (ctx->proj_type == PROJECTOR_TYPE_LDP) { - return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0]; - } - if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) { - return ctx->vision_model.mm_model_peg_0_b->ne[0]; - } - if (ctx->proj_type == PROJECTOR_TYPE_MLP) { - return ctx->vision_model.mm_2_b->ne[0]; - } - if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { - return ctx->vision_model.mm_3_b->ne[0]; - } - if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { - return 4096; - } - - std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type]; - throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); -} diff --git a/examples/minicpmv/clip.h b/examples/minicpmv/clip.h deleted file mode 100644 index 3b5aca231..000000000 --- a/examples/minicpmv/clip.h +++ /dev/null @@ -1,85 +0,0 @@ -#ifndef CLIP_H -#define CLIP_H - -#include -#include -#include - -#ifdef LLAMA_SHARED -# if defined(_WIN32) && !defined(__MINGW32__) -# ifdef LLAMA_BUILD -# define CLIP_API __declspec(dllexport) -# else -# define CLIP_API __declspec(dllimport) -# endif -# else -# define CLIP_API __attribute__ ((visibility ("default"))) -# endif -#else -# define CLIP_API -#endif - -struct clip_ctx; - -#ifdef __cplusplus -extern "C" { -#endif - -struct clip_ctx; - -struct clip_image_u8_batch { - struct clip_image_u8 * data; - size_t size; -}; - -struct clip_image_f32_batch { - struct clip_image_f32 * data; - size_t size; -}; - -CLIP_API struct clip_ctx * clip_model_load (const char * fname, int verbosity, std::pair load_image_size); -CLIP_API struct clip_ctx * clip_model_load_cpu(const char * fname, int verbosity); - -CLIP_API void clip_free(struct clip_ctx * ctx); - -CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx); - -CLIP_API int32_t clip_image_size (const struct clip_ctx * ctx); -CLIP_API int32_t clip_patch_size (const struct clip_ctx * ctx); -CLIP_API int32_t clip_hidden_size(const struct clip_ctx * ctx); - -// TODO: should be enum, not string -CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx); - -CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx); - -CLIP_API int clip_n_patches (const struct clip_ctx * ctx); -CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx); - -CLIP_API struct clip_image_u8 * clip_image_u8_init (); -CLIP_API struct clip_image_f32 * clip_image_f32_init(); - -CLIP_API void clip_image_u8_free (struct clip_image_u8 * img); -CLIP_API void clip_image_f32_free(struct clip_image_f32 * img); -CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch); -CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch); - -CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img); - -/** interpret bytes as an image file with length bytes_length, and use the result to populate img */ -CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img); - -CLIP_API void normalize_image_u8_to_f32(struct clip_ctx * ctx, const clip_image_u8* src, clip_image_f32* dst); - -CLIP_API struct ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx); - -CLIP_API bool clip_image_encode (struct clip_ctx * ctx, int n_threads, struct clip_image_f32 * img, float * vec, std::pair load_image_size); -CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct clip_image_f32_batch * imgs, float * vec, std::pair load_image_size); - -CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype); - -#ifdef __cplusplus -} -#endif - -#endif // CLIP_H diff --git a/examples/minicpmv/minicpmv.cpp b/examples/minicpmv/minicpmv.cpp deleted file mode 100644 index 573bba2de..000000000 --- a/examples/minicpmv/minicpmv.cpp +++ /dev/null @@ -1,452 +0,0 @@ -#include "clip.h" -#include "common.h" -#include "llama.h" -#include "minicpmv.h" -#include "base64.hpp" - -#include -#include -#include -#include - -// RGB uint8 image -struct clip_image_u8 { - int nx; - int ny; - - std::vector buf; -}; - -// RGB float32 image (NHWC) -// Memory layout: RGBRGBRGB... -struct clip_image_f32 { - int nx; - int ny; - - std::vector buf; -}; - -struct clip_image_grid_shape { - int first; - int second; -}; - -static bool encode_image_with_clip_uhd(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) { - // std::vector img_res_v; - // format VectN x H x W x RGB (N x 448 x 448 x 3) - clip_image_f32 * img_res_v = clip_image_f32_init(); - std::pair load_image_size; - load_image_size.first = img->nx; - load_image_size.second = img->ny; - normalize_image_u8_to_f32(ctx_clip, img, img_res_v); - - const int64_t t_img_enc_start_us = ggml_time_us(); - - const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip); - LOG_TEE("\n%s: mm_patch_merge_type is %s.\n", __func__, mm_patch_merge_type); - - *n_img_pos = clip_n_patches(ctx_clip); - bool encoded = clip_image_encode(ctx_clip, n_threads, img_res_v, image_embd, load_image_size); // image_embd shape is 96 x 4096 - if (!encoded) { - LOG_TEE("Unable to encode image\n"); - return false; - } - LOG_TEE("%s: image embedding created: %d tokens\n", __func__, *n_img_pos); - - const int64_t t_img_enc_end_us = ggml_time_us(); - float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0; - LOG_TEE("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos); - - return true; -} - -bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) { - // make sure that the correct mmproj was used, i.e., compare apples to apples - int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama)); - auto n_image_embd = clip_n_mmproj_embd(ctx_clip); - if (n_image_embd != n_llama_embd) { - LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd); - return false; - } - return true; -} - -bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) { - float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); - if (!image_embd) { - LOG_TEE("Unable to allocate memory for image embeddings\n"); - return false; - } - - int n_img_pos; - if (!encode_image_with_clip_uhd(ctx_clip, n_threads, img, image_embd, &n_img_pos)) { - LOG_TEE("%s: cannot encode image, aborting\n", __func__); - free(image_embd); - return false; - } - *image_embd_out = image_embd; - *n_img_pos_out = n_img_pos; - - return true; -} - -bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) { - int n_embd = llama_n_embd(llama_get_model(ctx_llama)); - - for (int i = 0; i < image_embed->n_image_pos; i += n_batch) { - int n_eval = image_embed->n_image_pos - i; - if (n_eval > n_batch) { - n_eval = n_batch; - } - llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, }; - if (llama_decode(ctx_llama, batch)) { - LOG_TEE("%s : failed to eval\n", __func__); - return false; - } - *n_past += n_eval; - } - return true; -} - -static int ensure_divide(int length, int patch_size) { - return std::max(static_cast(std::round(static_cast(length) / patch_size) * patch_size), patch_size); -} - -static std::pair uhd_find_best_resize(std::pair original_size, int scale_resolution, int patch_size, bool allow_upscale = false) { - int width = original_size.first; - int height = original_size.second; - if ((width * height > scale_resolution * scale_resolution) || allow_upscale) { - float r = static_cast(width) / height; - height = static_cast(scale_resolution / std::sqrt(r)); - width = static_cast(height * r); - } - int best_width = ensure_divide(width, patch_size); - int best_height = ensure_divide(height, patch_size); - return std::make_pair(best_width, best_height); -} - -static std::pair uhd_get_refine_size(std::pair original_size, std::pair grid, int scale_resolution, int patch_size, bool allow_upscale = false) { - int width, height; - std::tie(width, height) = original_size; - int grid_x, grid_y; - std::tie(grid_x, grid_y) = grid; - - int refine_width = ensure_divide(width, grid_x); - int refine_height = ensure_divide(height, grid_y); - - int grid_width = refine_width / grid_x; - int grid_height = refine_height / grid_y; - - // auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line) - auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair - int best_grid_width, best_grid_height; - std::tie(best_grid_width, best_grid_height) = best_grid_size; - - // std::pair refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line) - std::pair refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line) - return refine_size; -} - -inline int clip(int x, int lower, int upper) { - return std::max(lower, std::min(x, upper)); -} - -static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) { - const int nx = img.nx; - const int ny = img.ny; - - dst.nx = target_width; - dst.ny = target_height; - dst.buf.resize(3 * target_width * target_height); - - float Cc; - float C[5]; - float d0, d2, d3, a0, a1, a2, a3; - int i, j, k, jj; - int x, y; - float dx, dy; - float tx, ty; - - tx = (float)nx / (float)target_width; - ty = (float)ny / (float)target_height; - - // Bicubic interpolation; adapted from ViT.cpp, inspired from : - // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36 - // -> https://en.wikipedia.org/wiki/Bicubic_interpolation - - for (i = 0; i < target_height; i++) { - for (j = 0; j < target_width; j++) { - x = (int)(tx * j); - y = (int)(ty * i); - - dx = tx * j - x; - dy = ty * i - y; - - for (k = 0; k < 3; k++) { - for (jj = 0; jj <= 3; jj++) { - d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; - d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; - d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; - a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; - - a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; - a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; - a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; - - C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx; - - d0 = C[0] - C[1]; - d2 = C[2] - C[1]; - d3 = C[3] - C[1]; - a0 = C[1]; - a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; - a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; - a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; - Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy; - - const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f); - dst.buf[(i * target_width + j) * 3 + k] = float(Cc2); - } - } - } - } - - return true; -} - -// inspired from LLaVA-UHD: -// -> https://arxiv.org/pdf/2403.11703 -// -> https://github.com/thunlp/LLaVA-UHD -// -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118 -static std::vector> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) { - const std::pair original_size={img->nx,img->ny}; - const int original_width = img->nx; - const int original_height = img->ny; - const float log_ratio = log(1.0*original_width/original_height); // - const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution); - const int multiple = fmin(ceil(ratio), max_slice_nums); - - std::vector> images; - LOG_TEE("%s: multiple %d\n", __func__, multiple); - images.push_back(std::vector()); - - if(multiple <= 1){ - auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true); - clip_image_u8 *source_image = clip_image_u8_init(); - bicubic_resize(*img, *source_image, best_size.first, best_size.second); - // source_image = image.resize(best_size, Image.Resampling.BICUBIC) - images[images.size()-1].push_back(source_image); - } - else if(multiple > 1){ - - std::vector candidate_split_grids_nums; - for (int i : {multiple - 1, multiple, multiple + 1}) { - if (i == 1 || i > max_slice_nums) { - continue; - } - candidate_split_grids_nums.push_back(i); - } - - auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size); - clip_image_u8 *source_image = clip_image_u8_init(); - bicubic_resize(*img, *source_image, best_size.first, best_size.second); - // source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC) - LOG_TEE("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second); - images[images.size()-1].push_back(source_image); - - std::vector> candidate_grids; - - for (int split_grids_nums : candidate_split_grids_nums) { - int m = 1; - while (m <= split_grids_nums) { - if (split_grids_nums % m == 0) { - candidate_grids.emplace_back(m, split_grids_nums / m); - } - ++m; - } - } - - std::pair best_grid{1, 1}; - float min_error = std::numeric_limits::infinity(); - - for (const auto& grid : candidate_grids) { - float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second)); - if (error < min_error) { - best_grid = grid; - min_error = error; - } - } - LOG_TEE("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second); - - auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true); - clip_image_u8 *refine_image = clip_image_u8_init(); - bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second); - - LOG_TEE("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second); - - // split_to_patches - int width = refine_image->nx; - int height = refine_image->ny; - int grid_x = int(width / best_grid.first); - int grid_y = int(height / best_grid.second); - for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){ - images.push_back(std::vector()); - for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){ - clip_image_u8 * patch = clip_image_u8_init(); - patch->nx = grid_x; - patch->ny = grid_y; - patch->buf.resize(3 * patch->nx * patch->ny); - for (int y = patches_i; y < patches_i + grid_y; ++y) { - for (int x = patches_j; x < patches_j + grid_x; ++x) { - const int i = 3 * (y * refine_image->nx + x); - const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j)); - patch->buf[j] = refine_image->buf[i]; - patch->buf[j+1] = refine_image->buf[i+1]; - patch->buf[j+2] = refine_image->buf[i+2]; - } - } - images[images.size()-1].push_back(patch); - } - } - } - return images; -} - -struct uhd_image_embed * llava_image_embed_make_with_bytes_uhd(struct clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img) { - std::vector> imgs = uhd_slice_image(img); - for (size_t i = 0; i < imgs.size(); ++i){ - for (size_t j = 0; j < imgs[i].size(); ++j) { - LOG_TEE("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny); - } - } - struct uhd_image_embed * results = new uhd_image_embed(); - - for (size_t i = 0; i < imgs.size(); ++i){ - results->image_embeds.push_back(std::vector()); - for (size_t j = 0; j < imgs[i].size(); ++j) { - float* image_embed = NULL; - int n_image_pos = 0; - bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, imgs[i][j], &image_embed, &n_image_pos); - if (!image_embed_result) { - LOG_TEE("%s: coulnd't embed the image\n", __func__); - return NULL; - } - - auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed)); - result->embed = image_embed; - result->n_image_pos = n_image_pos; - results->image_embeds[i].push_back(result); - } - } - return results; -} - -static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) { - auto file = fopen(path, "rb"); - if (file == NULL) { - LOG_TEE("%s: can't read file %s\n", __func__, path); - return false; - } - - fseek(file, 0, SEEK_END); - auto fileSize = ftell(file); - fseek(file, 0, SEEK_SET); - - auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data - if (buffer == NULL) { - LOG_TEE("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path); - perror("Memory allocation error"); - fclose(file); - return false; - } - errno = 0; - size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer - if (ferror(file)) { - die_fmt("read error: %s", strerror(errno)); - } - if (ret != (size_t) fileSize) { - die("unexpectedly reached end of file"); - } - fclose(file); // Close the file - - *bytesOut = buffer; - *sizeOut = fileSize; - return true; -} - -bool llava_image_embed_make_with_clip_img_ollama(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) { - auto embeds = llava_image_embed_make_with_bytes_uhd(ctx_clip, n_threads, img); - auto image_embed_slices = embeds->image_embeds; - if (!image_embed_slices[0][0]){ - LOG_TEE("%s: failed to embeding image\n", __func__); - return false; - } - std::string fname = "./examples/minicpm-v2.5/slice_token_for_ollama.raw"; - unsigned char* slice_token; - long image_bytes_length; - auto loaded = load_file_to_bytes(fname.c_str(), &slice_token, &image_bytes_length); - if (!loaded) { - LOG_TEE("%s: failed to load %s\n", __func__, fname.c_str()); - return false; - } - - float * all_image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*61); - int all_n_img_pos=0; - int token_len = clip_n_mmproj_embd(ctx_clip)*sizeof(float); - - std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token, token_len); - std::memcpy(all_image_embd+token_len*all_n_img_pos, image_embed_slices[0][0]->embed, 96*token_len); - all_n_img_pos+=clip_n_patches(ctx_clip); - std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len, token_len); - if (image_embed_slices.size() > 1) { - std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len*2, token_len); - for (size_t i = 1; i < image_embed_slices.size(); ++i) { - for (size_t j = 0; j < image_embed_slices[i].size(); ++j) { - std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token, token_len); - std::memcpy(all_image_embd+token_len*all_n_img_pos, image_embed_slices[i][j]->embed, 96*token_len); - all_n_img_pos+=clip_n_patches(ctx_clip); - std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len, token_len); - if (j == image_embed_slices[i].size() - 1) { - std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len*4, token_len); - } - } - } - std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len*3, token_len); - } - *image_embd_out = all_image_embd; - *n_img_pos_out = all_n_img_pos; - return true; -} - -struct uhd_image_embed * llava_image_embed_make_with_filename_uhd(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) { - unsigned char* image_bytes; - long image_bytes_length; - auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length); - if (!loaded) { - LOG_TEE("%s: failed to load %s\n", __func__, image_path); - return NULL; - } - clip_image_u8 * img = clip_image_u8_init(); - if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) { - clip_image_u8_free(img); - LOG_TEE("%s: can't load image from bytes, is it a valid image?", __func__); - return NULL; - } - - struct uhd_image_embed * embeds = llava_image_embed_make_with_bytes_uhd(ctx_clip, n_threads, img); - - clip_image_u8_free(img); - free(image_bytes); - return embeds; -} - -void llava_image_embed_free_uhd(struct uhd_image_embed * embed) { - for (size_t i = 0; i < embed->image_embeds.size(); ++i){ - for (size_t j = 0; j < embed->image_embeds[i].size(); ++j){ - free(embed->image_embeds[i][j]->embed); - free(embed->image_embeds[i][j]); - } - embed->image_embeds[i] = std::vector(); - } - embed->image_embeds = std::vector>(); -} \ No newline at end of file diff --git a/examples/minicpmv/minicpmv.h b/examples/minicpmv/minicpmv.h deleted file mode 100644 index 337549338..000000000 --- a/examples/minicpmv/minicpmv.h +++ /dev/null @@ -1,54 +0,0 @@ -#ifndef LLAVA_H -#define LLAVA_H - -#include "ggml.h" - -#ifdef LLAMA_SHARED -# if defined(_WIN32) && !defined(__MINGW32__) -# ifdef LLAMA_BUILD -# define MINICPMV_API __declspec(dllexport) -# else -# define MINICPMV_API __declspec(dllimport) -# endif -# else -# define MINICPMV_API __attribute__ ((visibility ("default"))) -# endif -#else -# define MINICPMV_API -#endif - -struct clip_ctx; -struct uhd_image_embed { - std::vector> image_embeds; -}; - -#ifdef __cplusplus -extern "C" { -#endif - -struct llava_image_embed { - float * embed; - int n_image_pos; -}; - -/** sanity check for clip <-> llava embed size match */ -MINICPMV_API bool llava_validate_embed_size(const struct llama_context * ctx_llama, const struct clip_ctx * ctx_clip); - -MINICPMV_API bool llava_image_embed_make_with_clip_img(struct clip_ctx * ctx_clip, int n_threads, const struct clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out); - -/** build an image embed from image file bytes */ -MINICPMV_API struct uhd_image_embed * llava_image_embed_make_with_bytes_uhd(struct clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img); -/** build an image embed from a path to an image filename */ -MINICPMV_API bool llava_image_embed_make_with_clip_img_ollama(struct clip_ctx * ctx_clip, int n_threads, const struct clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out); -MINICPMV_API struct uhd_image_embed * llava_image_embed_make_with_filename_uhd(struct clip_ctx * ctx_clip, int n_threads, const char * image_path); -MINICPMV_API void llava_image_embed_free_uhd(struct uhd_image_embed * embed); -/** free an embedding made with llava_image_embed_make_* */ - -/** write the image represented by embed into the llama context with batch size n_batch, starting at context pos n_past. on completion, n_past points to the next position in the context after the image embed. */ -MINICPMV_API bool llava_eval_image_embed(struct llama_context * ctx_llama, const struct llava_image_embed * embed, int n_batch, int * n_past); - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/examples/minicpmv/requirements.txt b/examples/minicpmv/requirements.txt deleted file mode 100644 index 43dbc7e19..000000000 --- a/examples/minicpmv/requirements.txt +++ /dev/null @@ -1,4 +0,0 @@ --r ../../requirements/requirements-convert.txt -pillow~=10.2.0 -torch~=2.1.1 -torchvision==0.16.2 \ No newline at end of file