mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 03:12:23 +01:00
parent
4b3242bbea
commit
f0678c5ff4
@ -1791,11 +1791,12 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * r
|
||||
const int8x16_t y1_l = vld1q_s8(b_y1->qs);
|
||||
const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
|
||||
|
||||
float32_t _scale[4] = { GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
|
||||
|
||||
float32_t _scale[4] = {
|
||||
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)
|
||||
};
|
||||
float32x4_t scale = vld1q_f32(_scale);
|
||||
|
||||
int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
|
||||
@ -1811,7 +1812,7 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * r
|
||||
int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
|
||||
|
||||
sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
|
||||
l1, r1)), l2, r2)), l3, r3))), scale);
|
||||
l1, r1)), l2, r2)), l3, r3))), scale);
|
||||
}
|
||||
|
||||
float32x4_t sumv1 = vextq_f32 (sumv0, sumv0, 2);
|
||||
@ -2347,10 +2348,12 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * r
|
||||
const block_q8_1 * restrict b_y0 = &vy0[i];
|
||||
const block_q8_1 * restrict b_y1 = &vy1[i];
|
||||
|
||||
float32_t summs_t[4] = {GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y0->s),
|
||||
GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y0->s),
|
||||
GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y1->s),
|
||||
GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y1->s)};
|
||||
float32_t summs_t[4] = {
|
||||
GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y0->s),
|
||||
GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y0->s),
|
||||
GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y1->s),
|
||||
GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y1->s)
|
||||
};
|
||||
summs0 = vaddq_f32(summs0, vld1q_f32(summs_t));
|
||||
|
||||
const uint8x16_t m4b = vdupq_n_u8(0x0F);
|
||||
@ -2371,10 +2374,12 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * r
|
||||
const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
|
||||
|
||||
// mmla into int32x4_t
|
||||
float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*b_y0->d,
|
||||
GGML_FP16_TO_FP32(b_x0->d)*b_y1->d,
|
||||
GGML_FP16_TO_FP32(b_x1->d)*b_y0->d,
|
||||
GGML_FP16_TO_FP32(b_x1->d)*b_y1->d};
|
||||
float32_t _scale[4] = {
|
||||
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)
|
||||
};
|
||||
float32x4_t scale = vld1q_f32(_scale);
|
||||
|
||||
int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
|
||||
@ -2389,15 +2394,17 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * r
|
||||
int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
|
||||
int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
|
||||
sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
|
||||
l1, r1)), l2, r2)), l3, r3))), scale);
|
||||
l1, r1)), l2, r2)), l3, r3))), scale);
|
||||
}
|
||||
|
||||
float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
|
||||
float32x4_t sumv1 = vextq_f32 (sumv0, sumv0, 2);
|
||||
float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
|
||||
|
||||
sumv2 = vaddq_f32(sumv2, summs0);
|
||||
|
||||
vst1_f32(s, vget_low_f32 (sumv2));
|
||||
vst1_f32(s + bs, vget_high_f32(sumv2));
|
||||
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
@ -3374,10 +3381,12 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * r
|
||||
const int8x16_t y1_l = vld1q_s8(b_y1->qs);
|
||||
const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
|
||||
|
||||
float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
|
||||
float32_t _scale[4] = {
|
||||
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)
|
||||
};
|
||||
float32x4_t scale = vld1q_f32(_scale);
|
||||
|
||||
int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
|
||||
@ -3393,13 +3402,15 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * r
|
||||
int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
|
||||
|
||||
sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
|
||||
l1, r1)), l2, r2)), l3, r3))), scale);
|
||||
l1, r1)), l2, r2)), l3, r3))), scale);
|
||||
}
|
||||
float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
|
||||
|
||||
float32x4_t sumv1 = vextq_f32 (sumv0, sumv0, 2);
|
||||
float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
|
||||
|
||||
vst1_f32(s, vget_low_f32(sumv2));
|
||||
vst1_f32(s, vget_low_f32 (sumv2));
|
||||
vst1_f32(s + bs, vget_high_f32(sumv2));
|
||||
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
@ -7641,8 +7641,8 @@ UseGgmlGemm2:;
|
||||
// dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
|
||||
int64_t num_rows_per_vec_dot = vec_dot_num_rows;
|
||||
|
||||
// TODO: currently the mmla kernels support only even numbered rows/cols.
|
||||
// this check can be removed once they are extended to support odd numbered rows/cols too
|
||||
// these checks are needed to avoid crossing dim1 boundaries
|
||||
// can be optimized, but the logic would become more complicated, so keeping it like this for simplicity
|
||||
if ((nr0 % 2 != 0) || (ne11 % 2 != 0) || ((ir0_end - ir0_start) % 2 != 0) || ((ir1_end - ir1_start) % 2 != 0)) {
|
||||
num_rows_per_vec_dot = 1;
|
||||
}
|
||||
|
@ -3334,7 +3334,9 @@ static const ggml_type all_types[] = {
|
||||
|
||||
static const ggml_type base_types[] = {
|
||||
GGML_TYPE_F32, GGML_TYPE_F16,
|
||||
GGML_TYPE_Q8_0, // for I8MM tests
|
||||
GGML_TYPE_Q4_0,
|
||||
GGML_TYPE_Q4_1, // for I8MM tests
|
||||
GGML_TYPE_Q4_K,
|
||||
GGML_TYPE_IQ2_XXS
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user