mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-27 04:23:06 +01:00
llama : add option to override tensor buffers
This commit is contained in:
parent
9fbadaef4f
commit
f07c2ec505
@ -1,5 +1,6 @@
|
||||
#include "arg.h"
|
||||
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "sampling.h"
|
||||
|
||||
@ -321,6 +322,10 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
params.kv_overrides.back().key[0] = 0;
|
||||
}
|
||||
|
||||
if (!params.tensor_buft_overrides.empty()) {
|
||||
params.tensor_buft_overrides.push_back({nullptr, nullptr});
|
||||
}
|
||||
|
||||
if (params.reranking && params.embedding) {
|
||||
throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
|
||||
}
|
||||
@ -1477,6 +1482,39 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
exit(0);
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...",
|
||||
"override tensor buffer type", [](common_params & params, const std::string & value) {
|
||||
static std::map<std::string, ggml_backend_buffer_type_t> buft_list;
|
||||
if (buft_list.empty()) {
|
||||
// enumerate all the devices and add their buffer types to the list
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
||||
auto * dev = ggml_backend_dev_get(i);
|
||||
auto * buft = ggml_backend_dev_buffer_type(dev);
|
||||
buft_list[ggml_backend_buft_name(buft)] = buft;
|
||||
}
|
||||
}
|
||||
|
||||
for (const auto & override : string_split<std::string>(value, ',')) {
|
||||
std::string::size_type pos = override.find('=');
|
||||
if (pos == std::string::npos) {
|
||||
throw std::invalid_argument("invalid value");
|
||||
}
|
||||
std::string tensor_name = override.substr(0, pos);
|
||||
std::string buffer_type = override.substr(pos + 1);
|
||||
|
||||
if (buft_list.find(buffer_type) == buft_list.end()) {
|
||||
printf("Available buffer types:\n");
|
||||
for (const auto & it : buft_list) {
|
||||
printf(" %s\n", ggml_backend_buft_name(it.second));
|
||||
}
|
||||
throw std::invalid_argument("unknown buffer type");
|
||||
}
|
||||
// FIXME: this leaks memory
|
||||
params.tensor_buft_overrides.push_back({strdup(tensor_name.c_str()), buft_list.at(buffer_type)});
|
||||
}
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
|
||||
"number of layers to store in VRAM",
|
||||
|
@ -1083,15 +1083,18 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
|
||||
if (!params.devices.empty()) {
|
||||
mparams.devices = params.devices.data();
|
||||
}
|
||||
|
||||
if (params.n_gpu_layers != -1) {
|
||||
mparams.n_gpu_layers = params.n_gpu_layers;
|
||||
}
|
||||
|
||||
mparams.main_gpu = params.main_gpu;
|
||||
mparams.split_mode = params.split_mode;
|
||||
mparams.tensor_split = params.tensor_split;
|
||||
mparams.use_mmap = params.use_mmap;
|
||||
mparams.use_mlock = params.use_mlock;
|
||||
mparams.check_tensors = params.check_tensors;
|
||||
|
||||
if (params.kv_overrides.empty()) {
|
||||
mparams.kv_overrides = NULL;
|
||||
} else {
|
||||
@ -1099,6 +1102,13 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
|
||||
mparams.kv_overrides = params.kv_overrides.data();
|
||||
}
|
||||
|
||||
if (params.tensor_buft_overrides.empty()) {
|
||||
mparams.tensor_buft_overrides = NULL;
|
||||
} else {
|
||||
GGML_ASSERT(params.tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
|
||||
mparams.tensor_buft_overrides = params.tensor_buft_overrides.data();
|
||||
}
|
||||
|
||||
return mparams;
|
||||
}
|
||||
|
||||
|
@ -256,6 +256,7 @@ struct common_params {
|
||||
std::vector<std::string> in_files; // all input files
|
||||
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
|
||||
std::vector<llama_model_kv_override> kv_overrides;
|
||||
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
|
||||
|
||||
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
|
||||
std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
|
||||
|
@ -275,10 +275,18 @@ extern "C" {
|
||||
};
|
||||
};
|
||||
|
||||
struct llama_model_tensor_buft_override {
|
||||
const char * pattern;
|
||||
ggml_backend_buffer_type_t buft;
|
||||
};
|
||||
|
||||
struct llama_model_params {
|
||||
// NULL-terminated list of devices to use for offloading (if NULL, all available devices are used)
|
||||
ggml_backend_dev_t * devices;
|
||||
|
||||
// NULL-terminated list of buffer types to use for tensors that match a pattern
|
||||
const struct llama_model_tensor_buft_override * tensor_buft_overrides;
|
||||
|
||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||
enum llama_split_mode split_mode; // how to split the model across multiple GPUs
|
||||
|
||||
|
@ -445,7 +445,8 @@ llama_model_loader::llama_model_loader(
|
||||
std::vector<std::string> & splits,
|
||||
bool use_mmap,
|
||||
bool check_tensors,
|
||||
const struct llama_model_kv_override * param_overrides_p) {
|
||||
const llama_model_kv_override * param_overrides_p,
|
||||
const llama_model_tensor_buft_override * param_tensor_buft_overrides_p) {
|
||||
int trace = 0;
|
||||
if (getenv("LLAMA_TRACE")) {
|
||||
trace = atoi(getenv("LLAMA_TRACE"));
|
||||
@ -457,6 +458,8 @@ llama_model_loader::llama_model_loader(
|
||||
}
|
||||
}
|
||||
|
||||
tensor_buft_overrides = param_tensor_buft_overrides_p;
|
||||
|
||||
// Load the main GGUF
|
||||
struct ggml_context * ctx = NULL;
|
||||
struct gguf_init_params params = {
|
||||
|
@ -77,8 +77,9 @@ struct llama_model_loader {
|
||||
|
||||
llama_mmaps mappings;
|
||||
|
||||
std::map<std::string, struct llama_tensor_weight, weight_name_comparer> weights_map;
|
||||
std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
|
||||
std::map<std::string, llama_tensor_weight, weight_name_comparer> weights_map;
|
||||
std::unordered_map<std::string, llama_model_kv_override> kv_overrides;
|
||||
const llama_model_tensor_buft_override * tensor_buft_overrides;
|
||||
|
||||
gguf_context_ptr meta;
|
||||
std::vector<ggml_context_ptr> contexts;
|
||||
@ -95,7 +96,8 @@ struct llama_model_loader {
|
||||
std::vector<std::string> & splits, // optional, only need if the split does not follow naming scheme
|
||||
bool use_mmap,
|
||||
bool check_tensors,
|
||||
const struct llama_model_kv_override * param_overrides_p);
|
||||
const llama_model_kv_override * param_overrides_p,
|
||||
const llama_model_tensor_buft_override * param_tensor_buft_overrides_p);
|
||||
|
||||
template<typename T>
|
||||
typename std::enable_if<std::is_integral<T>::value, bool>::type
|
||||
|
@ -1444,9 +1444,25 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t buft = select_weight_buft(hparams, t_meta, op, *buft_list);
|
||||
ggml_backend_buffer_type_t buft = nullptr;
|
||||
|
||||
// check overrides
|
||||
if (ml.tensor_buft_overrides) {
|
||||
std::string tensor_name = tn.str();
|
||||
for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
|
||||
if (tensor_name.find(overrides->pattern) != std::string::npos) {
|
||||
LLAMA_LOG_DEBUG("tensor %s buffer type overriden to %s\n", tensor_name.c_str(), ggml_backend_buft_name(overrides->buft));
|
||||
buft = overrides->buft;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!buft) {
|
||||
throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
|
||||
buft = select_weight_buft(hparams, t_meta, op, *buft_list);
|
||||
if (!buft) {
|
||||
throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
|
||||
}
|
||||
}
|
||||
|
||||
// avoid using a host buffer when using mmap
|
||||
@ -3757,6 +3773,7 @@ const struct ggml_tensor * llama_model::get_tensor(const char * name) const {
|
||||
struct llama_model_params llama_model_default_params() {
|
||||
struct llama_model_params result = {
|
||||
/*.devices =*/ nullptr,
|
||||
/*.tensor_buft_overrides =*/ nullptr,
|
||||
/*.n_gpu_layers =*/ 0,
|
||||
/*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
|
||||
/*.main_gpu =*/ 0,
|
||||
|
@ -527,7 +527,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
}
|
||||
|
||||
std::vector<std::string> splits = {};
|
||||
llama_model_loader ml(fname_inp, splits, use_mmap, /*check_tensors*/ true, kv_overrides);
|
||||
llama_model_loader ml(fname_inp, splits, use_mmap, /*check_tensors*/ true, kv_overrides, nullptr);
|
||||
ml.init_mappings(false); // no prefetching
|
||||
|
||||
llama_model model(llama_model_default_params());
|
||||
|
@ -40,7 +40,7 @@ static int llama_model_load(const std::string & fname, std::vector<std::string>
|
||||
model.t_start_us = tm.t_start_us;
|
||||
|
||||
try {
|
||||
llama_model_loader ml(fname, splits, params.use_mmap, params.check_tensors, params.kv_overrides);
|
||||
llama_model_loader ml(fname, splits, params.use_mmap, params.check_tensors, params.kv_overrides, params.tensor_buft_overrides);
|
||||
|
||||
ml.print_info();
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user