mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-15 14:50:51 +01:00
Merge commit 'fcca0a700487999d52a525c96d6661e9f6a8703a' into nomic-vulkan
This commit is contained in:
commit
f194e1b6a6
@ -1,6 +1,9 @@
|
|||||||
*.o
|
*.o
|
||||||
*.a
|
*.a
|
||||||
.cache/
|
.cache/
|
||||||
|
.git/
|
||||||
|
.github/
|
||||||
|
.gitignore
|
||||||
.vs/
|
.vs/
|
||||||
.vscode/
|
.vscode/
|
||||||
.DS_Store
|
.DS_Store
|
||||||
|
103
.github/workflows/build.yml
vendored
103
.github/workflows/build.yml
vendored
@ -10,10 +10,10 @@ on:
|
|||||||
push:
|
push:
|
||||||
branches:
|
branches:
|
||||||
- master
|
- master
|
||||||
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu']
|
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m']
|
||||||
pull_request:
|
pull_request:
|
||||||
types: [opened, synchronize, reopened]
|
types: [opened, synchronize, reopened]
|
||||||
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu']
|
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m']
|
||||||
|
|
||||||
env:
|
env:
|
||||||
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||||
@ -38,13 +38,13 @@ jobs:
|
|||||||
- name: Build
|
- name: Build
|
||||||
id: make_build
|
id: make_build
|
||||||
run: |
|
run: |
|
||||||
CC=gcc-8 make
|
CC=gcc-8 make -j $(nproc)
|
||||||
|
|
||||||
- name: Test
|
- name: Test
|
||||||
id: make_test
|
id: make_test
|
||||||
run: |
|
run: |
|
||||||
CC=gcc-8 make tests
|
CC=gcc-8 make tests -j $(nproc)
|
||||||
make test
|
make test -j $(nproc)
|
||||||
|
|
||||||
ubuntu-latest-cmake:
|
ubuntu-latest-cmake:
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
@ -66,7 +66,7 @@ jobs:
|
|||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
cmake ..
|
cmake ..
|
||||||
cmake --build . --config Release
|
cmake --build . --config Release -j $(nproc)
|
||||||
|
|
||||||
- name: Test
|
- name: Test
|
||||||
id: cmake_test
|
id: cmake_test
|
||||||
@ -101,7 +101,7 @@ jobs:
|
|||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
cmake .. -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
cmake .. -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||||
cmake --build . --config ${{ matrix.build_type }}
|
cmake --build . --config ${{ matrix.build_type }} -j $(nproc)
|
||||||
|
|
||||||
- name: Test
|
- name: Test
|
||||||
id: cmake_test
|
id: cmake_test
|
||||||
@ -135,7 +135,7 @@ jobs:
|
|||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
cmake -DLLAMA_MPI=ON ..
|
cmake -DLLAMA_MPI=ON ..
|
||||||
cmake --build . --config Release
|
cmake --build . --config Release -j $(nproc)
|
||||||
|
|
||||||
- name: Test
|
- name: Test
|
||||||
id: cmake_test
|
id: cmake_test
|
||||||
@ -160,13 +160,13 @@ jobs:
|
|||||||
- name: Build
|
- name: Build
|
||||||
id: make_build
|
id: make_build
|
||||||
run: |
|
run: |
|
||||||
make
|
make -j $(sysctl -n hw.logicalcpu)
|
||||||
|
|
||||||
- name: Test
|
- name: Test
|
||||||
id: make_test
|
id: make_test
|
||||||
run: |
|
run: |
|
||||||
make tests
|
make tests -j $(sysctl -n hw.logicalcpu)
|
||||||
make test
|
make test -j $(sysctl -n hw.logicalcpu)
|
||||||
|
|
||||||
macOS-latest-cmake:
|
macOS-latest-cmake:
|
||||||
runs-on: macos-latest
|
runs-on: macos-latest
|
||||||
@ -188,8 +188,8 @@ jobs:
|
|||||||
sysctl -a
|
sysctl -a
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
cmake -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF ..
|
cmake ..
|
||||||
cmake --build . --config Release
|
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||||
|
|
||||||
- name: Test
|
- name: Test
|
||||||
id: cmake_test
|
id: cmake_test
|
||||||
@ -223,7 +223,7 @@ jobs:
|
|||||||
-DLLAMA_BUILD_SERVER=OFF \
|
-DLLAMA_BUILD_SERVER=OFF \
|
||||||
-DCMAKE_SYSTEM_NAME=iOS \
|
-DCMAKE_SYSTEM_NAME=iOS \
|
||||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0
|
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0
|
||||||
cmake --build . --config Release
|
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||||
|
|
||||||
macOS-latest-cmake-tvos:
|
macOS-latest-cmake-tvos:
|
||||||
runs-on: macos-latest
|
runs-on: macos-latest
|
||||||
@ -251,7 +251,30 @@ jobs:
|
|||||||
-DLLAMA_BUILD_SERVER=OFF \
|
-DLLAMA_BUILD_SERVER=OFF \
|
||||||
-DCMAKE_SYSTEM_NAME=tvOS \
|
-DCMAKE_SYSTEM_NAME=tvOS \
|
||||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0
|
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0
|
||||||
cmake --build . --config Release
|
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||||
|
|
||||||
|
macOS-latest-swift:
|
||||||
|
runs-on: macos-latest
|
||||||
|
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
destination: ['generic/platform=macOS', 'generic/platform=iOS', 'generic/platform=tvOS']
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Clone
|
||||||
|
id: checkout
|
||||||
|
uses: actions/checkout@v1
|
||||||
|
|
||||||
|
- name: Dependencies
|
||||||
|
id: depends
|
||||||
|
continue-on-error: true
|
||||||
|
run: |
|
||||||
|
brew update
|
||||||
|
|
||||||
|
- name: xcodebuild for swift package
|
||||||
|
id: xcodebuild
|
||||||
|
run: |
|
||||||
|
xcodebuild -scheme llama -destination "${{ matrix.destination }}"
|
||||||
|
|
||||||
windows-latest-cmake:
|
windows-latest-cmake:
|
||||||
runs-on: windows-latest
|
runs-on: windows-latest
|
||||||
@ -265,17 +288,17 @@ jobs:
|
|||||||
matrix:
|
matrix:
|
||||||
include:
|
include:
|
||||||
- build: 'noavx'
|
- build: 'noavx'
|
||||||
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF -DBUILD_SHARED_LIBS=ON'
|
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF -DBUILD_SHARED_LIBS=ON'
|
||||||
- build: 'avx2'
|
- build: 'avx2'
|
||||||
defines: '-DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
||||||
- build: 'avx'
|
- build: 'avx'
|
||||||
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF -DBUILD_SHARED_LIBS=ON'
|
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF -DBUILD_SHARED_LIBS=ON'
|
||||||
- build: 'avx512'
|
- build: 'avx512'
|
||||||
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON'
|
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON'
|
||||||
- build: 'clblast'
|
- build: 'clblast'
|
||||||
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"'
|
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"'
|
||||||
- build: 'openblas'
|
- build: 'openblas'
|
||||||
defines: '-DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- name: Clone
|
- name: Clone
|
||||||
@ -324,7 +347,7 @@ jobs:
|
|||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
cmake .. ${{ matrix.defines }}
|
cmake .. ${{ matrix.defines }}
|
||||||
cmake --build . --config Release
|
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||||
|
|
||||||
- name: Add clblast.dll
|
- name: Add clblast.dll
|
||||||
id: add_clblast_dll
|
id: add_clblast_dll
|
||||||
@ -414,8 +437,8 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
cmake .. -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON -DBUILD_SHARED_LIBS=ON
|
cmake .. -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON -DBUILD_SHARED_LIBS=ON
|
||||||
cmake --build . --config Release
|
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||||
|
|
||||||
- name: Determine tag name
|
- name: Determine tag name
|
||||||
id: tag
|
id: tag
|
||||||
@ -457,22 +480,22 @@ jobs:
|
|||||||
path: |
|
path: |
|
||||||
cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
||||||
|
|
||||||
freeBSD-latest:
|
# freeBSD-latest:
|
||||||
runs-on: macos-12
|
# runs-on: macos-12
|
||||||
steps:
|
# steps:
|
||||||
- name: Clone
|
# - name: Clone
|
||||||
uses: actions/checkout@v3
|
# uses: actions/checkout@v3
|
||||||
|
#
|
||||||
- name: Build
|
# - name: Build
|
||||||
uses: cross-platform-actions/action@v0.19.0
|
# uses: cross-platform-actions/action@v0.19.0
|
||||||
with:
|
# with:
|
||||||
operating_system: freebsd
|
# operating_system: freebsd
|
||||||
version: '13.2'
|
# version: '13.2'
|
||||||
hypervisor: 'qemu'
|
# hypervisor: 'qemu'
|
||||||
run: |
|
# run: |
|
||||||
sudo pkg update
|
# sudo pkg update
|
||||||
sudo pkg install -y gmake automake autoconf pkgconf llvm15 clinfo clover opencl clblast openblas
|
# sudo pkg install -y gmake automake autoconf pkgconf llvm15 clinfo clover opencl clblast openblas
|
||||||
gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15
|
# gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j `sysctl -n hw.ncpu`
|
||||||
|
|
||||||
release:
|
release:
|
||||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||||
|
3
.github/workflows/gguf-publish.yml
vendored
3
.github/workflows/gguf-publish.yml
vendored
@ -36,8 +36,9 @@ jobs:
|
|||||||
poetry install
|
poetry install
|
||||||
|
|
||||||
- name: Build package
|
- name: Build package
|
||||||
run: poetry build
|
run: cd gguf-py && poetry build
|
||||||
- name: Publish package
|
- name: Publish package
|
||||||
uses: pypa/gh-action-pypi-publish@release/v1
|
uses: pypa/gh-action-pypi-publish@release/v1
|
||||||
with:
|
with:
|
||||||
password: ${{ secrets.PYPI_API_TOKEN }}
|
password: ${{ secrets.PYPI_API_TOKEN }}
|
||||||
|
packages-dir: gguf-py/dist
|
||||||
|
25
.github/workflows/zig-build.yml
vendored
Normal file
25
.github/workflows/zig-build.yml
vendored
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
name: Zig CI
|
||||||
|
|
||||||
|
on:
|
||||||
|
pull_request:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
build:
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
runs-on: [ubuntu-latest, macos-latest, windows-latest]
|
||||||
|
runs-on: ${{ matrix.runs-on }}
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v3
|
||||||
|
with:
|
||||||
|
submodules: recursive
|
||||||
|
fetch-depth: 0
|
||||||
|
- uses: goto-bus-stop/setup-zig@v2
|
||||||
|
with:
|
||||||
|
version: 0.11.0
|
||||||
|
- name: Build Summary
|
||||||
|
run: zig build --summary all -freference-trace
|
8
.gitignore
vendored
8
.gitignore
vendored
@ -10,6 +10,7 @@
|
|||||||
*.gcno
|
*.gcno
|
||||||
*.gcda
|
*.gcda
|
||||||
*.dot
|
*.dot
|
||||||
|
*.metallib
|
||||||
.DS_Store
|
.DS_Store
|
||||||
.build/
|
.build/
|
||||||
.cache/
|
.cache/
|
||||||
@ -40,11 +41,13 @@ models-mnt
|
|||||||
/embedding
|
/embedding
|
||||||
/gguf
|
/gguf
|
||||||
/gguf-llama-simple
|
/gguf-llama-simple
|
||||||
|
/infill
|
||||||
/libllama.so
|
/libllama.so
|
||||||
/llama-bench
|
/llama-bench
|
||||||
/main
|
/main
|
||||||
/metal
|
/metal
|
||||||
/perplexity
|
/perplexity
|
||||||
|
/q8dot
|
||||||
/quantize
|
/quantize
|
||||||
/quantize-stats
|
/quantize-stats
|
||||||
/result
|
/result
|
||||||
@ -52,6 +55,8 @@ models-mnt
|
|||||||
/server
|
/server
|
||||||
/simple
|
/simple
|
||||||
/batched
|
/batched
|
||||||
|
/export-lora
|
||||||
|
/finetune
|
||||||
/speculative
|
/speculative
|
||||||
/parallel
|
/parallel
|
||||||
/train-text-from-scratch
|
/train-text-from-scratch
|
||||||
@ -87,4 +92,5 @@ tests/test-quantize-perf
|
|||||||
tests/test-sampling
|
tests/test-sampling
|
||||||
tests/test-tokenizer-0-llama
|
tests/test-tokenizer-0-llama
|
||||||
tests/test-tokenizer-0-falcon
|
tests/test-tokenizer-0-falcon
|
||||||
tests/test-tokenizer-1
|
tests/test-tokenizer-1-llama
|
||||||
|
tests/test-tokenizer-1-bpe
|
||||||
|
109
CMakeLists.txt
109
CMakeLists.txt
@ -1,4 +1,4 @@
|
|||||||
cmake_minimum_required(VERSION 3.12) # Don't bump this version for no reason
|
cmake_minimum_required(VERSION 3.13) # for add_link_options
|
||||||
project("llama.cpp" C CXX)
|
project("llama.cpp" C CXX)
|
||||||
|
|
||||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||||
@ -44,7 +44,7 @@ endif()
|
|||||||
|
|
||||||
# general
|
# general
|
||||||
option(LLAMA_STATIC "llama: static link libraries" OFF)
|
option(LLAMA_STATIC "llama: static link libraries" OFF)
|
||||||
option(LLAMA_NATIVE "llama: enable -march=native flag" OFF)
|
option(LLAMA_NATIVE "llama: enable -march=native flag" ON)
|
||||||
option(LLAMA_LTO "llama: enable link time optimization" OFF)
|
option(LLAMA_LTO "llama: enable link time optimization" OFF)
|
||||||
|
|
||||||
# debug
|
# debug
|
||||||
@ -58,15 +58,21 @@ option(LLAMA_SANITIZE_ADDRESS "llama: enable address sanitizer"
|
|||||||
option(LLAMA_SANITIZE_UNDEFINED "llama: enable undefined sanitizer" OFF)
|
option(LLAMA_SANITIZE_UNDEFINED "llama: enable undefined sanitizer" OFF)
|
||||||
|
|
||||||
# instruction set specific
|
# instruction set specific
|
||||||
option(LLAMA_AVX "llama: enable AVX" ON)
|
if (LLAMA_NATIVE)
|
||||||
option(LLAMA_AVX2 "llama: enable AVX2" ON)
|
set(INS_ENB OFF)
|
||||||
option(LLAMA_AVX512 "llama: enable AVX512" OFF)
|
else()
|
||||||
option(LLAMA_AVX512_VBMI "llama: enable AVX512-VBMI" OFF)
|
set(INS_ENB ON)
|
||||||
option(LLAMA_AVX512_VNNI "llama: enable AVX512-VNNI" OFF)
|
endif()
|
||||||
option(LLAMA_FMA "llama: enable FMA" ON)
|
|
||||||
|
option(LLAMA_AVX "llama: enable AVX" ${INS_ENB})
|
||||||
|
option(LLAMA_AVX2 "llama: enable AVX2" ${INS_ENB})
|
||||||
|
option(LLAMA_AVX512 "llama: enable AVX512" OFF)
|
||||||
|
option(LLAMA_AVX512_VBMI "llama: enable AVX512-VBMI" OFF)
|
||||||
|
option(LLAMA_AVX512_VNNI "llama: enable AVX512-VNNI" OFF)
|
||||||
|
option(LLAMA_FMA "llama: enable FMA" ${INS_ENB})
|
||||||
# in MSVC F16C is implied with AVX2/AVX512
|
# in MSVC F16C is implied with AVX2/AVX512
|
||||||
if (NOT MSVC)
|
if (NOT MSVC)
|
||||||
option(LLAMA_F16C "llama: enable F16C" ON)
|
option(LLAMA_F16C "llama: enable F16C" ${INS_ENB})
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
# 3rd party libs
|
# 3rd party libs
|
||||||
@ -344,8 +350,9 @@ if (LLAMA_MPI)
|
|||||||
set(GGML_SOURCES_MPI ggml-mpi.c ggml-mpi.h)
|
set(GGML_SOURCES_MPI ggml-mpi.c ggml-mpi.h)
|
||||||
add_compile_definitions(GGML_USE_MPI)
|
add_compile_definitions(GGML_USE_MPI)
|
||||||
add_compile_definitions(${MPI_C_COMPILE_DEFINITIONS})
|
add_compile_definitions(${MPI_C_COMPILE_DEFINITIONS})
|
||||||
set(cxx_flags ${cxx_flags} -Wno-cast-qual)
|
if (NOT MSVC)
|
||||||
set(c_flags ${c_flags} -Wno-cast-qual)
|
add_compile_options(-Wno-cast-qual)
|
||||||
|
endif()
|
||||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${MPI_C_LIBRARIES})
|
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${MPI_C_LIBRARIES})
|
||||||
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${MPI_C_INCLUDE_DIRS})
|
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${MPI_C_INCLUDE_DIRS})
|
||||||
# Even if you're only using the C header, C++ programs may bring in MPI
|
# Even if you're only using the C header, C++ programs may bring in MPI
|
||||||
@ -551,43 +558,56 @@ endif()
|
|||||||
|
|
||||||
if (LLAMA_ALL_WARNINGS)
|
if (LLAMA_ALL_WARNINGS)
|
||||||
if (NOT MSVC)
|
if (NOT MSVC)
|
||||||
set(c_flags
|
set(warning_flags -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
|
||||||
-Wall
|
set(c_flags -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int
|
||||||
-Wextra
|
-Werror=implicit-function-declaration)
|
||||||
-Wpedantic
|
set(cxx_flags -Wmissing-declarations -Wmissing-noreturn)
|
||||||
-Wcast-qual
|
set(host_cxx_flags "")
|
||||||
-Wdouble-promotion
|
|
||||||
-Wshadow
|
if (CMAKE_C_COMPILER_ID MATCHES "Clang")
|
||||||
-Wstrict-prototypes
|
set(warning_flags ${warning_flags} -Wunreachable-code-break -Wunreachable-code-return)
|
||||||
-Wpointer-arith
|
set(host_cxx_flags ${host_cxx_flags} -Wmissing-prototypes -Wextra-semi)
|
||||||
-Wmissing-prototypes
|
|
||||||
-Werror=implicit-int
|
if (
|
||||||
-Wno-unused-function
|
(CMAKE_C_COMPILER_ID STREQUAL "Clang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL 3.8.0) OR
|
||||||
)
|
(CMAKE_C_COMPILER_ID STREQUAL "AppleClang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL 7.3.0)
|
||||||
set(cxx_flags
|
)
|
||||||
-Wall
|
set(c_flags ${c_flags} -Wdouble-promotion)
|
||||||
-Wextra
|
endif()
|
||||||
-Wpedantic
|
elseif (CMAKE_C_COMPILER_ID STREQUAL "GNU")
|
||||||
-Wcast-qual
|
set(c_flags ${c_flags} -Wdouble-promotion)
|
||||||
-Wmissing-declarations
|
set(host_cxx_flags ${host_cxx_flags} -Wno-array-bounds)
|
||||||
-Wno-unused-function
|
|
||||||
-Wno-multichar
|
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 7.1.0)
|
||||||
)
|
set(host_cxx_flags ${host_cxx_flags} -Wno-format-truncation)
|
||||||
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
|
endif()
|
||||||
# g++ only
|
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 8.1.0)
|
||||||
set(cxx_flags ${cxx_flags} -Wno-format-truncation -Wno-array-bounds)
|
set(host_cxx_flags ${host_cxx_flags} -Wextra-semi)
|
||||||
|
endif()
|
||||||
endif()
|
endif()
|
||||||
else()
|
else()
|
||||||
# todo : msvc
|
# todo : msvc
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
add_compile_options(
|
set(c_flags ${c_flags} ${warning_flags})
|
||||||
"$<$<COMPILE_LANGUAGE:C>:${c_flags}>"
|
set(cxx_flags ${cxx_flags} ${warning_flags})
|
||||||
"$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags}>"
|
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${c_flags}>"
|
||||||
)
|
"$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags} ${host_cxx_flags}>")
|
||||||
|
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
if (NOT MSVC)
|
||||||
|
set(cuda_flags -Wno-pedantic)
|
||||||
|
endif()
|
||||||
|
set(cuda_flags ${cxx_flags} -use_fast_math ${cuda_flags})
|
||||||
|
|
||||||
|
list(JOIN host_cxx_flags " " cuda_host_flags) # pass host compiler flags as a single argument
|
||||||
|
if (NOT cuda_host_flags STREQUAL "")
|
||||||
|
set(cuda_flags ${cuda_flags} -Xcompiler ${cuda_host_flags})
|
||||||
|
endif()
|
||||||
|
|
||||||
|
add_compile_options("$<$<COMPILE_LANGUAGE:CUDA>:${cuda_flags}>")
|
||||||
|
|
||||||
if (WIN32)
|
if (WIN32)
|
||||||
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
|
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
|
||||||
|
|
||||||
@ -627,9 +647,6 @@ if (NOT MSVC)
|
|||||||
if (LLAMA_GPROF)
|
if (LLAMA_GPROF)
|
||||||
add_compile_options(-pg)
|
add_compile_options(-pg)
|
||||||
endif()
|
endif()
|
||||||
if (LLAMA_NATIVE)
|
|
||||||
add_compile_options(-march=native)
|
|
||||||
endif()
|
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64") OR ("${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "arm64"))
|
if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64") OR ("${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "arm64"))
|
||||||
@ -684,6 +701,9 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GE
|
|||||||
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX>)
|
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX>)
|
||||||
endif()
|
endif()
|
||||||
else()
|
else()
|
||||||
|
if (LLAMA_NATIVE)
|
||||||
|
add_compile_options(-march=native)
|
||||||
|
endif()
|
||||||
if (LLAMA_F16C)
|
if (LLAMA_F16C)
|
||||||
add_compile_options(-mf16c)
|
add_compile_options(-mf16c)
|
||||||
endif()
|
endif()
|
||||||
@ -780,6 +800,8 @@ add_library(ggml OBJECT
|
|||||||
ggml.h
|
ggml.h
|
||||||
ggml-alloc.c
|
ggml-alloc.c
|
||||||
ggml-alloc.h
|
ggml-alloc.h
|
||||||
|
ggml-backend.c
|
||||||
|
ggml-backend.h
|
||||||
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
|
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
|
||||||
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
|
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
|
||||||
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
||||||
@ -842,6 +864,7 @@ set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR}
|
|||||||
set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER})
|
set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER})
|
||||||
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
|
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
|
||||||
set(LLAMA_INSTALL_VERSION 0.0.${BUILD_NUMBER})
|
set(LLAMA_INSTALL_VERSION 0.0.${BUILD_NUMBER})
|
||||||
|
get_directory_property(LLAMA_TRANSIENT_DEFINES COMPILE_DEFINITIONS)
|
||||||
|
|
||||||
configure_package_config_file(
|
configure_package_config_file(
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/scripts/LlamaConfig.cmake.in
|
${CMAKE_CURRENT_SOURCE_DIR}/scripts/LlamaConfig.cmake.in
|
||||||
|
101
Makefile
101
Makefile
@ -1,8 +1,8 @@
|
|||||||
# Define the default target now so that it is always the first target
|
# Define the default target now so that it is always the first target
|
||||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative parallel tests/test-c.o
|
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
|
||||||
|
|
||||||
# Binaries only useful for tests
|
# Binaries only useful for tests
|
||||||
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama
|
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe
|
||||||
|
|
||||||
# Code coverage output files
|
# Code coverage output files
|
||||||
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
|
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
|
||||||
@ -19,6 +19,20 @@ ifndef UNAME_M
|
|||||||
UNAME_M := $(shell uname -m)
|
UNAME_M := $(shell uname -m)
|
||||||
endif
|
endif
|
||||||
|
|
||||||
|
ifeq '' '$(findstring clang,$(shell $(CC) --version))'
|
||||||
|
CC_IS_GCC=1
|
||||||
|
CC_VER := $(shell $(CC) -dumpfullversion -dumpversion | awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }')
|
||||||
|
else
|
||||||
|
CC_IS_CLANG=1
|
||||||
|
ifeq '' '$(findstring Apple LLVM,$(shell $(CC) --version))'
|
||||||
|
CC_IS_LLVM_CLANG=1
|
||||||
|
else
|
||||||
|
CC_IS_APPLE_CLANG=1
|
||||||
|
endif
|
||||||
|
CC_VER := $(shell $(CC) --version | sed -n 's/^.* version \([0-9.]*\).*$$/\1/p' \
|
||||||
|
| awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }')
|
||||||
|
endif
|
||||||
|
|
||||||
# Mac OS + Arm can report x86_64
|
# Mac OS + Arm can report x86_64
|
||||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
|
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
|
||||||
ifeq ($(UNAME_S),Darwin)
|
ifeq ($(UNAME_S),Darwin)
|
||||||
@ -48,9 +62,11 @@ test: $(TEST_TARGETS)
|
|||||||
if [ "$$test_target" = "tests/test-tokenizer-0-llama" ]; then \
|
if [ "$$test_target" = "tests/test-tokenizer-0-llama" ]; then \
|
||||||
./$$test_target $(CURDIR)/models/ggml-vocab-llama.gguf; \
|
./$$test_target $(CURDIR)/models/ggml-vocab-llama.gguf; \
|
||||||
elif [ "$$test_target" = "tests/test-tokenizer-0-falcon" ]; then \
|
elif [ "$$test_target" = "tests/test-tokenizer-0-falcon" ]; then \
|
||||||
continue; \
|
./$$test_target $(CURDIR)/models/ggml-vocab-falcon.gguf; \
|
||||||
elif [ "$$test_target" = "tests/test-tokenizer-1-llama" ]; then \
|
elif [ "$$test_target" = "tests/test-tokenizer-1-llama" ]; then \
|
||||||
continue; \
|
continue; \
|
||||||
|
elif [ "$$test_target" = "tests/test-tokenizer-1-bpe" ]; then \
|
||||||
|
continue; \
|
||||||
else \
|
else \
|
||||||
echo "Running test $$test_target..."; \
|
echo "Running test $$test_target..."; \
|
||||||
./$$test_target; \
|
./$$test_target; \
|
||||||
@ -87,9 +103,6 @@ CC := riscv64-unknown-linux-gnu-gcc
|
|||||||
CXX := riscv64-unknown-linux-gnu-g++
|
CXX := riscv64-unknown-linux-gnu-g++
|
||||||
endif
|
endif
|
||||||
|
|
||||||
CCV := $(shell $(CC) --version | head -n 1)
|
|
||||||
CXXV := $(shell $(CXX) --version | head -n 1)
|
|
||||||
|
|
||||||
#
|
#
|
||||||
# Compile flags
|
# Compile flags
|
||||||
#
|
#
|
||||||
@ -173,20 +186,33 @@ ifdef LLAMA_DISABLE_LOGS
|
|||||||
endif # LLAMA_DISABLE_LOGS
|
endif # LLAMA_DISABLE_LOGS
|
||||||
|
|
||||||
# warnings
|
# warnings
|
||||||
MK_CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith \
|
WARN_FLAGS = -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function
|
||||||
-Wmissing-prototypes -Werror=implicit-int -Wno-unused-function
|
MK_CFLAGS += $(WARN_FLAGS) -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int \
|
||||||
MK_CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wmissing-declarations -Wno-unused-function -Wno-multichar
|
-Werror=implicit-function-declaration
|
||||||
|
MK_CXXFLAGS += $(WARN_FLAGS) -Wmissing-declarations -Wmissing-noreturn
|
||||||
|
|
||||||
# TODO(cebtenzzre): remove this once PR #2632 gets merged
|
ifeq ($(CC_IS_CLANG), 1)
|
||||||
TTFS_CXXFLAGS = $(CXXFLAGS) -Wno-missing-declarations
|
# clang options
|
||||||
|
MK_CFLAGS += -Wunreachable-code-break -Wunreachable-code-return
|
||||||
|
MK_HOST_CXXFLAGS += -Wunreachable-code-break -Wunreachable-code-return -Wmissing-prototypes -Wextra-semi
|
||||||
|
|
||||||
ifneq '' '$(findstring clang,$(shell $(CXX) --version))'
|
ifneq '' '$(and $(CC_IS_LLVM_CLANG),$(filter 1,$(shell expr $(CC_VER) \>= 030800)))'
|
||||||
# clang++ only
|
MK_CFLAGS += -Wdouble-promotion
|
||||||
MK_CXXFLAGS += -Wmissing-prototypes
|
endif
|
||||||
TTFS_CXXFLAGS += -Wno-missing-prototypes
|
ifneq '' '$(and $(CC_IS_APPLE_CLANG),$(filter 1,$(shell expr $(CC_VER) \>= 070300)))'
|
||||||
|
MK_CFLAGS += -Wdouble-promotion
|
||||||
|
endif
|
||||||
else
|
else
|
||||||
# g++ only
|
# gcc options
|
||||||
MK_CXXFLAGS += -Wno-format-truncation -Wno-array-bounds
|
MK_CFLAGS += -Wdouble-promotion
|
||||||
|
MK_HOST_CXXFLAGS += -Wno-array-bounds
|
||||||
|
|
||||||
|
ifeq ($(shell expr $(CC_VER) \>= 070100), 1)
|
||||||
|
MK_HOST_CXXFLAGS += -Wno-format-truncation
|
||||||
|
endif
|
||||||
|
ifeq ($(shell expr $(CC_VER) \>= 080100), 1)
|
||||||
|
MK_HOST_CXXFLAGS += -Wextra-semi
|
||||||
|
endif
|
||||||
endif
|
endif
|
||||||
|
|
||||||
# OS specific
|
# OS specific
|
||||||
@ -382,7 +408,7 @@ ifdef LLAMA_CUDA_CCBIN
|
|||||||
NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
|
NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
|
||||||
endif
|
endif
|
||||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||||
$(NVCC) $(NVCCFLAGS) -Wno-pedantic -c $< -o $@
|
$(NVCC) $(NVCCFLAGS) -c $< -o $@
|
||||||
endif # LLAMA_CUBLAS
|
endif # LLAMA_CUBLAS
|
||||||
|
|
||||||
ifdef LLAMA_CLBLAST
|
ifdef LLAMA_CLBLAST
|
||||||
@ -472,8 +498,8 @@ $(info I CFLAGS: $(CFLAGS))
|
|||||||
$(info I CXXFLAGS: $(CXXFLAGS))
|
$(info I CXXFLAGS: $(CXXFLAGS))
|
||||||
$(info I NVCCFLAGS: $(NVCCFLAGS))
|
$(info I NVCCFLAGS: $(NVCCFLAGS))
|
||||||
$(info I LDFLAGS: $(LDFLAGS))
|
$(info I LDFLAGS: $(LDFLAGS))
|
||||||
$(info I CC: $(CCV))
|
$(info I CC: $(shell $(CC) --version | head -n 1))
|
||||||
$(info I CXX: $(CXXV))
|
$(info I CXX: $(shell $(CXX) --version | head -n 1))
|
||||||
$(info )
|
$(info )
|
||||||
|
|
||||||
#
|
#
|
||||||
@ -486,9 +512,12 @@ ggml.o: ggml.c ggml.h ggml-cuda.h
|
|||||||
ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
|
ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
|
||||||
$(CC) $(CFLAGS) -c $< -o $@
|
$(CC) $(CFLAGS) -c $< -o $@
|
||||||
|
|
||||||
OBJS += ggml-alloc.o
|
ggml-backend.o: ggml-backend.c ggml.h ggml-backend.h
|
||||||
|
$(CC) $(CFLAGS) -c $< -o $@
|
||||||
|
|
||||||
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h llama.h
|
OBJS += ggml-alloc.o ggml-backend.o
|
||||||
|
|
||||||
|
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
|
||||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||||
|
|
||||||
common.o: common/common.cpp common/common.h build-info.h common/log.h
|
common.o: common/common.cpp common/common.h build-info.h common/log.h
|
||||||
@ -500,6 +529,9 @@ console.o: common/console.cpp common/console.h
|
|||||||
grammar-parser.o: common/grammar-parser.cpp common/grammar-parser.h
|
grammar-parser.o: common/grammar-parser.cpp common/grammar-parser.h
|
||||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||||
|
|
||||||
|
train.o: common/train.cpp common/train.h
|
||||||
|
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||||
|
|
||||||
libllama.so: llama.o ggml.o $(OBJS)
|
libllama.so: llama.o ggml.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||||
|
|
||||||
@ -516,6 +548,9 @@ main: examples/main/main.cpp build-info.h ggml.
|
|||||||
@echo '==== Run ./main -h for help. ===='
|
@echo '==== Run ./main -h for help. ===='
|
||||||
@echo
|
@echo
|
||||||
|
|
||||||
|
infill: examples/infill/infill.cpp build-info.h ggml.o llama.o common.o console.o grammar-parser.o $(OBJS)
|
||||||
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
@ -550,8 +585,8 @@ embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-te
|
|||||||
gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS)
|
gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o common.o $(OBJS)
|
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o common.o train.o $(OBJS)
|
||||||
$(CXX) $(TTFS_CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS)
|
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
@ -559,12 +594,18 @@ convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggm
|
|||||||
llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o $(OBJS)
|
baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o train.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
finetune: examples/finetune/finetune.cpp build-info.h ggml.o llama.o common.o train.o $(OBJS)
|
||||||
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
export-lora: examples/export-lora/export-lora.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
|
speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
@ -592,11 +633,18 @@ tests: $(TEST_TARGETS)
|
|||||||
|
|
||||||
benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o $(OBJS)
|
benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
run-benchmark-matmult: benchmark-matmult
|
||||||
./$@
|
./$@
|
||||||
|
|
||||||
|
.PHONY: run-benchmark-matmult
|
||||||
|
|
||||||
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
|
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS)
|
||||||
|
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o common.o grammar-parser.o $(OBJS)
|
tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o common.o grammar-parser.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
@ -627,6 +675,9 @@ tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp build-info.h gg
|
|||||||
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
@ -10,15 +10,18 @@ let platforms: [SupportedPlatform]? = [
|
|||||||
.tvOS(.v14)
|
.tvOS(.v14)
|
||||||
]
|
]
|
||||||
let exclude: [String] = []
|
let exclude: [String] = []
|
||||||
|
let resources: [Resource] = [
|
||||||
|
.process("ggml-metal.metal")
|
||||||
|
]
|
||||||
let additionalSources: [String] = ["ggml-metal.m"]
|
let additionalSources: [String] = ["ggml-metal.m"]
|
||||||
let additionalSettings: [CSetting] = [
|
let additionalSettings: [CSetting] = [
|
||||||
.unsafeFlags(["-fno-objc-arc"]),
|
.unsafeFlags(["-fno-objc-arc"]),
|
||||||
.define("GGML_SWIFT"),
|
|
||||||
.define("GGML_USE_METAL")
|
.define("GGML_USE_METAL")
|
||||||
]
|
]
|
||||||
#else
|
#else
|
||||||
let platforms: [SupportedPlatform]? = nil
|
let platforms: [SupportedPlatform]? = nil
|
||||||
let exclude: [String] = ["ggml-metal.metal"]
|
let exclude: [String] = ["ggml-metal.metal"]
|
||||||
|
let resources: [Resource] = []
|
||||||
let additionalSources: [String] = []
|
let additionalSources: [String] = []
|
||||||
let additionalSettings: [CSetting] = []
|
let additionalSettings: [CSetting] = []
|
||||||
#endif
|
#endif
|
||||||
@ -40,13 +43,17 @@ let package = Package(
|
|||||||
"ggml-alloc.c",
|
"ggml-alloc.c",
|
||||||
"k_quants.c",
|
"k_quants.c",
|
||||||
] + additionalSources,
|
] + additionalSources,
|
||||||
|
resources: resources,
|
||||||
publicHeadersPath: "spm-headers",
|
publicHeadersPath: "spm-headers",
|
||||||
cSettings: [
|
cSettings: [
|
||||||
.unsafeFlags(["-Wno-shorten-64-to-32"]),
|
.unsafeFlags(["-Wno-shorten-64-to-32"]),
|
||||||
.define("GGML_USE_K_QUANTS"),
|
.define("GGML_USE_K_QUANTS"),
|
||||||
.define("GGML_USE_ACCELERATE")
|
.define("GGML_USE_ACCELERATE")
|
||||||
.define("ACCELERATE_NEW_LAPACK")
|
// NOTE: NEW_LAPACK will required iOS version 16.4+
|
||||||
.define("ACCELERATE_LAPACK_ILP64")
|
// We should consider add this in the future when we drop support for iOS 14
|
||||||
|
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
|
||||||
|
// .define("ACCELERATE_NEW_LAPACK"),
|
||||||
|
// .define("ACCELERATE_LAPACK_ILP64")
|
||||||
] + additionalSettings,
|
] + additionalSettings,
|
||||||
linkerSettings: [
|
linkerSettings: [
|
||||||
.linkedFramework("Accelerate")
|
.linkedFramework("Accelerate")
|
||||||
|
37
README.md
37
README.md
@ -5,13 +5,14 @@
|
|||||||
[![Actions Status](https://github.com/ggerganov/llama.cpp/workflows/CI/badge.svg)](https://github.com/ggerganov/llama.cpp/actions)
|
[![Actions Status](https://github.com/ggerganov/llama.cpp/workflows/CI/badge.svg)](https://github.com/ggerganov/llama.cpp/actions)
|
||||||
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
|
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
|
||||||
|
|
||||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
|
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
|
||||||
|
|
||||||
Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||||
|
|
||||||
### Hot topics
|
### Hot topics
|
||||||
|
|
||||||
- Parallel decoding + continuous batching support incoming: [#3228](https://github.com/ggerganov/llama.cpp/pull/3228) \
|
- ‼️ Breaking change: `rope_freq_base` and `rope_freq_scale` must be set to zero to use the model default values: [#3401](https://github.com/ggerganov/llama.cpp/pull/3401)
|
||||||
|
- Parallel decoding + continuous batching support added: [#3228](https://github.com/ggerganov/llama.cpp/pull/3228) \
|
||||||
**Devs should become familiar with the new API**
|
**Devs should become familiar with the new API**
|
||||||
- Local Falcon 180B inference on Mac Studio
|
- Local Falcon 180B inference on Mac Studio
|
||||||
|
|
||||||
@ -92,7 +93,9 @@ as the main playground for developing new features for the [ggml](https://github
|
|||||||
- [X] [WizardLM](https://github.com/nlpxucan/WizardLM)
|
- [X] [WizardLM](https://github.com/nlpxucan/WizardLM)
|
||||||
- [X] [Baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B) and its derivations (such as [baichuan-7b-sft](https://huggingface.co/hiyouga/baichuan-7b-sft))
|
- [X] [Baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B) and its derivations (such as [baichuan-7b-sft](https://huggingface.co/hiyouga/baichuan-7b-sft))
|
||||||
- [X] [Aquila-7B](https://huggingface.co/BAAI/Aquila-7B) / [AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B)
|
- [X] [Aquila-7B](https://huggingface.co/BAAI/Aquila-7B) / [AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B)
|
||||||
- [X] Mistral AI v0.1
|
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
|
||||||
|
- [X] [Mistral AI v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||||||
|
- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
|
||||||
|
|
||||||
**Bindings:**
|
**Bindings:**
|
||||||
|
|
||||||
@ -375,7 +378,7 @@ Building the program with BLAS support may lead to some performance improvements
|
|||||||
|
|
||||||
- #### cuBLAS
|
- #### cuBLAS
|
||||||
|
|
||||||
This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
|
This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
|
||||||
- Using `make`:
|
- Using `make`:
|
||||||
```bash
|
```bash
|
||||||
make LLAMA_CUBLAS=1
|
make LLAMA_CUBLAS=1
|
||||||
@ -611,6 +614,18 @@ For more information, see [https://huggingface.co/docs/transformers/perplexity](
|
|||||||
The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
|
The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
|
||||||
The time per token is measured on a MacBook M1 Pro 32GB RAM using 4 and 8 threads.
|
The time per token is measured on a MacBook M1 Pro 32GB RAM using 4 and 8 threads.
|
||||||
|
|
||||||
|
#### How to run
|
||||||
|
|
||||||
|
1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
||||||
|
2. Run `./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw`
|
||||||
|
3. Output:
|
||||||
|
```
|
||||||
|
perplexity : calculating perplexity over 655 chunks
|
||||||
|
24.43 seconds per pass - ETA 4.45 hours
|
||||||
|
[1]4.5970,[2]5.1807,[3]6.0382,...
|
||||||
|
```
|
||||||
|
And after 4.45 hours, you will have the final perplexity.
|
||||||
|
|
||||||
### Interactive mode
|
### Interactive mode
|
||||||
|
|
||||||
If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter.
|
If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter.
|
||||||
@ -662,6 +677,8 @@ PROMPT_TEMPLATE=./prompts/chat-with-bob.txt PROMPT_CACHE_FILE=bob.prompt.bin \
|
|||||||
|
|
||||||
The `grammars/` folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](./grammars/README.md).
|
The `grammars/` folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](./grammars/README.md).
|
||||||
|
|
||||||
|
For authoring more complex JSON grammars, you can also check out https://grammar.intrinsiclabs.ai/, a browser app that lets you write TypeScript interfaces which it compiles to GBNF grammars that you can save for local use. Note that the app is built and maintained by members of the community, please file any issues or FRs on [its repo](http://github.com/intrinsiclabsai/gbnfgen) and not this one.
|
||||||
|
|
||||||
### Instruction mode with Alpaca
|
### Instruction mode with Alpaca
|
||||||
|
|
||||||
1. First, download the `ggml` Alpaca model into the `./models` folder
|
1. First, download the `ggml` Alpaca model into the `./models` folder
|
||||||
@ -771,18 +788,6 @@ If your issue is with model generation quality, then please at least scan the fo
|
|||||||
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
|
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
|
||||||
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
|
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
|
||||||
|
|
||||||
#### How to run
|
|
||||||
|
|
||||||
1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
|
||||||
2. Run `./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw`
|
|
||||||
3. Output:
|
|
||||||
```
|
|
||||||
perplexity : calculating perplexity over 655 chunks
|
|
||||||
24.43 seconds per pass - ETA 4.45 hours
|
|
||||||
[1]4.5970,[2]5.1807,[3]6.0382,...
|
|
||||||
```
|
|
||||||
And after 4.45 hours, you will have the final perplexity.
|
|
||||||
|
|
||||||
### Android
|
### Android
|
||||||
|
|
||||||
#### Building the Project using Android NDK
|
#### Building the Project using Android NDK
|
||||||
|
46
build.zig
46
build.zig
@ -36,14 +36,17 @@ const Maker = struct {
|
|||||||
}
|
}
|
||||||
|
|
||||||
fn init(builder: *std.build.Builder) !Maker {
|
fn init(builder: *std.build.Builder) !Maker {
|
||||||
// const commit_hash = @embedFile(".git/refs/heads/master");
|
|
||||||
const target = builder.standardTargetOptions(.{});
|
const target = builder.standardTargetOptions(.{});
|
||||||
|
const zig_version = @import("builtin").zig_version_string;
|
||||||
|
const commit_hash = try std.ChildProcess.exec(
|
||||||
|
.{ .allocator = builder.allocator, .argv = &.{ "git", "rev-parse", "HEAD" } },
|
||||||
|
);
|
||||||
const config_header = builder.addConfigHeader(
|
const config_header = builder.addConfigHeader(
|
||||||
.{ .style = .blank, .include_path = "build-info.h" },
|
.{ .style = .blank, .include_path = "build-info.h" },
|
||||||
.{
|
.{
|
||||||
.BUILD_NUMBER = 0,
|
.BUILD_NUMBER = 0,
|
||||||
.BUILD_COMMIT = "12345", // omit newline
|
.BUILD_COMMIT = commit_hash.stdout[0 .. commit_hash.stdout.len - 1], // omit newline
|
||||||
.BUILD_COMPILER = "Zig 0.11.0",
|
.BUILD_COMPILER = builder.fmt("Zig {s}", .{zig_version}),
|
||||||
.BUILD_TARGET = try target.allocDescription(builder.allocator),
|
.BUILD_TARGET = try target.allocDescription(builder.allocator),
|
||||||
},
|
},
|
||||||
);
|
);
|
||||||
@ -67,12 +70,20 @@ const Maker = struct {
|
|||||||
|
|
||||||
fn obj(m: *const Maker, name: []const u8, src: []const u8) *Compile {
|
fn obj(m: *const Maker, name: []const u8, src: []const u8) *Compile {
|
||||||
const o = m.builder.addObject(.{ .name = name, .target = m.target, .optimize = m.optimize });
|
const o = m.builder.addObject(.{ .name = name, .target = m.target, .optimize = m.optimize });
|
||||||
|
if (o.target.getAbi() != .msvc)
|
||||||
|
o.defineCMacro("_GNU_SOURCE", null);
|
||||||
|
o.addConfigHeader(m.config_header);
|
||||||
if (std.mem.endsWith(u8, src, ".c")) {
|
if (std.mem.endsWith(u8, src, ".c")) {
|
||||||
o.addCSourceFiles(&.{src}, m.cflags.items);
|
o.addCSourceFiles(&.{src}, m.cflags.items);
|
||||||
o.linkLibC();
|
o.linkLibC();
|
||||||
} else {
|
} else {
|
||||||
o.addCSourceFiles(&.{src}, m.cxxflags.items);
|
o.addCSourceFiles(&.{src}, m.cxxflags.items);
|
||||||
o.linkLibCpp();
|
if (o.target.getAbi() == .msvc) {
|
||||||
|
o.linkLibC(); // need winsdk + crt
|
||||||
|
} else {
|
||||||
|
// linkLibCpp already add (libc++ + libunwind + libc)
|
||||||
|
o.linkLibCpp();
|
||||||
|
}
|
||||||
}
|
}
|
||||||
o.addConfigHeader(m.config_header);
|
o.addConfigHeader(m.config_header);
|
||||||
for (m.include_dirs.items) |i| o.addIncludePath(.{ .path = i });
|
for (m.include_dirs.items) |i| o.addIncludePath(.{ .path = i });
|
||||||
@ -86,8 +97,14 @@ const Maker = struct {
|
|||||||
for (deps) |d| e.addObject(d);
|
for (deps) |d| e.addObject(d);
|
||||||
for (m.objs.items) |o| e.addObject(o);
|
for (m.objs.items) |o| e.addObject(o);
|
||||||
for (m.include_dirs.items) |i| e.addIncludePath(.{ .path = i });
|
for (m.include_dirs.items) |i| e.addIncludePath(.{ .path = i });
|
||||||
e.linkLibC();
|
|
||||||
e.linkLibCpp();
|
// https://github.com/ziglang/zig/issues/15448
|
||||||
|
if (e.target.getAbi() == .msvc) {
|
||||||
|
e.linkLibC(); // need winsdk + crt
|
||||||
|
} else {
|
||||||
|
// linkLibCpp already add (libc++ + libunwind + libc)
|
||||||
|
e.linkLibCpp();
|
||||||
|
}
|
||||||
e.addConfigHeader(m.config_header);
|
e.addConfigHeader(m.config_header);
|
||||||
m.builder.installArtifact(e);
|
m.builder.installArtifact(e);
|
||||||
e.want_lto = m.enable_lto;
|
e.want_lto = m.enable_lto;
|
||||||
@ -107,18 +124,21 @@ pub fn build(b: *std.build.Builder) !void {
|
|||||||
|
|
||||||
const ggml = make.obj("ggml", "ggml.c");
|
const ggml = make.obj("ggml", "ggml.c");
|
||||||
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
|
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
|
||||||
|
const ggml_backend = make.obj("ggml-backend", "ggml-backend.c");
|
||||||
const llama = make.obj("llama", "llama.cpp");
|
const llama = make.obj("llama", "llama.cpp");
|
||||||
const common = make.obj("common", "common/common.cpp");
|
const common = make.obj("common", "common/common.cpp");
|
||||||
const console = make.obj("common", "common/console.cpp");
|
const console = make.obj("console", "common/console.cpp");
|
||||||
const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp");
|
const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp");
|
||||||
|
const train = make.obj("train", "common/train.cpp");
|
||||||
|
|
||||||
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, llama, common, console, grammar_parser });
|
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, console, grammar_parser });
|
||||||
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, llama, common });
|
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
|
||||||
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, llama, common });
|
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
|
||||||
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, llama, common });
|
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
|
||||||
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, llama, common });
|
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train });
|
||||||
|
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train });
|
||||||
|
|
||||||
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, llama, common, grammar_parser });
|
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, grammar_parser });
|
||||||
if (server.target.isWindows()) {
|
if (server.target.isWindows()) {
|
||||||
server.linkSystemLibrary("ws2_32");
|
server.linkSystemLibrary("ws2_32");
|
||||||
}
|
}
|
||||||
|
@ -9,6 +9,8 @@ add_library(${TARGET} OBJECT
|
|||||||
console.cpp
|
console.cpp
|
||||||
grammar-parser.h
|
grammar-parser.h
|
||||||
grammar-parser.cpp
|
grammar-parser.cpp
|
||||||
|
train.h
|
||||||
|
train.cpp
|
||||||
)
|
)
|
||||||
|
|
||||||
if (BUILD_SHARED_LIBS)
|
if (BUILD_SHARED_LIBS)
|
||||||
|
@ -78,7 +78,7 @@ int32_t get_num_physical_cores() {
|
|||||||
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
|
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void process_escapes(std::string& input) {
|
void process_escapes(std::string& input) {
|
||||||
std::size_t input_len = input.length();
|
std::size_t input_len = input.length();
|
||||||
std::size_t output_idx = 0;
|
std::size_t output_idx = 0;
|
||||||
|
|
||||||
@ -129,6 +129,15 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||||||
if (params.n_threads <= 0) {
|
if (params.n_threads <= 0) {
|
||||||
params.n_threads = std::thread::hardware_concurrency();
|
params.n_threads = std::thread::hardware_concurrency();
|
||||||
}
|
}
|
||||||
|
} else if (arg == "-tb" || arg == "--threads-batch") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params.n_threads_batch = std::stoi(argv[i]);
|
||||||
|
if (params.n_threads_batch <= 0) {
|
||||||
|
params.n_threads_batch = std::thread::hardware_concurrency();
|
||||||
|
}
|
||||||
} else if (arg == "-p" || arg == "--prompt") {
|
} else if (arg == "-p" || arg == "--prompt") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
@ -158,8 +167,10 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
// store the external file name in params
|
||||||
|
params.prompt_file = argv[i];
|
||||||
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
|
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
|
||||||
if (params.prompt.back() == '\n') {
|
if (!params.prompt.empty() && params.prompt.back() == '\n') {
|
||||||
params.prompt.pop_back();
|
params.prompt.pop_back();
|
||||||
}
|
}
|
||||||
} else if (arg == "-n" || arg == "--n-predict") {
|
} else if (arg == "-n" || arg == "--n-predict") {
|
||||||
@ -284,7 +295,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.cfg_negative_prompt));
|
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.cfg_negative_prompt));
|
||||||
if (params.cfg_negative_prompt.back() == '\n') {
|
if (!params.cfg_negative_prompt.empty() && params.cfg_negative_prompt.back() == '\n') {
|
||||||
params.cfg_negative_prompt.pop_back();
|
params.cfg_negative_prompt.pop_back();
|
||||||
}
|
}
|
||||||
} else if (arg == "--cfg-scale") {
|
} else if (arg == "--cfg-scale") {
|
||||||
@ -352,7 +363,19 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
params.lora_adapter = argv[i];
|
params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
|
||||||
|
params.use_mmap = false;
|
||||||
|
} else if (arg == "--lora-scaled") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
const char * lora_adapter = argv[i];
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
|
||||||
params.use_mmap = false;
|
params.use_mmap = false;
|
||||||
} else if (arg == "--lora-base") {
|
} else if (arg == "--lora-base") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
@ -368,6 +391,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||||||
params.interactive_first = true;
|
params.interactive_first = true;
|
||||||
} else if (arg == "-ins" || arg == "--instruct") {
|
} else if (arg == "-ins" || arg == "--instruct") {
|
||||||
params.instruct = true;
|
params.instruct = true;
|
||||||
|
} else if (arg == "--infill") {
|
||||||
|
params.infill = true;
|
||||||
} else if (arg == "--multiline-input") {
|
} else if (arg == "--multiline-input") {
|
||||||
params.multiline_input = true;
|
params.multiline_input = true;
|
||||||
} else if (arg == "--simple-io") {
|
} else if (arg == "--simple-io") {
|
||||||
@ -439,12 +464,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||||||
params.mul_mat_q = false;
|
params.mul_mat_q = false;
|
||||||
#else
|
#else
|
||||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n");
|
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n");
|
||||||
#endif // GGML_USE_CUBLAS
|
|
||||||
} else if (arg == "--low-vram" || arg == "-lv") {
|
|
||||||
#ifdef GGML_USE_CUBLAS
|
|
||||||
params.low_vram = true;
|
|
||||||
#else
|
|
||||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n");
|
|
||||||
#endif // GGML_USE_CUBLAS
|
#endif // GGML_USE_CUBLAS
|
||||||
} else if (arg == "--no-mmap") {
|
} else if (arg == "--no-mmap") {
|
||||||
params.use_mmap = false;
|
params.use_mmap = false;
|
||||||
@ -599,6 +618,9 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||||||
process_escapes(params.prompt);
|
process_escapes(params.prompt);
|
||||||
process_escapes(params.input_prefix);
|
process_escapes(params.input_prefix);
|
||||||
process_escapes(params.input_suffix);
|
process_escapes(params.input_suffix);
|
||||||
|
for (auto & antiprompt : params.antiprompt) {
|
||||||
|
process_escapes(antiprompt);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
@ -618,7 +640,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||||||
printf(" (can be specified more than once for multiple prompts).\n");
|
printf(" (can be specified more than once for multiple prompts).\n");
|
||||||
printf(" --color colorise output to distinguish prompt and user input from generations\n");
|
printf(" --color colorise output to distinguish prompt and user input from generations\n");
|
||||||
printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
|
printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
|
||||||
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
printf(" -t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads);
|
||||||
|
printf(" -tb N, --threads-batch N\n");
|
||||||
|
printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n");
|
||||||
printf(" -p PROMPT, --prompt PROMPT\n");
|
printf(" -p PROMPT, --prompt PROMPT\n");
|
||||||
printf(" prompt to start generation with (default: empty)\n");
|
printf(" prompt to start generation with (default: empty)\n");
|
||||||
printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
|
printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
|
||||||
@ -633,7 +657,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||||||
printf(" -f FNAME, --file FNAME\n");
|
printf(" -f FNAME, --file FNAME\n");
|
||||||
printf(" prompt file to start generation.\n");
|
printf(" prompt file to start generation.\n");
|
||||||
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
|
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
|
||||||
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
|
||||||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||||
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
|
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
|
||||||
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
|
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
|
||||||
@ -693,7 +717,6 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||||||
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
||||||
printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
||||||
printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
|
printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
|
||||||
printf(" -lv, --low-vram don't allocate VRAM scratch buffer\n");
|
|
||||||
#ifdef GGML_USE_CUBLAS
|
#ifdef GGML_USE_CUBLAS
|
||||||
printf(" -nommq, --no-mul-mat-q\n");
|
printf(" -nommq, --no-mul-mat-q\n");
|
||||||
printf(" use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n");
|
printf(" use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n");
|
||||||
@ -703,6 +726,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||||||
printf(" --verbose-prompt print prompt before generation\n");
|
printf(" --verbose-prompt print prompt before generation\n");
|
||||||
fprintf(stderr, " --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
|
fprintf(stderr, " --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
|
||||||
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
||||||
|
printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
|
||||||
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
||||||
printf(" -m FNAME, --model FNAME\n");
|
printf(" -m FNAME, --model FNAME\n");
|
||||||
printf(" model path (default: %s)\n", params.model.c_str());
|
printf(" model path (default: %s)\n", params.model.c_str());
|
||||||
@ -713,6 +737,18 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||||||
printf("\n");
|
printf("\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::string get_system_info(const gpt_params & params) {
|
||||||
|
std::ostringstream os;
|
||||||
|
|
||||||
|
os << "system_info: n_threads = " << params.n_threads;
|
||||||
|
if (params.n_threads_batch != -1) {
|
||||||
|
os << " (n_threads_batch = " << params.n_threads_batch << ")";
|
||||||
|
}
|
||||||
|
os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
|
||||||
|
|
||||||
|
return os.str();
|
||||||
|
}
|
||||||
|
|
||||||
std::string gpt_random_prompt(std::mt19937 & rng) {
|
std::string gpt_random_prompt(std::mt19937 & rng) {
|
||||||
const int r = rng() % 10;
|
const int r = rng() % 10;
|
||||||
switch (r) {
|
switch (r) {
|
||||||
@ -726,60 +762,74 @@ std::string gpt_random_prompt(std::mt19937 & rng) {
|
|||||||
case 7: return "He";
|
case 7: return "He";
|
||||||
case 8: return "She";
|
case 8: return "She";
|
||||||
case 9: return "They";
|
case 9: return "They";
|
||||||
default: return "To";
|
|
||||||
}
|
}
|
||||||
|
|
||||||
return "The";
|
GGML_UNREACHABLE();
|
||||||
}
|
}
|
||||||
|
|
||||||
//
|
//
|
||||||
// Model utils
|
// Model utils
|
||||||
//
|
//
|
||||||
|
|
||||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
|
struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
|
||||||
auto lparams = llama_context_default_params();
|
auto mparams = llama_model_default_params();
|
||||||
|
|
||||||
lparams.n_ctx = params.n_ctx;
|
|
||||||
lparams.n_batch = params.n_batch;
|
|
||||||
if (params.n_gpu_layers != -1) {
|
if (params.n_gpu_layers != -1) {
|
||||||
lparams.n_gpu_layers = params.n_gpu_layers;
|
mparams.n_gpu_layers = params.n_gpu_layers;
|
||||||
}
|
}
|
||||||
lparams.main_gpu = params.main_gpu;
|
mparams.main_gpu = params.main_gpu;
|
||||||
lparams.tensor_split = params.tensor_split;
|
mparams.tensor_split = params.tensor_split;
|
||||||
lparams.low_vram = params.low_vram;
|
mparams.use_mmap = params.use_mmap;
|
||||||
lparams.mul_mat_q = params.mul_mat_q;
|
mparams.use_mlock = params.use_mlock;
|
||||||
lparams.seed = params.seed;
|
|
||||||
lparams.f16_kv = params.memory_f16;
|
|
||||||
lparams.use_mmap = params.use_mmap;
|
|
||||||
lparams.use_mlock = params.use_mlock;
|
|
||||||
lparams.logits_all = params.logits_all;
|
|
||||||
lparams.embedding = params.embedding;
|
|
||||||
lparams.rope_freq_base = params.rope_freq_base;
|
|
||||||
lparams.rope_freq_scale = params.rope_freq_scale;
|
|
||||||
|
|
||||||
return lparams;
|
return mparams;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
|
||||||
|
auto cparams = llama_context_default_params();
|
||||||
|
|
||||||
|
cparams.n_ctx = params.n_ctx;
|
||||||
|
cparams.n_batch = params.n_batch;
|
||||||
|
cparams.n_threads = params.n_threads;
|
||||||
|
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||||
|
cparams.mul_mat_q = params.mul_mat_q;
|
||||||
|
cparams.seed = params.seed;
|
||||||
|
cparams.f16_kv = params.memory_f16;
|
||||||
|
cparams.logits_all = params.logits_all;
|
||||||
|
cparams.embedding = params.embedding;
|
||||||
|
cparams.rope_freq_base = params.rope_freq_base;
|
||||||
|
cparams.rope_freq_scale = params.rope_freq_scale;
|
||||||
|
|
||||||
|
return cparams;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
|
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
|
||||||
auto lparams = llama_context_params_from_gpt_params(params);
|
auto mparams = llama_model_params_from_gpt_params(params);
|
||||||
|
|
||||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), lparams);
|
llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams);
|
||||||
if (model == NULL) {
|
if (model == NULL) {
|
||||||
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
|
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
|
||||||
return std::make_tuple(nullptr, nullptr);
|
return std::make_tuple(nullptr, nullptr);
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_context * lctx = llama_new_context_with_model(model, lparams);
|
auto cparams = llama_context_params_from_gpt_params(params);
|
||||||
|
|
||||||
|
llama_context * lctx = llama_new_context_with_model(model, cparams);
|
||||||
if (lctx == NULL) {
|
if (lctx == NULL) {
|
||||||
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
|
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
return std::make_tuple(nullptr, nullptr);
|
return std::make_tuple(nullptr, nullptr);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!params.lora_adapter.empty()) {
|
for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
|
||||||
|
const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]);
|
||||||
|
float lora_scale = std::get<1>(params.lora_adapter[i]);
|
||||||
int err = llama_model_apply_lora_from_file(model,
|
int err = llama_model_apply_lora_from_file(model,
|
||||||
params.lora_adapter.c_str(),
|
lora_adapter.c_str(),
|
||||||
params.lora_base.empty() ? NULL : params.lora_base.c_str(),
|
lora_scale,
|
||||||
|
((i > 0) || params.lora_base.empty())
|
||||||
|
? NULL
|
||||||
|
: params.lora_base.c_str(),
|
||||||
params.n_threads);
|
params.n_threads);
|
||||||
if (err != 0) {
|
if (err != 0) {
|
||||||
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
|
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
|
||||||
@ -797,7 +847,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
|||||||
LOG("warming up the model with an empty run\n");
|
LOG("warming up the model with an empty run\n");
|
||||||
|
|
||||||
std::vector<llama_token> tmp = { llama_token_bos(lctx), llama_token_eos(lctx), };
|
std::vector<llama_token> tmp = { llama_token_bos(lctx), llama_token_eos(lctx), };
|
||||||
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0), params.n_threads);
|
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
|
||||||
llama_kv_cache_tokens_rm(lctx, -1, -1);
|
llama_kv_cache_tokens_rm(lctx, -1, -1);
|
||||||
llama_reset_timings(lctx);
|
llama_reset_timings(lctx);
|
||||||
}
|
}
|
||||||
@ -810,16 +860,23 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
|||||||
//
|
//
|
||||||
|
|
||||||
std::vector<llama_token> llama_tokenize(
|
std::vector<llama_token> llama_tokenize(
|
||||||
struct llama_context * ctx,
|
const struct llama_context * ctx,
|
||||||
|
const std::string & text,
|
||||||
|
bool add_bos) {
|
||||||
|
return llama_tokenize(llama_get_model(ctx), text, add_bos);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<llama_token> llama_tokenize(
|
||||||
|
const struct llama_model * model,
|
||||||
const std::string & text,
|
const std::string & text,
|
||||||
bool add_bos) {
|
bool add_bos) {
|
||||||
// upper limit for the number of tokens
|
// upper limit for the number of tokens
|
||||||
int n_tokens = text.length() + add_bos;
|
int n_tokens = text.length() + add_bos;
|
||||||
std::vector<llama_token> result(n_tokens);
|
std::vector<llama_token> result(n_tokens);
|
||||||
n_tokens = llama_tokenize(ctx, text.data(), text.length(), result.data(), result.size(), add_bos);
|
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos);
|
||||||
if (n_tokens < 0) {
|
if (n_tokens < 0) {
|
||||||
result.resize(-n_tokens);
|
result.resize(-n_tokens);
|
||||||
int check = llama_tokenize(ctx, text.data(), text.length(), result.data(), result.size(), add_bos);
|
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos);
|
||||||
GGML_ASSERT(check == -n_tokens);
|
GGML_ASSERT(check == -n_tokens);
|
||||||
} else {
|
} else {
|
||||||
result.resize(n_tokens);
|
result.resize(n_tokens);
|
||||||
@ -829,10 +886,10 @@ std::vector<llama_token> llama_tokenize(
|
|||||||
|
|
||||||
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
|
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
|
||||||
std::vector<char> result(8, 0);
|
std::vector<char> result(8, 0);
|
||||||
const int n_tokens = llama_token_to_piece(ctx, token, result.data(), result.size());
|
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
|
||||||
if (n_tokens < 0) {
|
if (n_tokens < 0) {
|
||||||
result.resize(-n_tokens);
|
result.resize(-n_tokens);
|
||||||
int check = llama_token_to_piece(ctx, token, result.data(), result.size());
|
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
|
||||||
GGML_ASSERT(check == -n_tokens);
|
GGML_ASSERT(check == -n_tokens);
|
||||||
} else {
|
} else {
|
||||||
result.resize(n_tokens);
|
result.resize(n_tokens);
|
||||||
@ -871,6 +928,7 @@ std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_to
|
|||||||
result += piece;
|
result += piece;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// NOTE: the original tokenizer decodes bytes after collecting the pieces.
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -887,7 +945,7 @@ llama_token llama_sample_token(
|
|||||||
std::vector<llama_token_data> & candidates,
|
std::vector<llama_token_data> & candidates,
|
||||||
int idx) {
|
int idx) {
|
||||||
const int n_ctx = llama_n_ctx(ctx);
|
const int n_ctx = llama_n_ctx(ctx);
|
||||||
const int n_vocab = llama_n_vocab(ctx);
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||||
|
|
||||||
const float temp = params.temp;
|
const float temp = params.temp;
|
||||||
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
||||||
@ -964,10 +1022,11 @@ llama_token llama_sample_token(
|
|||||||
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
||||||
} else {
|
} else {
|
||||||
// Temperature sampling
|
// Temperature sampling
|
||||||
llama_sample_top_k (ctx, &cur_p, top_k, 1);
|
size_t min_keep = std::max(1, params.n_probs);
|
||||||
llama_sample_tail_free (ctx, &cur_p, tfs_z, 1);
|
llama_sample_top_k (ctx, &cur_p, top_k, min_keep);
|
||||||
llama_sample_typical (ctx, &cur_p, typical_p, 1);
|
llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep);
|
||||||
llama_sample_top_p (ctx, &cur_p, top_p, 1);
|
llama_sample_typical (ctx, &cur_p, typical_p, min_keep);
|
||||||
|
llama_sample_top_p (ctx, &cur_p, top_p, min_keep);
|
||||||
llama_sample_temp(ctx, &cur_p, temp);
|
llama_sample_temp(ctx, &cur_p, temp);
|
||||||
|
|
||||||
{
|
{
|
||||||
@ -1173,7 +1232,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
|||||||
#endif // NDEBUG
|
#endif // NDEBUG
|
||||||
|
|
||||||
fprintf(stream, "model_desc: %s\n", model_desc);
|
fprintf(stream, "model_desc: %s\n", model_desc);
|
||||||
fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(lctx));
|
fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
|
||||||
|
|
||||||
#ifdef __OPTIMIZE__
|
#ifdef __OPTIMIZE__
|
||||||
fprintf(stream, "optimize: true\n");
|
fprintf(stream, "optimize: true\n");
|
||||||
@ -1225,9 +1284,21 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
|||||||
fprintf(stream, " %d: %f", lb.first, lb.second);
|
fprintf(stream, " %d: %f", lb.first, lb.second);
|
||||||
}
|
}
|
||||||
|
|
||||||
fprintf(stream, "lora: %s\n", params.lora_adapter.c_str());
|
fprintf(stream, "lora:\n");
|
||||||
|
for (std::tuple<std::string, float> la : params.lora_adapter) {
|
||||||
|
if (std::get<1>(la) != 1.0f) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
fprintf(stream, " - %s\n", std::get<0>(la).c_str());
|
||||||
|
}
|
||||||
|
fprintf(stream, "lora_scaled:\n");
|
||||||
|
for (std::tuple<std::string, float> la : params.lora_adapter) {
|
||||||
|
if (std::get<1>(la) == 1.0f) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
|
||||||
|
}
|
||||||
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
|
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
|
||||||
fprintf(stream, "low_vram: %s # default: false\n", params.low_vram ? "true" : "false");
|
|
||||||
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
|
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
|
||||||
fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false");
|
fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false");
|
||||||
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", params.mirostat);
|
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", params.mirostat);
|
||||||
|
@ -36,6 +36,7 @@ int32_t get_num_physical_cores();
|
|||||||
struct gpt_params {
|
struct gpt_params {
|
||||||
uint32_t seed = -1; // RNG seed
|
uint32_t seed = -1; // RNG seed
|
||||||
int32_t n_threads = get_num_physical_cores();
|
int32_t n_threads = get_num_physical_cores();
|
||||||
|
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
||||||
int32_t n_predict = -1; // new tokens to predict
|
int32_t n_predict = -1; // new tokens to predict
|
||||||
int32_t n_ctx = 512; // context size
|
int32_t n_ctx = 512; // context size
|
||||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||||
@ -78,6 +79,7 @@ struct gpt_params {
|
|||||||
std::string model_draft = ""; // draft model for speculative decoding
|
std::string model_draft = ""; // draft model for speculative decoding
|
||||||
std::string model_alias = "unknown"; // model alias
|
std::string model_alias = "unknown"; // model alias
|
||||||
std::string prompt = "";
|
std::string prompt = "";
|
||||||
|
std::string prompt_file = ""; // store the external prompt file name
|
||||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
||||||
std::string input_prefix = ""; // string to prefix user inputs with
|
std::string input_prefix = ""; // string to prefix user inputs with
|
||||||
std::string input_suffix = ""; // string to suffix user inputs with
|
std::string input_suffix = ""; // string to suffix user inputs with
|
||||||
@ -85,8 +87,8 @@ struct gpt_params {
|
|||||||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||||
std::string logdir = ""; // directory in which to save YAML log files
|
std::string logdir = ""; // directory in which to save YAML log files
|
||||||
|
|
||||||
std::string lora_adapter = ""; // lora adapter path
|
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
|
||||||
std::string lora_base = ""; // base model path for the lora adapter
|
std::string lora_base = ""; // base model path for the lora adapter
|
||||||
|
|
||||||
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
|
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
|
||||||
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
|
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
|
||||||
@ -95,7 +97,6 @@ struct gpt_params {
|
|||||||
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
|
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
|
||||||
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
|
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
|
||||||
|
|
||||||
bool low_vram = false; // if true, reduce VRAM usage at the cost of performance
|
|
||||||
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
|
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
|
||||||
bool memory_f16 = true; // use f16 instead of f32 for memory kv
|
bool memory_f16 = true; // use f16 instead of f32 for memory kv
|
||||||
bool random_prompt = false; // do not randomize prompt if none provided
|
bool random_prompt = false; // do not randomize prompt if none provided
|
||||||
@ -120,19 +121,25 @@ struct gpt_params {
|
|||||||
bool use_mlock = false; // use mlock to keep model in memory
|
bool use_mlock = false; // use mlock to keep model in memory
|
||||||
bool numa = false; // attempt optimizations that help on some NUMA systems
|
bool numa = false; // attempt optimizations that help on some NUMA systems
|
||||||
bool verbose_prompt = false; // print prompt tokens before generation
|
bool verbose_prompt = false; // print prompt tokens before generation
|
||||||
|
bool infill = false; // use infill mode
|
||||||
};
|
};
|
||||||
|
|
||||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||||
|
|
||||||
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||||
|
|
||||||
|
std::string get_system_info(const gpt_params & params);
|
||||||
|
|
||||||
std::string gpt_random_prompt(std::mt19937 & rng);
|
std::string gpt_random_prompt(std::mt19937 & rng);
|
||||||
|
|
||||||
|
void process_escapes(std::string& input);
|
||||||
|
|
||||||
//
|
//
|
||||||
// Model utils
|
// Model utils
|
||||||
//
|
//
|
||||||
|
|
||||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
|
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
|
||||||
|
struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params);
|
||||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
|
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
|
||||||
|
|
||||||
//
|
//
|
||||||
@ -142,7 +149,12 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
|||||||
// tokenizes a string into a vector of tokens
|
// tokenizes a string into a vector of tokens
|
||||||
// should work similar to Python's `tokenizer.encode`
|
// should work similar to Python's `tokenizer.encode`
|
||||||
std::vector<llama_token> llama_tokenize(
|
std::vector<llama_token> llama_tokenize(
|
||||||
struct llama_context * ctx,
|
const struct llama_context * ctx,
|
||||||
|
const std::string & text,
|
||||||
|
bool add_bos);
|
||||||
|
|
||||||
|
std::vector<llama_token> llama_tokenize(
|
||||||
|
const struct llama_model * model,
|
||||||
const std::string & text,
|
const std::string & text,
|
||||||
bool add_bos);
|
bool add_bos);
|
||||||
|
|
||||||
|
74
common/log.h
74
common/log.h
@ -225,31 +225,31 @@ enum LogTriState
|
|||||||
// USE LOG() INSTEAD
|
// USE LOG() INSTEAD
|
||||||
//
|
//
|
||||||
#ifndef _MSC_VER
|
#ifndef _MSC_VER
|
||||||
#define LOG_IMPL(str, ...) \
|
#define LOG_IMPL(str, ...) \
|
||||||
{ \
|
do { \
|
||||||
if (LOG_TARGET != nullptr) \
|
if (LOG_TARGET != nullptr) \
|
||||||
{ \
|
{ \
|
||||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL, __VA_ARGS__); \
|
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL, __VA_ARGS__); \
|
||||||
fflush(LOG_TARGET); \
|
fflush(LOG_TARGET); \
|
||||||
} \
|
} \
|
||||||
}
|
} while (0)
|
||||||
#else
|
#else
|
||||||
#define LOG_IMPL(str, ...) \
|
#define LOG_IMPL(str, ...) \
|
||||||
{ \
|
do { \
|
||||||
if (LOG_TARGET != nullptr) \
|
if (LOG_TARGET != nullptr) \
|
||||||
{ \
|
{ \
|
||||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL "", ##__VA_ARGS__); \
|
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL "", ##__VA_ARGS__); \
|
||||||
fflush(LOG_TARGET); \
|
fflush(LOG_TARGET); \
|
||||||
} \
|
} \
|
||||||
}
|
} while (0)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// INTERNAL, DO NOT USE
|
// INTERNAL, DO NOT USE
|
||||||
// USE LOG_TEE() INSTEAD
|
// USE LOG_TEE() INSTEAD
|
||||||
//
|
//
|
||||||
#ifndef _MSC_VER
|
#ifndef _MSC_VER
|
||||||
#define LOG_TEE_IMPL(str, ...) \
|
#define LOG_TEE_IMPL(str, ...) \
|
||||||
{ \
|
do { \
|
||||||
if (LOG_TARGET != nullptr) \
|
if (LOG_TARGET != nullptr) \
|
||||||
{ \
|
{ \
|
||||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL, __VA_ARGS__); \
|
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL, __VA_ARGS__); \
|
||||||
@ -260,10 +260,10 @@ enum LogTriState
|
|||||||
fprintf(LOG_TEE_TARGET, LOG_TEE_TIMESTAMP_FMT LOG_TEE_FLF_FMT str "%s" LOG_TEE_TIMESTAMP_VAL LOG_TEE_FLF_VAL, __VA_ARGS__); \
|
fprintf(LOG_TEE_TARGET, LOG_TEE_TIMESTAMP_FMT LOG_TEE_FLF_FMT str "%s" LOG_TEE_TIMESTAMP_VAL LOG_TEE_FLF_VAL, __VA_ARGS__); \
|
||||||
fflush(LOG_TEE_TARGET); \
|
fflush(LOG_TEE_TARGET); \
|
||||||
} \
|
} \
|
||||||
}
|
} while (0)
|
||||||
#else
|
#else
|
||||||
#define LOG_TEE_IMPL(str, ...) \
|
#define LOG_TEE_IMPL(str, ...) \
|
||||||
{ \
|
do { \
|
||||||
if (LOG_TARGET != nullptr) \
|
if (LOG_TARGET != nullptr) \
|
||||||
{ \
|
{ \
|
||||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL "", ##__VA_ARGS__); \
|
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL "", ##__VA_ARGS__); \
|
||||||
@ -274,7 +274,7 @@ enum LogTriState
|
|||||||
fprintf(LOG_TEE_TARGET, LOG_TEE_TIMESTAMP_FMT LOG_TEE_FLF_FMT str "%s" LOG_TEE_TIMESTAMP_VAL LOG_TEE_FLF_VAL "", ##__VA_ARGS__); \
|
fprintf(LOG_TEE_TARGET, LOG_TEE_TIMESTAMP_FMT LOG_TEE_FLF_FMT str "%s" LOG_TEE_TIMESTAMP_VAL LOG_TEE_FLF_VAL "", ##__VA_ARGS__); \
|
||||||
fflush(LOG_TEE_TARGET); \
|
fflush(LOG_TEE_TARGET); \
|
||||||
} \
|
} \
|
||||||
}
|
} while (0)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// The '\0' as a last argument, is a trick to bypass the silly
|
// The '\0' as a last argument, is a trick to bypass the silly
|
||||||
@ -435,41 +435,41 @@ inline FILE *log_handler() { return log_handler1_impl(); }
|
|||||||
inline void log_test()
|
inline void log_test()
|
||||||
{
|
{
|
||||||
log_disable();
|
log_disable();
|
||||||
LOG("01 Hello World to nobody, because logs are disabled!\n")
|
LOG("01 Hello World to nobody, because logs are disabled!\n");
|
||||||
log_enable();
|
log_enable();
|
||||||
LOG("02 Hello World to default output, which is \"%s\" ( Yaaay, arguments! )!\n", LOG_STRINGIZE(LOG_TARGET))
|
LOG("02 Hello World to default output, which is \"%s\" ( Yaaay, arguments! )!\n", LOG_STRINGIZE(LOG_TARGET));
|
||||||
LOG_TEE("03 Hello World to **both** default output and " LOG_TEE_TARGET_STRING "!\n")
|
LOG_TEE("03 Hello World to **both** default output and " LOG_TEE_TARGET_STRING "!\n");
|
||||||
log_set_target(stderr);
|
log_set_target(stderr);
|
||||||
LOG("04 Hello World to stderr!\n")
|
LOG("04 Hello World to stderr!\n");
|
||||||
LOG_TEE("05 Hello World TEE with double printing to stderr prevented!\n")
|
LOG_TEE("05 Hello World TEE with double printing to stderr prevented!\n");
|
||||||
log_set_target(LOG_DEFAULT_FILE_NAME);
|
log_set_target(LOG_DEFAULT_FILE_NAME);
|
||||||
LOG("06 Hello World to default log file!\n")
|
LOG("06 Hello World to default log file!\n");
|
||||||
log_set_target(stdout);
|
log_set_target(stdout);
|
||||||
LOG("07 Hello World to stdout!\n")
|
LOG("07 Hello World to stdout!\n");
|
||||||
log_set_target(LOG_DEFAULT_FILE_NAME);
|
log_set_target(LOG_DEFAULT_FILE_NAME);
|
||||||
LOG("08 Hello World to default log file again!\n")
|
LOG("08 Hello World to default log file again!\n");
|
||||||
log_disable();
|
log_disable();
|
||||||
LOG("09 Hello World _1_ into the void!\n")
|
LOG("09 Hello World _1_ into the void!\n");
|
||||||
log_enable();
|
log_enable();
|
||||||
LOG("10 Hello World back from the void ( you should not see _1_ in the log or the output )!\n")
|
LOG("10 Hello World back from the void ( you should not see _1_ in the log or the output )!\n");
|
||||||
log_disable();
|
log_disable();
|
||||||
log_set_target("llama.anotherlog.log");
|
log_set_target("llama.anotherlog.log");
|
||||||
LOG("11 Hello World _2_ to nobody, new target was selected but logs are still disabled!\n")
|
LOG("11 Hello World _2_ to nobody, new target was selected but logs are still disabled!\n");
|
||||||
log_enable();
|
log_enable();
|
||||||
LOG("12 Hello World this time in a new file ( you should not see _2_ in the log or the output )?\n")
|
LOG("12 Hello World this time in a new file ( you should not see _2_ in the log or the output )?\n");
|
||||||
log_set_target("llama.yetanotherlog.log");
|
log_set_target("llama.yetanotherlog.log");
|
||||||
LOG("13 Hello World this time in yet new file?\n")
|
LOG("13 Hello World this time in yet new file?\n");
|
||||||
log_set_target(log_filename_generator("llama_autonamed", "log"));
|
log_set_target(log_filename_generator("llama_autonamed", "log"));
|
||||||
LOG("14 Hello World in log with generated filename!\n")
|
LOG("14 Hello World in log with generated filename!\n");
|
||||||
#ifdef _MSC_VER
|
#ifdef _MSC_VER
|
||||||
LOG_TEE("15 Hello msvc TEE without arguments\n")
|
LOG_TEE("15 Hello msvc TEE without arguments\n");
|
||||||
LOG_TEE("16 Hello msvc TEE with (%d)(%s) arguments\n", 1, "test")
|
LOG_TEE("16 Hello msvc TEE with (%d)(%s) arguments\n", 1, "test");
|
||||||
LOG_TEELN("17 Hello msvc TEELN without arguments\n")
|
LOG_TEELN("17 Hello msvc TEELN without arguments\n");
|
||||||
LOG_TEELN("18 Hello msvc TEELN with (%d)(%s) arguments\n", 1, "test")
|
LOG_TEELN("18 Hello msvc TEELN with (%d)(%s) arguments\n", 1, "test");
|
||||||
LOG("19 Hello msvc LOG without arguments\n")
|
LOG("19 Hello msvc LOG without arguments\n");
|
||||||
LOG("20 Hello msvc LOG with (%d)(%s) arguments\n", 1, "test")
|
LOG("20 Hello msvc LOG with (%d)(%s) arguments\n", 1, "test");
|
||||||
LOGLN("21 Hello msvc LOGLN without arguments\n")
|
LOGLN("21 Hello msvc LOGLN without arguments\n");
|
||||||
LOGLN("22 Hello msvc LOGLN with (%d)(%s) arguments\n", 1, "test")
|
LOGLN("22 Hello msvc LOGLN with (%d)(%s) arguments\n", 1, "test");
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -542,7 +542,7 @@ inline void log_dump_cmdline_impl(int argc, char **argv)
|
|||||||
buf << " " << argv[i];
|
buf << " " << argv[i];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
LOGLN("Cmd:%s", buf.str().c_str())
|
LOGLN("Cmd:%s", buf.str().c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
#define log_tostr(var) log_var_to_string_impl(var).c_str()
|
#define log_tostr(var) log_var_to_string_impl(var).c_str()
|
||||||
@ -620,10 +620,10 @@ inline std::string log_var_to_string_impl(const std::vector<int> & var)
|
|||||||
#define LOGLN(...) // dummy stub
|
#define LOGLN(...) // dummy stub
|
||||||
|
|
||||||
#undef LOG_TEE
|
#undef LOG_TEE
|
||||||
#define LOG_TEE(...) fprintf(stderr, __VA_ARGS__); // convert to normal fprintf
|
#define LOG_TEE(...) fprintf(stderr, __VA_ARGS__) // convert to normal fprintf
|
||||||
|
|
||||||
#undef LOG_TEELN
|
#undef LOG_TEELN
|
||||||
#define LOG_TEELN(...) fprintf(stderr, __VA_ARGS__); // convert to normal fprintf
|
#define LOG_TEELN(...) fprintf(stderr, __VA_ARGS__) // convert to normal fprintf
|
||||||
|
|
||||||
#undef LOG_DISABLE
|
#undef LOG_DISABLE
|
||||||
#define LOG_DISABLE() // dummy stub
|
#define LOG_DISABLE() // dummy stub
|
||||||
|
1496
common/train.cpp
Normal file
1496
common/train.cpp
Normal file
File diff suppressed because it is too large
Load Diff
230
common/train.h
Normal file
230
common/train.h
Normal file
@ -0,0 +1,230 @@
|
|||||||
|
// Various helper functions and utilities for training
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <string>
|
||||||
|
#include <random>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include "ggml.h"
|
||||||
|
#include "llama.h"
|
||||||
|
|
||||||
|
typedef std::string mt19937_state;
|
||||||
|
|
||||||
|
struct train_state {
|
||||||
|
struct ggml_opt_context * opt;
|
||||||
|
|
||||||
|
uint64_t train_its;
|
||||||
|
uint64_t train_samples;
|
||||||
|
uint64_t train_tokens;
|
||||||
|
uint64_t train_epochs;
|
||||||
|
|
||||||
|
size_t shuffle_samples_hash; // fn, sample_count, *zip(sample_begins, sample_sizes)
|
||||||
|
mt19937_state shuffle_rng_state_current;
|
||||||
|
mt19937_state shuffle_rng_state_next;
|
||||||
|
size_t shuffle_sample_count;
|
||||||
|
size_t shuffle_next_sample;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct train_params_common {
|
||||||
|
const char * fn_train_data;
|
||||||
|
const char * fn_checkpoint_in;
|
||||||
|
const char * fn_checkpoint_out;
|
||||||
|
const char * pattern_fn_it;
|
||||||
|
const char * fn_latest;
|
||||||
|
|
||||||
|
bool print_usage;
|
||||||
|
|
||||||
|
int save_every;
|
||||||
|
|
||||||
|
uint32_t seed;
|
||||||
|
|
||||||
|
int n_ctx;
|
||||||
|
int n_threads;
|
||||||
|
int n_batch;
|
||||||
|
int n_gradient_accumulation;
|
||||||
|
int n_epochs;
|
||||||
|
|
||||||
|
bool custom_n_ctx;
|
||||||
|
|
||||||
|
bool use_flash;
|
||||||
|
bool use_checkpointing;
|
||||||
|
|
||||||
|
std::string sample_start;
|
||||||
|
bool include_sample_start;
|
||||||
|
bool escape;
|
||||||
|
bool overlapping_samples;
|
||||||
|
bool fill_with_next_samples;
|
||||||
|
bool separate_with_eos;
|
||||||
|
bool separate_with_bos;
|
||||||
|
bool sample_random_offsets;
|
||||||
|
|
||||||
|
bool force_reshuffle;
|
||||||
|
|
||||||
|
int warmup;
|
||||||
|
int cos_decay_steps;
|
||||||
|
float cos_decay_restart;
|
||||||
|
float cos_decay_min;
|
||||||
|
bool enable_restart;
|
||||||
|
|
||||||
|
int opt_past;
|
||||||
|
float opt_delta;
|
||||||
|
int opt_max_no_improvement;
|
||||||
|
|
||||||
|
int adam_n_iter;
|
||||||
|
float adam_alpha;
|
||||||
|
float adam_min_alpha;
|
||||||
|
float adam_decay;
|
||||||
|
int adam_decay_min_ndim;
|
||||||
|
float adam_beta1;
|
||||||
|
float adam_beta2;
|
||||||
|
float adam_gclip;
|
||||||
|
float adam_eps_f;
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef void (*save_train_files_callback)(void * data, struct train_state * train);
|
||||||
|
|
||||||
|
struct train_opt_callback_data {
|
||||||
|
struct train_params_common * params;
|
||||||
|
struct train_state * train;
|
||||||
|
save_train_files_callback save_cb;
|
||||||
|
void * save_data;
|
||||||
|
struct llama_context * lctx;
|
||||||
|
int last_save_iter;
|
||||||
|
llama_token * tokens_data;
|
||||||
|
size_t tokens_size;
|
||||||
|
size_t * samples_begin;
|
||||||
|
size_t * samples_size;
|
||||||
|
size_t * shuffled_samples_offs;
|
||||||
|
size_t * shuffled_samples_begin;
|
||||||
|
size_t * shuffled_samples_size;
|
||||||
|
size_t samples_count;
|
||||||
|
struct ggml_tensor * tokens_input;
|
||||||
|
struct ggml_tensor * target_probs;
|
||||||
|
int first_iter;
|
||||||
|
int first_epoch;
|
||||||
|
int iter_at_last_epoch;
|
||||||
|
int64_t last_time;
|
||||||
|
double millis_per_iter;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct train_state * init_train_state();
|
||||||
|
void free_train_state(struct train_state * state);
|
||||||
|
|
||||||
|
struct train_params_common get_default_train_params_common();
|
||||||
|
void print_common_train_usage(int /*argc*/, char ** argv, const struct train_params_common * params);
|
||||||
|
|
||||||
|
bool consume_common_train_arg(int argc, char ** argv, int * idx, struct train_params_common * params, bool * invalid_param);
|
||||||
|
void finish_processing_train_args(struct train_params_common * params);
|
||||||
|
|
||||||
|
struct random_normal_distribution;
|
||||||
|
struct random_uniform_distribution;
|
||||||
|
|
||||||
|
struct random_normal_distribution * init_random_normal_distribution (int seed, float mean, float std, float min, float max);
|
||||||
|
struct random_uniform_distribution * init_random_uniform_distribution(int seed, float min, float max);
|
||||||
|
|
||||||
|
void free_random_normal_distribution (struct random_normal_distribution * rnd);
|
||||||
|
void free_random_uniform_distribution(struct random_uniform_distribution * rnd);
|
||||||
|
|
||||||
|
struct ggml_tensor * randomize_tensor_normal (struct ggml_tensor * tensor, struct random_normal_distribution * rnd);
|
||||||
|
struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd);
|
||||||
|
|
||||||
|
// generate random float in interval [0,1)
|
||||||
|
float frand();
|
||||||
|
float frand_normal (struct random_normal_distribution * rnd);
|
||||||
|
float frand_uniform(struct random_uniform_distribution * rnd);
|
||||||
|
|
||||||
|
int clamp (const int v, const int min, const int max);
|
||||||
|
float fclamp(const float v, const float min, const float max);
|
||||||
|
|
||||||
|
void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0);
|
||||||
|
void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1);
|
||||||
|
void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2);
|
||||||
|
void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3);
|
||||||
|
|
||||||
|
size_t tokenize_file(
|
||||||
|
struct llama_context * lctx,
|
||||||
|
const char * filename,
|
||||||
|
const std::string & sample_start,
|
||||||
|
bool include_sample_start,
|
||||||
|
bool overlapping_samples,
|
||||||
|
unsigned context_length,
|
||||||
|
std::vector<llama_token> & out_tokens,
|
||||||
|
std::vector<size_t> & out_samples_begin,
|
||||||
|
std::vector<size_t> & out_samples_size);
|
||||||
|
|
||||||
|
int64_t get_example_targets_batch(
|
||||||
|
struct llama_context * lctx,
|
||||||
|
struct ggml_tensor * tokens_input,
|
||||||
|
struct ggml_tensor * target_probs,
|
||||||
|
int64_t example_id,
|
||||||
|
const size_t * samples_offs,
|
||||||
|
const size_t * samples_begin,
|
||||||
|
const size_t * samples_size,
|
||||||
|
size_t samples_count,
|
||||||
|
const llama_token * train_data,
|
||||||
|
size_t n_train_data,
|
||||||
|
bool separate_with_eos,
|
||||||
|
bool separate_with_bos,
|
||||||
|
bool fill_with_next_samples,
|
||||||
|
bool sample_random_offsets);
|
||||||
|
|
||||||
|
|
||||||
|
void mt19937_set_state(std::mt19937& rng, const mt19937_state& rng_state);
|
||||||
|
mt19937_state mt19937_get_state(const std::mt19937& rng);
|
||||||
|
mt19937_state mt19937_seed_to_state(unsigned seed);
|
||||||
|
|
||||||
|
mt19937_state shuffle_samples(
|
||||||
|
const mt19937_state & rng_state,
|
||||||
|
size_t * shuffled_offs,
|
||||||
|
size_t * shuffled_begins,
|
||||||
|
size_t * shuffled_sizes,
|
||||||
|
const size_t * begins,
|
||||||
|
const size_t * sizes,
|
||||||
|
size_t count);
|
||||||
|
|
||||||
|
size_t hash_combine(size_t h1, size_t h2);
|
||||||
|
|
||||||
|
size_t compute_samples_hash(
|
||||||
|
const char* fn,
|
||||||
|
const size_t* samples_begin,
|
||||||
|
const size_t* samples_size,
|
||||||
|
size_t sample_count);
|
||||||
|
|
||||||
|
|
||||||
|
std::string replace_str(const char * s, const char * needle, const char * replacement);
|
||||||
|
|
||||||
|
void print_duration(double milliseconds);
|
||||||
|
|
||||||
|
float cosine_decay(
|
||||||
|
int64_t step,
|
||||||
|
int64_t decay_steps,
|
||||||
|
float minimum);
|
||||||
|
|
||||||
|
float cosine_decay_restart(
|
||||||
|
int64_t step,
|
||||||
|
int64_t decay_steps,
|
||||||
|
float minimum,
|
||||||
|
float restart_step_mult);
|
||||||
|
|
||||||
|
float learning_schedule(
|
||||||
|
int64_t step,
|
||||||
|
int64_t warmup_steps,
|
||||||
|
int64_t decay_steps,
|
||||||
|
float learning_rate,
|
||||||
|
float overall_minimum,
|
||||||
|
float cos_decay_minimum,
|
||||||
|
float cos_decay_restart_step_mult,
|
||||||
|
bool enable_restart);
|
||||||
|
|
||||||
|
void copy_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name);
|
||||||
|
|
||||||
|
void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt);
|
||||||
|
void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt);
|
||||||
|
|
||||||
|
bool load_train_state_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct train_state * train);
|
||||||
|
void save_train_state_gguf(struct gguf_context * fctx, struct train_state * train);
|
||||||
|
|
||||||
|
std::string get_train_filename(const char * filename, const char * pattern_it, const char * latest, int64_t iteration);
|
||||||
|
|
||||||
|
void train_opt_callback(void * vdata, int accum_step, float * sched, bool * cancel);
|
@ -11,11 +11,14 @@ import sys
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import TYPE_CHECKING, Any
|
from typing import TYPE_CHECKING, Any
|
||||||
import itertools
|
import itertools
|
||||||
import gguf
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
from sentencepiece import SentencePieceProcessor # type: ignore[import]
|
from sentencepiece import SentencePieceProcessor # type: ignore[import]
|
||||||
|
|
||||||
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||||
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||||
|
import gguf
|
||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from typing import TypeAlias
|
from typing import TypeAlias
|
||||||
@ -174,8 +177,11 @@ if not tokenizer_model_file.is_file():
|
|||||||
print("gguf: get sentencepiece tokenizer vocab, scores and token types")
|
print("gguf: get sentencepiece tokenizer vocab, scores and token types")
|
||||||
|
|
||||||
tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
|
tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
|
||||||
|
vocab_size = hparams.get('vocab_size')
|
||||||
|
if vocab_size is None:
|
||||||
|
vocab_size = tokenizer.vocab_size()
|
||||||
|
|
||||||
for i in range(tokenizer.vocab_size()):
|
for i in range(vocab_size):
|
||||||
text: bytes
|
text: bytes
|
||||||
score: float
|
score: float
|
||||||
|
|
||||||
|
@ -4,6 +4,7 @@
|
|||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
import contextlib
|
||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
import struct
|
import struct
|
||||||
@ -20,32 +21,10 @@ if 'NO_LOCAL_GGUF' not in os.environ:
|
|||||||
import gguf
|
import gguf
|
||||||
|
|
||||||
|
|
||||||
def bytes_to_unicode():
|
def count_model_parts(dir_model: Path, prefix: str) -> int:
|
||||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
|
||||||
"""
|
|
||||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
|
||||||
The reversible bpe codes work on unicode strings.
|
|
||||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
|
||||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
|
||||||
This is a significant percentage of your normal, say, 32K bpe vocab.
|
|
||||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
|
||||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|
||||||
"""
|
|
||||||
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
|
||||||
cs = bs[:]
|
|
||||||
n = 0
|
|
||||||
for b in range(2**8):
|
|
||||||
if b not in bs:
|
|
||||||
bs.append(b)
|
|
||||||
cs.append(2**8+n)
|
|
||||||
n += 1
|
|
||||||
return dict(zip(bs, (chr(n) for n in cs)))
|
|
||||||
|
|
||||||
|
|
||||||
def count_model_parts(dir_model: Path) -> int:
|
|
||||||
num_parts = 0
|
num_parts = 0
|
||||||
for filename in os.listdir(dir_model):
|
for filename in os.listdir(dir_model):
|
||||||
if filename.startswith("pytorch_model-"):
|
if filename.startswith(prefix):
|
||||||
num_parts += 1
|
num_parts += 1
|
||||||
|
|
||||||
if num_parts > 0:
|
if num_parts > 0:
|
||||||
@ -99,20 +78,26 @@ print("gguf: loading model "+dir_model.name)
|
|||||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||||
hparams = json.load(f)
|
hparams = json.load(f)
|
||||||
|
|
||||||
if hparams["architectures"][0] != "RWForCausalLM":
|
if hparams["architectures"][0] != "FalconForCausalLM":
|
||||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||||
|
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
# get number of model parts
|
# get number of model parts
|
||||||
num_parts = count_model_parts(dir_model)
|
num_parts = count_model_parts(dir_model, "model-00")
|
||||||
|
if num_parts:
|
||||||
|
is_safetensors = True
|
||||||
|
from safetensors import safe_open
|
||||||
|
else:
|
||||||
|
is_safetensors = False
|
||||||
|
num_parts = count_model_parts(dir_model, "pytorch_model-")
|
||||||
|
|
||||||
ARCH=gguf.MODEL_ARCH.FALCON
|
ARCH=gguf.MODEL_ARCH.FALCON
|
||||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||||
|
|
||||||
print("gguf: get model metadata")
|
print("gguf: get model metadata")
|
||||||
|
|
||||||
block_count = hparams["n_layer"]
|
block_count = hparams["num_hidden_layers"]
|
||||||
|
|
||||||
gguf_writer.add_name("Falcon")
|
gguf_writer.add_name("Falcon")
|
||||||
gguf_writer.add_context_length(2048) # not in config.json
|
gguf_writer.add_context_length(2048) # not in config.json
|
||||||
@ -120,9 +105,9 @@ gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
|
|||||||
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||||
gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
|
gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
|
||||||
gguf_writer.add_block_count(block_count)
|
gguf_writer.add_block_count(block_count)
|
||||||
gguf_writer.add_head_count(hparams["n_head"])
|
gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||||
if "n_head_kv" in hparams:
|
if "num_kv_heads" in hparams:
|
||||||
gguf_writer.add_head_count_kv(hparams["n_head_kv"])
|
gguf_writer.add_head_count_kv(hparams["num_kv_heads"])
|
||||||
else:
|
else:
|
||||||
gguf_writer.add_head_count_kv(1)
|
gguf_writer.add_head_count_kv(1)
|
||||||
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
|
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
|
||||||
@ -136,49 +121,25 @@ tokens: list[bytearray] = []
|
|||||||
scores: list[float] = []
|
scores: list[float] = []
|
||||||
toktypes: list[int] = []
|
toktypes: list[int] = []
|
||||||
|
|
||||||
tokenizer_json_file = dir_model / 'tokenizer.json'
|
|
||||||
if not tokenizer_json_file.is_file():
|
|
||||||
print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
# gpt2 tokenizer
|
# gpt2 tokenizer
|
||||||
gguf_writer.add_tokenizer_model("gpt2")
|
gguf_writer.add_tokenizer_model("gpt2")
|
||||||
|
|
||||||
with open(tokenizer_json_file, "r", encoding="utf-8") as f:
|
|
||||||
tokenizer_json = json.load(f)
|
|
||||||
|
|
||||||
print("gguf: get gpt2 tokenizer vocab")
|
print("gguf: get gpt2 tokenizer vocab")
|
||||||
|
|
||||||
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
|
||||||
# This causes downstream issues with mismatched tensor sizes when running the inference
|
|
||||||
vocab_size = hparams["vocab_size"] if "vocab_size" in hparams else len(tokenizer_json["model"]["vocab"])
|
|
||||||
|
|
||||||
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||||
|
|
||||||
|
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
||||||
|
# This causes downstream issues with mismatched tensor sizes when running the inference
|
||||||
|
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||||
|
assert max(tokenizer.vocab.values()) < vocab_size
|
||||||
|
|
||||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||||
byte_encoder = bytes_to_unicode()
|
|
||||||
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
|
||||||
|
|
||||||
for i in range(vocab_size):
|
for i in range(vocab_size):
|
||||||
if i in reverse_vocab:
|
tokens.append(reverse_vocab[i])
|
||||||
try:
|
scores.append(0.0) # dummy
|
||||||
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
|
toktypes.append(gguf.TokenType.NORMAL)
|
||||||
except KeyError:
|
|
||||||
text = bytearray()
|
|
||||||
for c in reverse_vocab[i]:
|
|
||||||
if ord(c) < 256: # single byte character
|
|
||||||
text.append(byte_decoder[ord(c)])
|
|
||||||
else: # multibyte special token character
|
|
||||||
text.extend(c.encode('utf-8'))
|
|
||||||
else:
|
|
||||||
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
|
|
||||||
pad_token = f"[PAD{i}]".encode("utf8")
|
|
||||||
text = bytearray(pad_token)
|
|
||||||
|
|
||||||
tokens.append(text)
|
|
||||||
scores.append(0.0) # dymmy
|
|
||||||
toktypes.append(gguf.TokenType.NORMAL) # dummy
|
|
||||||
|
|
||||||
gguf_writer.add_token_list(tokens)
|
gguf_writer.add_token_list(tokens)
|
||||||
gguf_writer.add_token_scores(scores)
|
gguf_writer.add_token_scores(scores)
|
||||||
@ -192,8 +153,8 @@ special_vocab.add_to_gguf(gguf_writer)
|
|||||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||||
|
|
||||||
# params for qkv transform
|
# params for qkv transform
|
||||||
n_head = hparams["n_head"]
|
n_head = hparams["num_attention_heads"]
|
||||||
n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
|
n_head_kv = hparams["num_kv_heads"] if "num_kv_heads" in hparams else 1
|
||||||
|
|
||||||
head_dim = hparams["hidden_size"] // n_head
|
head_dim = hparams["hidden_size"] // n_head
|
||||||
|
|
||||||
@ -202,6 +163,10 @@ print("gguf: get tensor metadata")
|
|||||||
|
|
||||||
if num_parts == 0:
|
if num_parts == 0:
|
||||||
part_names = iter(("pytorch_model.bin",))
|
part_names = iter(("pytorch_model.bin",))
|
||||||
|
elif is_safetensors:
|
||||||
|
part_names = (
|
||||||
|
f"model-{n:05}-of-{num_parts:05}.safetensors" for n in range(1, num_parts + 1)
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
part_names = (
|
part_names = (
|
||||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||||
@ -211,60 +176,64 @@ for part_name in part_names:
|
|||||||
if args.vocab_only:
|
if args.vocab_only:
|
||||||
break
|
break
|
||||||
print("gguf: loading model part '" + part_name + "'")
|
print("gguf: loading model part '" + part_name + "'")
|
||||||
model_part = torch.load(dir_model / part_name, map_location="cpu")
|
if is_safetensors:
|
||||||
|
ctx = safe_open(dir_model / part_name, framework="pt", device="cpu")
|
||||||
|
else:
|
||||||
|
ctx = contextlib.nullcontext(torch.load(dir_model / part_name, map_location="cpu"))
|
||||||
|
|
||||||
for name in model_part.keys():
|
with ctx as model_part:
|
||||||
data = model_part[name]
|
for name in model_part.keys():
|
||||||
|
data = model_part.get_tensor(name) if is_safetensors else model_part[name]
|
||||||
|
|
||||||
old_dtype = data.dtype
|
old_dtype = data.dtype
|
||||||
|
|
||||||
# convert any unsupported data types to float32
|
# convert any unsupported data types to float32
|
||||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||||
data = data.to(torch.float32)
|
data = data.to(torch.float32)
|
||||||
|
|
||||||
# QKV tensor transform
|
# QKV tensor transform
|
||||||
# The original query_key_value tensor contains n_head_kv "kv groups",
|
# The original query_key_value tensor contains n_head_kv "kv groups",
|
||||||
# each consisting of n_head/n_head_kv query weights followed by one key
|
# each consisting of n_head/n_head_kv query weights followed by one key
|
||||||
# and one value weight (shared by all query heads in the kv group).
|
# and one value weight (shared by all query heads in the kv group).
|
||||||
# This layout makes it a big pain to work with in GGML.
|
# This layout makes it a big pain to work with in GGML.
|
||||||
# So we rearrange them here,, so that we have n_head query weights
|
# So we rearrange them here,, so that we have n_head query weights
|
||||||
# followed by n_head_kv key weights followed by n_head_kv value weights,
|
# followed by n_head_kv key weights followed by n_head_kv value weights,
|
||||||
# in contiguous fashion.
|
# in contiguous fashion.
|
||||||
# ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
|
# ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
|
||||||
|
|
||||||
if "query_key_value" in name:
|
if "query_key_value" in name:
|
||||||
qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
|
qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
|
||||||
q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
|
q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
|
||||||
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
|
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
|
||||||
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
|
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
|
||||||
data = torch.cat((q,k,v)).reshape_as(data)
|
data = torch.cat((q,k,v)).reshape_as(data)
|
||||||
|
|
||||||
data = data.squeeze().numpy()
|
data = data.squeeze().numpy()
|
||||||
|
|
||||||
# map tensor names
|
# map tensor names
|
||||||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||||
if new_name is None:
|
if new_name is None:
|
||||||
print("Can not map tensor '" + name + "'")
|
print("Can not map tensor '" + name + "'")
|
||||||
sys.exit()
|
sys.exit()
|
||||||
|
|
||||||
n_dims = len(data.shape)
|
n_dims = len(data.shape)
|
||||||
data_dtype = data.dtype
|
data_dtype = data.dtype
|
||||||
|
|
||||||
# if f32 desired, convert any float16 to float32
|
# if f32 desired, convert any float16 to float32
|
||||||
if ftype == 0 and data_dtype == np.float16:
|
if ftype == 0 and data_dtype == np.float16:
|
||||||
data = data.astype(np.float32)
|
data = data.astype(np.float32)
|
||||||
|
|
||||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||||
data = data.astype(np.float32)
|
data = data.astype(np.float32)
|
||||||
|
|
||||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||||
data = data.astype(np.float16)
|
data = data.astype(np.float16)
|
||||||
|
|
||||||
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||||
|
|
||||||
gguf_writer.add_tensor(new_name, data)
|
gguf_writer.add_tensor(new_name, data)
|
||||||
|
|
||||||
|
|
||||||
print("gguf: write header")
|
print("gguf: write header")
|
||||||
|
@ -19,29 +19,6 @@ if 'NO_LOCAL_GGUF' not in os.environ:
|
|||||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||||
import gguf
|
import gguf
|
||||||
|
|
||||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
|
||||||
|
|
||||||
|
|
||||||
def bytes_to_unicode():
|
|
||||||
"""
|
|
||||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
|
||||||
The reversible bpe codes work on unicode strings.
|
|
||||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
|
||||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
|
||||||
This is a significant percentage of your normal, say, 32K bpe vocab.
|
|
||||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
|
||||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|
||||||
"""
|
|
||||||
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
|
||||||
cs = bs[:]
|
|
||||||
n = 0
|
|
||||||
for b in range(2**8):
|
|
||||||
if b not in bs:
|
|
||||||
bs.append(b)
|
|
||||||
cs.append(2**8+n)
|
|
||||||
n += 1
|
|
||||||
return dict(zip(bs, (chr(n) for n in cs)))
|
|
||||||
|
|
||||||
|
|
||||||
def count_model_parts(dir_model: Path) -> int:
|
def count_model_parts(dir_model: Path) -> int:
|
||||||
num_parts = 0
|
num_parts = 0
|
||||||
@ -130,48 +107,32 @@ gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])
|
|||||||
print("gguf: get tokenizer metadata")
|
print("gguf: get tokenizer metadata")
|
||||||
|
|
||||||
tokens: list[bytearray] = []
|
tokens: list[bytearray] = []
|
||||||
|
scores: list[float] = []
|
||||||
tokenizer_json_file = dir_model / 'tokenizer.json'
|
toktypes: list[int] = []
|
||||||
if not tokenizer_json_file.is_file():
|
|
||||||
print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
# gpt2 tokenizer
|
# gpt2 tokenizer
|
||||||
gguf_writer.add_tokenizer_model("gpt2")
|
gguf_writer.add_tokenizer_model("gpt2")
|
||||||
|
|
||||||
with open(tokenizer_json_file, "r", encoding="utf-8") as f:
|
|
||||||
tokenizer_json = json.load(f)
|
|
||||||
|
|
||||||
print("gguf: get gpt2 tokenizer vocab")
|
print("gguf: get gpt2 tokenizer vocab")
|
||||||
|
|
||||||
vocab_size = len(tokenizer_json["model"]["vocab"])
|
|
||||||
|
|
||||||
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||||
|
|
||||||
|
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
||||||
|
# This causes downstream issues with mismatched tensor sizes when running the inference
|
||||||
|
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||||
|
assert max(tokenizer.vocab.values()) < vocab_size
|
||||||
|
|
||||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||||
byte_encoder = bytes_to_unicode()
|
|
||||||
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
|
||||||
|
|
||||||
for i in range(vocab_size):
|
for i in range(vocab_size):
|
||||||
if i in reverse_vocab:
|
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
|
||||||
try:
|
scores.append(0.0) # dummy
|
||||||
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
|
toktypes.append(gguf.TokenType.NORMAL)
|
||||||
except KeyError:
|
|
||||||
text = bytearray()
|
|
||||||
for c in reverse_vocab[i]:
|
|
||||||
if ord(c) < 256: # single byte character
|
|
||||||
text.append(byte_decoder[ord(c)])
|
|
||||||
else: # multibyte special token character
|
|
||||||
text.extend(c.encode('utf-8'))
|
|
||||||
else:
|
|
||||||
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
|
|
||||||
pad_token = f"[PAD{i}]".encode("utf8")
|
|
||||||
text = bytearray(pad_token)
|
|
||||||
|
|
||||||
tokens.append(text)
|
|
||||||
|
|
||||||
gguf_writer.add_token_list(tokens)
|
gguf_writer.add_token_list(tokens)
|
||||||
|
gguf_writer.add_token_scores(scores)
|
||||||
|
gguf_writer.add_token_types(toktypes)
|
||||||
|
|
||||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
|
||||||
special_vocab.add_to_gguf(gguf_writer)
|
special_vocab.add_to_gguf(gguf_writer)
|
||||||
|
130
convert-persimmon-to-gguf.py
Normal file
130
convert-persimmon-to-gguf.py
Normal file
@ -0,0 +1,130 @@
|
|||||||
|
import torch
|
||||||
|
import os
|
||||||
|
from pprint import pprint
|
||||||
|
import sys
|
||||||
|
import argparse
|
||||||
|
from pathlib import Path
|
||||||
|
from sentencepiece import SentencePieceProcessor
|
||||||
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||||
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||||
|
import gguf
|
||||||
|
|
||||||
|
def _flatten_dict(dct, tensors, prefix=None):
|
||||||
|
assert isinstance(dct, dict)
|
||||||
|
for key in dct.keys():
|
||||||
|
new_prefix = prefix + '.' + key if prefix is not None else key
|
||||||
|
if isinstance(dct[key], torch.Tensor):
|
||||||
|
tensors[new_prefix] = dct[key]
|
||||||
|
elif isinstance(dct[key], dict):
|
||||||
|
_flatten_dict(dct[key], tensors, new_prefix)
|
||||||
|
else:
|
||||||
|
raise ValueError(type(dct[key]))
|
||||||
|
return None
|
||||||
|
|
||||||
|
def _get_sentencepiece_tokenizer_info(dir_model: Path):
|
||||||
|
tokenizer_path = dir_model / 'adept_vocab.model'
|
||||||
|
print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
|
||||||
|
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
||||||
|
print('gguf: adding tokens')
|
||||||
|
tokens: list[bytes] = []
|
||||||
|
scores: list[float] = []
|
||||||
|
toktypes: list[int] = []
|
||||||
|
|
||||||
|
for i in range(tokenizer.vocab_size()):
|
||||||
|
text: bytes
|
||||||
|
score: float
|
||||||
|
|
||||||
|
piece = tokenizer.id_to_piece(i)
|
||||||
|
text = piece.encode("utf-8")
|
||||||
|
score = tokenizer.get_score(i)
|
||||||
|
|
||||||
|
toktype = 1
|
||||||
|
if tokenizer.is_unknown(i):
|
||||||
|
toktype = 2
|
||||||
|
if tokenizer.is_control(i):
|
||||||
|
toktype = 3
|
||||||
|
if tokenizer.is_unused(i):
|
||||||
|
toktype = 5
|
||||||
|
if tokenizer.is_byte(i):
|
||||||
|
toktype = 6
|
||||||
|
|
||||||
|
tokens.append(text)
|
||||||
|
scores.append(score)
|
||||||
|
toktypes.append(toktype)
|
||||||
|
pass
|
||||||
|
return tokens, scores, toktypes
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
|
||||||
|
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||||
|
parser.add_argument("--ckpt-path", type=Path, help="path to persimmon checkpoint .pt file")
|
||||||
|
parser.add_argument("--model-dir", type=Path, help="directory containing model e.g. 8b_chat_model_release")
|
||||||
|
parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory")
|
||||||
|
args = parser.parse_args()
|
||||||
|
sys.path.append(str(args.adept_inference_dir))
|
||||||
|
persimmon_model = torch.load(args.ckpt_path)
|
||||||
|
hparams = persimmon_model['args']
|
||||||
|
pprint(hparams)
|
||||||
|
tensors = {}
|
||||||
|
_flatten_dict(persimmon_model['model'], tensors, None)
|
||||||
|
|
||||||
|
arch = gguf.MODEL_ARCH.PERSIMMON
|
||||||
|
gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch])
|
||||||
|
|
||||||
|
block_count = hparams.num_layers
|
||||||
|
head_count = hparams.num_attention_heads
|
||||||
|
head_count_kv = head_count
|
||||||
|
ctx_length = hparams.seq_length
|
||||||
|
hidden_size = hparams.hidden_size
|
||||||
|
|
||||||
|
gguf_writer.add_name('persimmon-8b-chat')
|
||||||
|
gguf_writer.add_context_length(ctx_length)
|
||||||
|
gguf_writer.add_embedding_length(hidden_size)
|
||||||
|
gguf_writer.add_block_count(block_count)
|
||||||
|
gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
|
||||||
|
gguf_writer.add_rope_dimension_count(hidden_size // head_count)
|
||||||
|
gguf_writer.add_head_count(head_count)
|
||||||
|
gguf_writer.add_head_count_kv(head_count_kv)
|
||||||
|
gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)
|
||||||
|
gguf_writer.add_layer_norm_eps(hparams.layernorm_epsilon)
|
||||||
|
|
||||||
|
tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir)
|
||||||
|
gguf_writer.add_tokenizer_model('llama')
|
||||||
|
gguf_writer.add_token_list(tokens)
|
||||||
|
gguf_writer.add_token_scores(scores)
|
||||||
|
gguf_writer.add_token_types(toktypes)
|
||||||
|
gguf_writer.add_bos_token_id(71013)
|
||||||
|
gguf_writer.add_eos_token_id(71013)
|
||||||
|
|
||||||
|
tensor_map = gguf.get_tensor_name_map(arch, block_count)
|
||||||
|
print(tensor_map)
|
||||||
|
for name in tensors.keys():
|
||||||
|
data = tensors[name]
|
||||||
|
if name.endswith(".self_attention.rotary_emb.inv_freq"):
|
||||||
|
continue
|
||||||
|
old_dtype = data.dtype
|
||||||
|
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
|
||||||
|
data = data.to(torch.float32).squeeze().numpy()
|
||||||
|
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||||
|
if new_name is None:
|
||||||
|
print("Can not map tensor '" + name + "'")
|
||||||
|
sys.exit()
|
||||||
|
n_dims = len(data.shape)
|
||||||
|
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||||
|
gguf_writer.add_tensor(new_name, data)
|
||||||
|
print("gguf: write header")
|
||||||
|
gguf_writer.write_header_to_file()
|
||||||
|
print("gguf: write metadata")
|
||||||
|
gguf_writer.write_kv_data_to_file()
|
||||||
|
print("gguf: write tensors")
|
||||||
|
gguf_writer.write_tensors_to_file()
|
||||||
|
|
||||||
|
gguf_writer.close()
|
||||||
|
|
||||||
|
print(f"gguf: model successfully exported to '{args.outfile}'")
|
||||||
|
print("")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
263
convert-refact-hf-to-gguf.py
Executable file
263
convert-refact-hf-to-gguf.py
Executable file
@ -0,0 +1,263 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# HF refact--> gguf conversion
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from transformers import AutoTokenizer # type: ignore[import]
|
||||||
|
|
||||||
|
if "NO_LOCAL_GGUF" not in os.environ:
|
||||||
|
sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
|
||||||
|
import gguf
|
||||||
|
|
||||||
|
def count_model_parts(dir_model: Path) -> int:
|
||||||
|
num_parts = 0
|
||||||
|
for filename in os.listdir(dir_model):
|
||||||
|
if filename.startswith("pytorch_model-"):
|
||||||
|
num_parts += 1
|
||||||
|
|
||||||
|
if num_parts > 0:
|
||||||
|
print("gguf: found " + str(num_parts) + " model parts")
|
||||||
|
return num_parts
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args() -> argparse.Namespace:
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description="Convert a Refact model to a GGML compatible file"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--vocab-only",
|
||||||
|
action="store_true",
|
||||||
|
help="extract only the vocab",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--outfile",
|
||||||
|
type=Path,
|
||||||
|
help="path to write to; default: based on input",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"model",
|
||||||
|
type=Path,
|
||||||
|
help="directory containing model file, or model file itself (*.bin)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"ftype",
|
||||||
|
type=int,
|
||||||
|
choices=[0, 1],
|
||||||
|
default=1,
|
||||||
|
nargs="?",
|
||||||
|
help="output format - use 0 for float32, 1 for float16",
|
||||||
|
)
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
args = parse_args()
|
||||||
|
|
||||||
|
dir_model = args.model
|
||||||
|
ftype = args.ftype
|
||||||
|
if not dir_model.is_dir():
|
||||||
|
print(f"Error: {args.model} is not a directory", file=sys.stderr)
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
# possible tensor data types
|
||||||
|
# ftype == 0 -> float32
|
||||||
|
# ftype == 1 -> float16
|
||||||
|
|
||||||
|
# map from ftype to string
|
||||||
|
ftype_str = ["f32", "f16"]
|
||||||
|
|
||||||
|
if args.outfile is not None:
|
||||||
|
fname_out = args.outfile
|
||||||
|
else:
|
||||||
|
# output in the same directory as the model by default
|
||||||
|
fname_out = dir_model / f"ggml-model-{ftype_str[ftype]}.gguf"
|
||||||
|
|
||||||
|
print("gguf: loading model " + dir_model.name)
|
||||||
|
|
||||||
|
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||||
|
hparams = json.load(f)
|
||||||
|
|
||||||
|
if hparams["architectures"][0] != "GPTRefactForCausalLM":
|
||||||
|
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||||
|
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
# get number of model parts
|
||||||
|
num_parts = count_model_parts(dir_model)
|
||||||
|
|
||||||
|
ARCH = gguf.MODEL_ARCH.REFACT
|
||||||
|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||||
|
|
||||||
|
print("gguf: get model metadata")
|
||||||
|
|
||||||
|
# Get refact feed forward dimension
|
||||||
|
hidden_dim = hparams["n_embd"]
|
||||||
|
inner_dim = 4 * hidden_dim
|
||||||
|
hidden_dim = int(2 * inner_dim / 3)
|
||||||
|
multiple_of = 256
|
||||||
|
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
||||||
|
|
||||||
|
block_count = hparams["n_layer"]
|
||||||
|
|
||||||
|
gguf_writer.add_name("Refact")
|
||||||
|
# refact uses Alibi. So this is from config.json which might be used by training.
|
||||||
|
gguf_writer.add_context_length(hparams["n_positions"])
|
||||||
|
gguf_writer.add_embedding_length(hparams["n_embd"])
|
||||||
|
|
||||||
|
gguf_writer.add_feed_forward_length(ff_dim)
|
||||||
|
gguf_writer.add_block_count(block_count)
|
||||||
|
gguf_writer.add_head_count(hparams["n_head"])
|
||||||
|
gguf_writer.add_head_count_kv(1)
|
||||||
|
gguf_writer.add_layer_norm_rms_eps(hparams["layer_norm_epsilon"])
|
||||||
|
gguf_writer.add_file_type(ftype)
|
||||||
|
|
||||||
|
# TOKENIZATION
|
||||||
|
|
||||||
|
print("gguf: get tokenizer metadata")
|
||||||
|
|
||||||
|
tokens: list[bytearray] = []
|
||||||
|
scores: list[float] = []
|
||||||
|
toktypes: list[int] = []
|
||||||
|
|
||||||
|
# gpt2 tokenizer
|
||||||
|
gguf_writer.add_tokenizer_model("gpt2")
|
||||||
|
|
||||||
|
print("gguf: get gpt2 tokenizer vocab")
|
||||||
|
|
||||||
|
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||||
|
|
||||||
|
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
||||||
|
# This causes downstream issues with mismatched tensor sizes when running the inference
|
||||||
|
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||||
|
assert max(tokenizer.vocab.values()) < vocab_size
|
||||||
|
|
||||||
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||||
|
|
||||||
|
for i in range(vocab_size):
|
||||||
|
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
|
||||||
|
scores.append(0.0) # dummy
|
||||||
|
toktypes.append(gguf.TokenType.NORMAL)
|
||||||
|
|
||||||
|
gguf_writer.add_token_list(tokens)
|
||||||
|
gguf_writer.add_token_scores(scores)
|
||||||
|
gguf_writer.add_token_types(toktypes)
|
||||||
|
|
||||||
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
|
||||||
|
special_vocab.add_to_gguf(gguf_writer)
|
||||||
|
|
||||||
|
# TENSORS
|
||||||
|
|
||||||
|
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
|
||||||
|
|
||||||
|
# params for qkv transform
|
||||||
|
n_head = hparams["n_head"]
|
||||||
|
n_head_kv = 1
|
||||||
|
|
||||||
|
head_dim = hparams["n_embd"] // n_head
|
||||||
|
|
||||||
|
# tensor info
|
||||||
|
print("gguf: get tensor metadata")
|
||||||
|
|
||||||
|
if num_parts == 0:
|
||||||
|
part_names = iter(("pytorch_model.bin",))
|
||||||
|
else:
|
||||||
|
part_names = (
|
||||||
|
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||||
|
)
|
||||||
|
for part_name in part_names:
|
||||||
|
if args.vocab_only:
|
||||||
|
break
|
||||||
|
print("gguf: loading model part '" + part_name + "'")
|
||||||
|
model_part = torch.load(dir_model / part_name, map_location="cpu")
|
||||||
|
|
||||||
|
for i in range(block_count):
|
||||||
|
if f"transformer.h.{i}.attn.kv.weight" in model_part:
|
||||||
|
data = model_part[f"transformer.h.{i}.attn.kv.weight"]
|
||||||
|
model_part[f"model.layers.{i}.self_attn.k_proj.weight"] = data[
|
||||||
|
: n_head_kv * head_dim
|
||||||
|
]
|
||||||
|
model_part[f"model.layers.{i}.self_attn.v_proj.weight"] = data[
|
||||||
|
n_head_kv * head_dim :
|
||||||
|
]
|
||||||
|
del model_part[f"transformer.h.{i}.attn.kv.weight"]
|
||||||
|
if f"transformer.h.{i}.attn.q.weight" in model_part:
|
||||||
|
model_part[f"model.layers.{i}.self_attn.q_proj.weight"] = model_part[
|
||||||
|
f"transformer.h.{i}.attn.q.weight"
|
||||||
|
]
|
||||||
|
del model_part[f"transformer.h.{i}.attn.q.weight"]
|
||||||
|
if f"transformer.h.{i}.mlp.gate_up_proj.weight" in model_part:
|
||||||
|
data = model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
|
||||||
|
model_part[f"model.layers.{i}.mlp.gate_proj.weight"] = data[:ff_dim]
|
||||||
|
model_part[f"model.layers.{i}.mlp.up_proj.weight"] = data[ff_dim:]
|
||||||
|
del model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
|
||||||
|
|
||||||
|
for name in model_part.keys():
|
||||||
|
data = model_part[name]
|
||||||
|
|
||||||
|
old_dtype = data.dtype
|
||||||
|
|
||||||
|
# convert any unsupported data types to float32
|
||||||
|
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||||
|
data = data.to(torch.float32)
|
||||||
|
|
||||||
|
data = data.squeeze().numpy()
|
||||||
|
|
||||||
|
# map tensor names
|
||||||
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
|
||||||
|
if new_name is None:
|
||||||
|
print("Can not map tensor '" + name + "'")
|
||||||
|
sys.exit()
|
||||||
|
|
||||||
|
n_dims = len(data.shape)
|
||||||
|
data_dtype = data.dtype
|
||||||
|
|
||||||
|
# if f32 desired, convert any float16 to float32
|
||||||
|
if ftype == 0 and data_dtype == np.float16:
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
|
||||||
|
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||||
|
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
|
||||||
|
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||||
|
if (
|
||||||
|
ftype == 1
|
||||||
|
and data_dtype == np.float32
|
||||||
|
and name.endswith(".weight")
|
||||||
|
and n_dims == 2
|
||||||
|
):
|
||||||
|
data = data.astype(np.float16)
|
||||||
|
|
||||||
|
print(
|
||||||
|
new_name
|
||||||
|
+ ", n_dims = "
|
||||||
|
+ str(n_dims)
|
||||||
|
+ ", "
|
||||||
|
+ str(old_dtype)
|
||||||
|
+ " --> "
|
||||||
|
+ str(data.dtype)
|
||||||
|
)
|
||||||
|
|
||||||
|
gguf_writer.add_tensor(new_name, data)
|
||||||
|
|
||||||
|
|
||||||
|
print("gguf: write header")
|
||||||
|
gguf_writer.write_header_to_file()
|
||||||
|
print("gguf: write metadata")
|
||||||
|
gguf_writer.write_kv_data_to_file()
|
||||||
|
if not args.vocab_only:
|
||||||
|
print("gguf: write tensors")
|
||||||
|
gguf_writer.write_tensors_to_file()
|
||||||
|
|
||||||
|
gguf_writer.close()
|
||||||
|
|
||||||
|
print(f"gguf: model successfully exported to '{fname_out}'")
|
||||||
|
print("")
|
@ -20,28 +20,6 @@ if 'NO_LOCAL_GGUF' not in os.environ:
|
|||||||
import gguf
|
import gguf
|
||||||
|
|
||||||
|
|
||||||
def bytes_to_unicode():
|
|
||||||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
|
||||||
"""
|
|
||||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
|
||||||
The reversible bpe codes work on unicode strings.
|
|
||||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
|
||||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
|
||||||
This is a significant percentage of your normal, say, 32K bpe vocab.
|
|
||||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
|
||||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|
||||||
"""
|
|
||||||
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
|
||||||
cs = bs[:]
|
|
||||||
n = 0
|
|
||||||
for b in range(2**8):
|
|
||||||
if b not in bs:
|
|
||||||
bs.append(b)
|
|
||||||
cs.append(2**8+n)
|
|
||||||
n += 1
|
|
||||||
return dict(zip(bs, (chr(n) for n in cs)))
|
|
||||||
|
|
||||||
|
|
||||||
def count_model_parts(dir_model: Path) -> int:
|
def count_model_parts(dir_model: Path) -> int:
|
||||||
num_parts = 0
|
num_parts = 0
|
||||||
for filename in os.listdir(dir_model):
|
for filename in os.listdir(dir_model):
|
||||||
@ -120,49 +98,25 @@ tokens: list[bytearray] = []
|
|||||||
scores: list[float] = []
|
scores: list[float] = []
|
||||||
toktypes: list[int] = []
|
toktypes: list[int] = []
|
||||||
|
|
||||||
tokenizer_json_file = dir_model / 'tokenizer.json'
|
|
||||||
if not tokenizer_json_file.is_file():
|
|
||||||
print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
# gpt2 tokenizer
|
# gpt2 tokenizer
|
||||||
gguf_writer.add_tokenizer_model("gpt2")
|
gguf_writer.add_tokenizer_model("gpt2")
|
||||||
|
|
||||||
with open(tokenizer_json_file, "r", encoding="utf-8") as f:
|
|
||||||
tokenizer_json = json.load(f)
|
|
||||||
|
|
||||||
print("gguf: get gpt2 tokenizer vocab")
|
print("gguf: get gpt2 tokenizer vocab")
|
||||||
|
|
||||||
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
|
||||||
# This causes downstream issues with mismatched tensor sizes when running the inference
|
|
||||||
vocab_size = hparams["vocab_size"] if "vocab_size" in hparams else len(tokenizer_json["model"]["vocab"])
|
|
||||||
|
|
||||||
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||||
|
|
||||||
|
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
||||||
|
# This causes downstream issues with mismatched tensor sizes when running the inference
|
||||||
|
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||||
|
assert max(tokenizer.vocab.values()) < vocab_size
|
||||||
|
|
||||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||||
byte_encoder = bytes_to_unicode()
|
|
||||||
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
|
||||||
|
|
||||||
for i in range(vocab_size):
|
for i in range(vocab_size):
|
||||||
if i in reverse_vocab:
|
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
|
||||||
try:
|
scores.append(0.0) # dummy
|
||||||
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
|
toktypes.append(gguf.TokenType.NORMAL)
|
||||||
except KeyError:
|
|
||||||
text = bytearray()
|
|
||||||
for c in reverse_vocab[i]:
|
|
||||||
if ord(c) < 256: # single byte character
|
|
||||||
text.append(byte_decoder[ord(c)])
|
|
||||||
else: # multibyte special token character
|
|
||||||
text.extend(c.encode('utf-8'))
|
|
||||||
else:
|
|
||||||
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
|
|
||||||
pad_token = f"[PAD{i}]".encode("utf8")
|
|
||||||
text = bytearray(pad_token)
|
|
||||||
|
|
||||||
tokens.append(text)
|
|
||||||
scores.append(0.0) # dymmy
|
|
||||||
toktypes.append(gguf.TokenType.NORMAL) # dummy
|
|
||||||
|
|
||||||
gguf_writer.add_token_list(tokens)
|
gguf_writer.add_token_list(tokens)
|
||||||
gguf_writer.add_token_scores(scores)
|
gguf_writer.add_token_scores(scores)
|
||||||
|
29
convert.py
29
convert.py
@ -41,8 +41,7 @@ if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
|
|||||||
|
|
||||||
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
|
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
|
||||||
|
|
||||||
ARCH=gguf.MODEL_ARCH.LLAMA
|
ARCH = gguf.MODEL_ARCH.LLAMA
|
||||||
NAMES=gguf.MODEL_TENSOR_NAMES[ARCH]
|
|
||||||
|
|
||||||
DEFAULT_CONCURRENCY = 8
|
DEFAULT_CONCURRENCY = 8
|
||||||
#
|
#
|
||||||
@ -339,29 +338,15 @@ class BpeVocab:
|
|||||||
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||||
tokenizer = self.bpe_tokenizer
|
tokenizer = self.bpe_tokenizer
|
||||||
from transformers.models.gpt2 import tokenization_gpt2 # type: ignore[import]
|
from transformers.models.gpt2 import tokenization_gpt2 # type: ignore[import]
|
||||||
byte_encoder = tokenization_gpt2.bytes_to_unicode()
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.items()}
|
||||||
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
|
||||||
score = 0.0
|
for i, _ in enumerate(tokenizer):
|
||||||
for i, item in enumerate(tokenizer):
|
yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
|
||||||
text: bytes = item.encode("utf-8")
|
|
||||||
# FIXME: These shouldn't be hardcoded, but it's probably better than the current behavior?
|
|
||||||
if i <= 258 and text.startswith(b'<') and text.endswith(b'>'):
|
|
||||||
if i == 0 and text == b'<unk>':
|
|
||||||
toktype = gguf.TokenType.UNKNOWN
|
|
||||||
elif i == 1 or i == 2:
|
|
||||||
toktype = gguf.TokenType.CONTROL
|
|
||||||
elif i >= 3 and text.startswith(b'<0x'):
|
|
||||||
toktype = gguf.TokenType.BYTE
|
|
||||||
else:
|
|
||||||
toktype = gguf.TokenType.NORMAL
|
|
||||||
else:
|
|
||||||
toktype = gguf.TokenType.NORMAL
|
|
||||||
yield text, score, toktype
|
|
||||||
|
|
||||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||||
for text in self.added_tokens_list:
|
for text in self.added_tokens_list:
|
||||||
score = -1000.0
|
score = -1000.0
|
||||||
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
|
yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
|
||||||
|
|
||||||
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||||
yield from self.bpe_tokens()
|
yield from self.bpe_tokens()
|
||||||
@ -953,7 +938,7 @@ class OutputFile:
|
|||||||
of.close()
|
of.close()
|
||||||
|
|
||||||
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
|
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
|
||||||
wq_type = model[NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type
|
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type
|
||||||
|
|
||||||
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
|
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
|
||||||
return GGMLFileType.AllF32
|
return GGMLFileType.AllF32
|
||||||
|
@ -21,6 +21,7 @@ else()
|
|||||||
add_subdirectory(benchmark)
|
add_subdirectory(benchmark)
|
||||||
add_subdirectory(baby-llama)
|
add_subdirectory(baby-llama)
|
||||||
add_subdirectory(train-text-from-scratch)
|
add_subdirectory(train-text-from-scratch)
|
||||||
|
add_subdirectory(finetune)
|
||||||
add_subdirectory(convert-llama2c-to-ggml)
|
add_subdirectory(convert-llama2c-to-ggml)
|
||||||
add_subdirectory(simple)
|
add_subdirectory(simple)
|
||||||
add_subdirectory(batched)
|
add_subdirectory(batched)
|
||||||
@ -35,4 +36,5 @@ else()
|
|||||||
if (LLAMA_BUILD_SERVER)
|
if (LLAMA_BUILD_SERVER)
|
||||||
add_subdirectory(server)
|
add_subdirectory(server)
|
||||||
endif()
|
endif()
|
||||||
|
add_subdirectory(export-lora)
|
||||||
endif()
|
endif()
|
||||||
|
@ -1,8 +1,12 @@
|
|||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
|
#include "train.h"
|
||||||
|
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <cassert>
|
#include <cassert>
|
||||||
#include <random>
|
#include <cstdlib>
|
||||||
#include <cstring>
|
#include <cstring>
|
||||||
|
#include <random>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
#if defined(_MSC_VER)
|
#if defined(_MSC_VER)
|
||||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
@ -14,31 +18,6 @@ constexpr float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
|
|||||||
constexpr float rms_norm_eps = 5e-6f;
|
constexpr float rms_norm_eps = 5e-6f;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
static float frand() {
|
|
||||||
return (float)rand()/(float)RAND_MAX;
|
|
||||||
}
|
|
||||||
|
|
||||||
struct random_normal_distribution {
|
|
||||||
std::mt19937 gen;
|
|
||||||
std::normal_distribution<float> nd;
|
|
||||||
float min;
|
|
||||||
float max;
|
|
||||||
};
|
|
||||||
|
|
||||||
static void init_random_normal_distribution(
|
|
||||||
struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max
|
|
||||||
) {
|
|
||||||
rnd->gen = std::mt19937(seed);
|
|
||||||
rnd->nd = std::normal_distribution<float>{mean, std};
|
|
||||||
rnd->min = min;
|
|
||||||
rnd->max = max;
|
|
||||||
}
|
|
||||||
|
|
||||||
static float frand_normal(struct random_normal_distribution * rnd) {
|
|
||||||
const float r = rnd->nd(rnd->gen);
|
|
||||||
return ((r < rnd->min) ? (rnd->min) : (r > rnd->max) ? (rnd->max) : r);
|
|
||||||
}
|
|
||||||
|
|
||||||
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
|
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
|
||||||
|
|
||||||
@ -88,55 +67,7 @@ static struct ggml_tensor * randomize_tensor(
|
|||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
assert(false);
|
assert(false);
|
||||||
};
|
}
|
||||||
|
|
||||||
return tensor;
|
|
||||||
}
|
|
||||||
|
|
||||||
static struct ggml_tensor * randomize_tensor_normal(
|
|
||||||
struct ggml_tensor * tensor, int ndims, const int64_t ne[], struct random_normal_distribution * rnd
|
|
||||||
) {
|
|
||||||
float scale = 1.0; // xavier
|
|
||||||
switch (ndims) {
|
|
||||||
case 1:
|
|
||||||
scale /= sqrtf(ne[0]);
|
|
||||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
|
||||||
((float *)tensor->data)[i0] = scale * frand_normal(rnd);
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 2:
|
|
||||||
scale /= sqrtf(ne[0]+ne[1]);
|
|
||||||
for (int i1 = 0; i1 < ne[1]; i1++) {
|
|
||||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
|
||||||
((float *)tensor->data)[i1*ne[0] + i0] = scale * frand_normal(rnd);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 3:
|
|
||||||
scale /= sqrtf(ne[0]+ne[1]);
|
|
||||||
for (int i2 = 0; i2 < ne[2]; i2++) {
|
|
||||||
for (int i1 = 0; i1 < ne[1]; i1++) {
|
|
||||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
|
||||||
((float *)tensor->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = scale * frand_normal(rnd);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
case 4:
|
|
||||||
scale /= sqrtf(ne[0]+ne[1]);
|
|
||||||
for (int i3 = 0; i3 < ne[3]; i3++) {
|
|
||||||
for (int i2 = 0; i2 < ne[2]; i2++) {
|
|
||||||
for (int i1 = 0; i1 < ne[1]; i1++) {
|
|
||||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
|
||||||
((float *)tensor->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = scale * frand_normal(rnd);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
assert(false);
|
|
||||||
};
|
|
||||||
|
|
||||||
return tensor;
|
return tensor;
|
||||||
}
|
}
|
||||||
@ -398,27 +329,29 @@ static void randomize_model(struct llama_model * model, int seed, float mean, fl
|
|||||||
|
|
||||||
const uint32_t n_layer = hparams.n_layer;
|
const uint32_t n_layer = hparams.n_layer;
|
||||||
|
|
||||||
struct random_normal_distribution rnd;
|
struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
|
||||||
init_random_normal_distribution(&rnd, seed, mean, std, min, max);
|
|
||||||
randomize_tensor_normal(model->tok_embeddings, model->tok_embeddings->n_dims, model->tok_embeddings->ne, &rnd);
|
randomize_tensor_normal(model->tok_embeddings , rnd);
|
||||||
randomize_tensor_normal(model->norm, model->norm->n_dims, model->norm->ne, &rnd);
|
randomize_tensor_normal(model->norm , rnd);
|
||||||
randomize_tensor_normal(model->output, model->output->n_dims, model->output->ne, &rnd);
|
randomize_tensor_normal(model->output , rnd);
|
||||||
|
|
||||||
for (uint32_t i = 0; i < n_layer; ++i) {
|
for (uint32_t i = 0; i < n_layer; ++i) {
|
||||||
auto & layer = model->layers[i];
|
auto & layer = model->layers[i];
|
||||||
randomize_tensor_normal(layer.attention_norm, layer.attention_norm->n_dims, layer.attention_norm->ne, &rnd);
|
randomize_tensor_normal(layer.attention_norm, rnd);
|
||||||
|
|
||||||
randomize_tensor_normal(layer.wq, layer.wq->n_dims, layer.wq->ne, &rnd);
|
randomize_tensor_normal(layer.wq, rnd);
|
||||||
randomize_tensor_normal(layer.wk, layer.wk->n_dims, layer.wk->ne, &rnd);
|
randomize_tensor_normal(layer.wk, rnd);
|
||||||
randomize_tensor_normal(layer.wv, layer.wv->n_dims, layer.wv->ne, &rnd);
|
randomize_tensor_normal(layer.wv, rnd);
|
||||||
randomize_tensor_normal(layer.wo, layer.wo->n_dims, layer.wo->ne, &rnd);
|
randomize_tensor_normal(layer.wo, rnd);
|
||||||
|
|
||||||
randomize_tensor_normal(layer.ffn_norm, layer.ffn_norm->n_dims, layer.ffn_norm->ne, &rnd);
|
randomize_tensor_normal(layer.ffn_norm, rnd);
|
||||||
|
|
||||||
randomize_tensor_normal(layer.w1, layer.w1->n_dims, layer.w1->ne, &rnd);
|
randomize_tensor_normal(layer.w1, rnd);
|
||||||
randomize_tensor_normal(layer.w2, layer.w2->n_dims, layer.w2->ne, &rnd);
|
randomize_tensor_normal(layer.w2, rnd);
|
||||||
randomize_tensor_normal(layer.w3, layer.w3->n_dims, layer.w3->ne, &rnd);
|
randomize_tensor_normal(layer.w3, rnd);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
free_random_normal_distribution(rnd);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -429,35 +362,37 @@ static void randomize_model_lora(
|
|||||||
|
|
||||||
const uint32_t n_layer = hparams.n_layer;
|
const uint32_t n_layer = hparams.n_layer;
|
||||||
|
|
||||||
struct random_normal_distribution rnd;
|
struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
|
||||||
init_random_normal_distribution(&rnd, seed, mean, std, min, max);
|
|
||||||
randomize_tensor_normal(model->tok_embeddings, model->tok_embeddings->n_dims, model->tok_embeddings->ne, &rnd);
|
randomize_tensor_normal(model->tok_embeddings, rnd);
|
||||||
randomize_tensor_normal(model->norm, model->norm->n_dims, model->norm->ne, &rnd);
|
randomize_tensor_normal(model->norm , rnd);
|
||||||
randomize_tensor_normal(model->outputa, model->outputa->n_dims, model->outputa->ne, &rnd);
|
randomize_tensor_normal(model->outputa , rnd);
|
||||||
randomize_tensor_normal(model->outputb, model->outputb->n_dims, model->outputb->ne, &rnd);
|
randomize_tensor_normal(model->outputb , rnd);
|
||||||
|
|
||||||
for (uint32_t i = 0; i < n_layer; ++i) {
|
for (uint32_t i = 0; i < n_layer; ++i) {
|
||||||
auto & layer = model->layers[i];
|
auto & layer = model->layers[i];
|
||||||
randomize_tensor_normal(layer.attention_norm, layer.attention_norm->n_dims, layer.attention_norm->ne, &rnd);
|
randomize_tensor_normal(layer.attention_norm, rnd);
|
||||||
|
|
||||||
randomize_tensor_normal(layer.wqa, layer.wqa->n_dims, layer.wqa->ne, &rnd);
|
randomize_tensor_normal(layer.wqa, rnd);
|
||||||
randomize_tensor_normal(layer.wqb, layer.wqb->n_dims, layer.wqb->ne, &rnd);
|
randomize_tensor_normal(layer.wqb, rnd);
|
||||||
randomize_tensor_normal(layer.wka, layer.wka->n_dims, layer.wka->ne, &rnd);
|
randomize_tensor_normal(layer.wka, rnd);
|
||||||
randomize_tensor_normal(layer.wkb, layer.wkb->n_dims, layer.wkb->ne, &rnd);
|
randomize_tensor_normal(layer.wkb, rnd);
|
||||||
randomize_tensor_normal(layer.wva, layer.wva->n_dims, layer.wva->ne, &rnd);
|
randomize_tensor_normal(layer.wva, rnd);
|
||||||
randomize_tensor_normal(layer.wvb, layer.wvb->n_dims, layer.wvb->ne, &rnd);
|
randomize_tensor_normal(layer.wvb, rnd);
|
||||||
randomize_tensor_normal(layer.woa, layer.woa->n_dims, layer.woa->ne, &rnd);
|
randomize_tensor_normal(layer.woa, rnd);
|
||||||
randomize_tensor_normal(layer.wob, layer.wob->n_dims, layer.wob->ne, &rnd);
|
randomize_tensor_normal(layer.wob, rnd);
|
||||||
|
|
||||||
randomize_tensor_normal(layer.ffn_norm, layer.ffn_norm->n_dims, layer.ffn_norm->ne, &rnd);
|
randomize_tensor_normal(layer.ffn_norm, rnd);
|
||||||
|
|
||||||
randomize_tensor_normal(layer.w1, layer.w1->n_dims, layer.w1->ne, &rnd);
|
randomize_tensor_normal(layer.w1, rnd);
|
||||||
randomize_tensor_normal(layer.w2, layer.w2->n_dims, layer.w2->ne, &rnd);
|
randomize_tensor_normal(layer.w2, rnd);
|
||||||
randomize_tensor_normal(layer.w3, layer.w3->n_dims, layer.w3->ne, &rnd);
|
randomize_tensor_normal(layer.w3, rnd);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
free_random_normal_distribution(rnd);
|
||||||
}
|
}
|
||||||
|
|
||||||
static bool init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int n_batch) {
|
static void init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int n_batch) {
|
||||||
const auto & hparams = model->hparams;
|
const auto & hparams = model->hparams;
|
||||||
|
|
||||||
const uint32_t n_ctx = hparams.n_ctx;
|
const uint32_t n_ctx = hparams.n_ctx;
|
||||||
@ -483,14 +418,12 @@ static bool init_kv_cache(struct llama_kv_cache* cache, struct llama_model * mod
|
|||||||
|
|
||||||
if (!cache->ctx) {
|
if (!cache->ctx) {
|
||||||
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
|
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
|
||||||
return false;
|
exit(1);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
|
cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
|
||||||
cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
|
cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static bool init_kv_cache_lora(struct llama_kv_cache* cache, struct llama_model_lora * model, int n_batch) {
|
static bool init_kv_cache_lora(struct llama_kv_cache* cache, struct llama_model_lora * model, int n_batch) {
|
||||||
@ -762,32 +695,6 @@ static struct ggml_tensor * forward(
|
|||||||
return inpL;
|
return inpL;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) {
|
|
||||||
GGML_ASSERT(tensor->n_dims == 1);
|
|
||||||
GGML_ASSERT(tensor->ne[0] == ne0);
|
|
||||||
}
|
|
||||||
|
|
||||||
static void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) {
|
|
||||||
GGML_ASSERT(tensor->n_dims == 2);
|
|
||||||
GGML_ASSERT(tensor->ne[0] == ne0);
|
|
||||||
GGML_ASSERT(tensor->ne[1] == ne1);
|
|
||||||
}
|
|
||||||
|
|
||||||
static void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) {
|
|
||||||
GGML_ASSERT(tensor->n_dims == 3);
|
|
||||||
GGML_ASSERT(tensor->ne[0] == ne0);
|
|
||||||
GGML_ASSERT(tensor->ne[1] == ne1);
|
|
||||||
GGML_ASSERT(tensor->ne[2] == ne2);
|
|
||||||
}
|
|
||||||
|
|
||||||
static void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
|
|
||||||
GGML_ASSERT(tensor->n_dims == 4);
|
|
||||||
GGML_ASSERT(tensor->ne[0] == ne0);
|
|
||||||
GGML_ASSERT(tensor->ne[1] == ne1);
|
|
||||||
GGML_ASSERT(tensor->ne[2] == ne2);
|
|
||||||
GGML_ASSERT(tensor->ne[3] == ne3);
|
|
||||||
}
|
|
||||||
|
|
||||||
static struct ggml_tensor * forward_batch(
|
static struct ggml_tensor * forward_batch(
|
||||||
struct llama_model * model,
|
struct llama_model * model,
|
||||||
struct llama_kv_cache * cache,
|
struct llama_kv_cache * cache,
|
||||||
|
@ -40,20 +40,35 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
llama_backend_init(params.numa);
|
llama_backend_init(params.numa);
|
||||||
|
|
||||||
llama_context_params ctx_params = llama_context_default_params();
|
// initialize the model
|
||||||
|
|
||||||
ctx_params.seed = 1234;
|
llama_model_params model_params = llama_model_default_params();
|
||||||
ctx_params.n_ctx = n_len*n_parallel; // FIXME: use n_kv_req instead (tokenize with model after #3301)
|
|
||||||
ctx_params.n_batch = std::max(n_len, n_parallel);
|
|
||||||
// ctx_params.n_gpu_layers = 99; // offload all layers to the GPU
|
|
||||||
|
|
||||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
|
// model_params.n_gpu_layers = 99; // offload all layers to the GPU
|
||||||
|
|
||||||
|
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||||
|
|
||||||
if (model == NULL) {
|
if (model == NULL) {
|
||||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// tokenize the prompt
|
||||||
|
|
||||||
|
std::vector<llama_token> tokens_list;
|
||||||
|
tokens_list = ::llama_tokenize(model, params.prompt, true);
|
||||||
|
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel;
|
||||||
|
|
||||||
|
// initialize the context
|
||||||
|
|
||||||
|
llama_context_params ctx_params = llama_context_default_params();
|
||||||
|
|
||||||
|
ctx_params.seed = 1234;
|
||||||
|
ctx_params.n_ctx = n_kv_req;
|
||||||
|
ctx_params.n_batch = std::max(n_len, n_parallel);
|
||||||
|
ctx_params.n_threads = params.n_threads;
|
||||||
|
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||||
|
|
||||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||||
|
|
||||||
if (ctx == NULL) {
|
if (ctx == NULL) {
|
||||||
@ -61,13 +76,7 @@ int main(int argc, char ** argv) {
|
|||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
// tokenize the prompt
|
|
||||||
|
|
||||||
std::vector<llama_token> tokens_list;
|
|
||||||
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
|
|
||||||
|
|
||||||
const int n_ctx = llama_n_ctx(ctx);
|
const int n_ctx = llama_n_ctx(ctx);
|
||||||
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel;
|
|
||||||
|
|
||||||
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %d, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
|
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %d, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
|
||||||
|
|
||||||
@ -106,7 +115,7 @@ int main(int argc, char ** argv) {
|
|||||||
// llama_decode will output logits only for the last token of the prompt
|
// llama_decode will output logits only for the last token of the prompt
|
||||||
batch.logits[batch.n_tokens - 1] = true;
|
batch.logits[batch.n_tokens - 1] = true;
|
||||||
|
|
||||||
if (llama_decode(ctx, batch, params.n_threads) != 0) {
|
if (llama_decode(ctx, batch) != 0) {
|
||||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
@ -146,7 +155,7 @@ int main(int argc, char ** argv) {
|
|||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
auto n_vocab = llama_n_vocab(ctx);
|
auto n_vocab = llama_n_vocab(model);
|
||||||
auto * logits = llama_get_logits_ith(ctx, i_batch[i]);
|
auto * logits = llama_get_logits_ith(ctx, i_batch[i]);
|
||||||
|
|
||||||
std::vector<llama_token_data> candidates;
|
std::vector<llama_token_data> candidates;
|
||||||
@ -210,7 +219,7 @@ int main(int argc, char ** argv) {
|
|||||||
n_cur += 1;
|
n_cur += 1;
|
||||||
|
|
||||||
// evaluate the current batch with the transformer model
|
// evaluate the current batch with the transformer model
|
||||||
if (llama_decode(ctx, batch, params.n_threads)) {
|
if (llama_decode(ctx, batch)) {
|
||||||
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
|
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
@ -160,7 +160,7 @@ int main(int argc, char ** argv)
|
|||||||
|
|
||||||
int n_past = 0;
|
int n_past = 0;
|
||||||
|
|
||||||
if (llama_decode(ctx, llama_batch_get_one(tokens_list.data(), tokens_list.size(), n_past, 0), params.n_threads))
|
if (llama_decode(ctx, llama_batch_get_one(tokens_list.data(), tokens_list.size(), n_past, 0)))
|
||||||
{
|
{
|
||||||
fprintf(stderr, "%s : failed to eval prompt.\n" , __func__ );
|
fprintf(stderr, "%s : failed to eval prompt.\n" , __func__ );
|
||||||
return 1;
|
return 1;
|
||||||
@ -170,7 +170,7 @@ int main(int argc, char ** argv)
|
|||||||
beam_search_callback_data callback_data{ctx, {}};
|
beam_search_callback_data callback_data{ctx, {}};
|
||||||
size_t const beam_width = static_cast<size_t>(params.n_beams);
|
size_t const beam_width = static_cast<size_t>(params.n_beams);
|
||||||
int const n_predict = 256;
|
int const n_predict = 256;
|
||||||
llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict, params.n_threads);
|
llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict);
|
||||||
|
|
||||||
std::cout << "\n\n";
|
std::cout << "\n\n";
|
||||||
for (llama_token const token_id : callback_data.response) {
|
for (llama_token const token_id : callback_data.response) {
|
||||||
|
@ -9,7 +9,7 @@ if [[ -z "${PROMPT_CACHE_FILE+x}" || -z "${CHAT_SAVE_DIR+x}" ]]; then
|
|||||||
exit 1
|
exit 1
|
||||||
fi
|
fi
|
||||||
|
|
||||||
MODEL="${MODEL:-./models/13B/ggml-model-q4_0.bin}"
|
MODEL="${MODEL:-./models/llama-13b/ggml-model-q4_0.gguf}"
|
||||||
PROMPT_TEMPLATE="${PROMPT_TEMPLATE:-./prompts/chat.txt}"
|
PROMPT_TEMPLATE="${PROMPT_TEMPLATE:-./prompts/chat.txt}"
|
||||||
USER_NAME="${USER_NAME:-User}"
|
USER_NAME="${USER_NAME:-User}"
|
||||||
AI_NAME="${AI_NAME:-ChatLLaMa}"
|
AI_NAME="${AI_NAME:-ChatLLaMa}"
|
||||||
@ -61,9 +61,9 @@ fi
|
|||||||
|
|
||||||
if [[ ! -e "$PROMPT_CACHE_FILE" ]]; then
|
if [[ ! -e "$PROMPT_CACHE_FILE" ]]; then
|
||||||
echo 'Prompt cache does not exist, building...'
|
echo 'Prompt cache does not exist, building...'
|
||||||
# Default batch_size to 8 here for better user feedback during initial prompt processing
|
# Default batch_size to 64 here for better user feedback during initial prompt processing
|
||||||
./main 2>>"$LOG" \
|
./main 2>>"$LOG" \
|
||||||
--batch_size 8 \
|
--batch_size 64 \
|
||||||
"${OPTS[@]}" \
|
"${OPTS[@]}" \
|
||||||
--prompt-cache "$PROMPT_CACHE_FILE" \
|
--prompt-cache "$PROMPT_CACHE_FILE" \
|
||||||
--file "$CUR_PROMPT_FILE" \
|
--file "$CUR_PROMPT_FILE" \
|
||||||
@ -132,7 +132,7 @@ while read -e line; do
|
|||||||
# HACK get num tokens from debug message
|
# HACK get num tokens from debug message
|
||||||
# TODO get both messages in one go
|
# TODO get both messages in one go
|
||||||
if ! session_size_msg="$(tail -n30 "$LOG" | grep -oE "$SESSION_SIZE_MSG_PATTERN")" ||
|
if ! session_size_msg="$(tail -n30 "$LOG" | grep -oE "$SESSION_SIZE_MSG_PATTERN")" ||
|
||||||
! sample_time_msg="$( tail -n10 "$LOG" | grep -oE "$SAMPLE_TIME_MSG_PATTERN")"; then
|
! sample_time_msg="$(tail -n10 "$LOG" | grep -oE "$SAMPLE_TIME_MSG_PATTERN")"; then
|
||||||
echo >&2 "Couldn't get number of tokens from ./main output!"
|
echo >&2 "Couldn't get number of tokens from ./main output!"
|
||||||
exit 1
|
exit 1
|
||||||
fi
|
fi
|
||||||
|
@ -48,8 +48,7 @@ struct MyModel* create_mymodel(int argc, char ** argv) {
|
|||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
|
||||||
}
|
}
|
||||||
struct MyModel * ret = new MyModel();
|
struct MyModel * ret = new MyModel();
|
||||||
ret->ctx = ctx;
|
ret->ctx = ctx;
|
||||||
@ -71,7 +70,7 @@ bool eval_float(void * model, float * input, int N){
|
|||||||
MyModel * mymodel = (MyModel*)model;
|
MyModel * mymodel = (MyModel*)model;
|
||||||
llama_context * ctx = mymodel->ctx;
|
llama_context * ctx = mymodel->ctx;
|
||||||
gpt_params params = mymodel->params;
|
gpt_params params = mymodel->params;
|
||||||
int n_emb = llama_n_embd(ctx);
|
int n_emb = llama_n_embd(llama_get_model(ctx));
|
||||||
int n_past = mymodel->n_past;
|
int n_past = mymodel->n_past;
|
||||||
int n_batch = N; // params.n_batch;
|
int n_batch = N; // params.n_batch;
|
||||||
|
|
||||||
@ -81,7 +80,7 @@ bool eval_float(void * model, float * input, int N){
|
|||||||
n_eval = n_batch;
|
n_eval = n_batch;
|
||||||
}
|
}
|
||||||
llama_batch batch = { int32_t(n_eval), nullptr, (input+i*n_emb), nullptr, nullptr, nullptr, n_past, 1, 0, };
|
llama_batch batch = { int32_t(n_eval), nullptr, (input+i*n_emb), nullptr, nullptr, nullptr, n_past, 1, 0, };
|
||||||
if (llama_decode(ctx, batch, params.n_threads)) {
|
if (llama_decode(ctx, batch)) {
|
||||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
@ -102,7 +101,7 @@ bool eval_tokens(void * model, std::vector<llama_token> tokens) {
|
|||||||
if (n_eval > params.n_batch) {
|
if (n_eval > params.n_batch) {
|
||||||
n_eval = params.n_batch;
|
n_eval = params.n_batch;
|
||||||
}
|
}
|
||||||
if (llama_decode(ctx, llama_batch_get_one(&tokens[i], n_eval, n_past, 0), params.n_threads)) {
|
if (llama_decode(ctx, llama_batch_get_one(&tokens[i], n_eval, n_past, 0))) {
|
||||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
@ -133,7 +132,7 @@ llama_token sampling_id(struct MyModel* mymodel) {
|
|||||||
|
|
||||||
// out of user input, sample next token
|
// out of user input, sample next token
|
||||||
const float temp = params.temp;
|
const float temp = params.temp;
|
||||||
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
|
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : params.top_k;
|
||||||
const float top_p = params.top_p;
|
const float top_p = params.top_p;
|
||||||
const float tfs_z = params.tfs_z;
|
const float tfs_z = params.tfs_z;
|
||||||
const float typical_p = params.typical_p;
|
const float typical_p = params.typical_p;
|
||||||
@ -149,7 +148,7 @@ llama_token sampling_id(struct MyModel* mymodel) {
|
|||||||
llama_token id = 0;
|
llama_token id = 0;
|
||||||
{
|
{
|
||||||
auto logits = llama_get_logits(ctx);
|
auto logits = llama_get_logits(ctx);
|
||||||
auto n_vocab = llama_n_vocab(ctx);
|
auto n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||||
|
|
||||||
// Apply params.logit_bias map
|
// Apply params.logit_bias map
|
||||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||||
|
@ -8,7 +8,7 @@ int main(int argc, char** argv) {
|
|||||||
auto mymodel = create_mymodel(argc, argv);
|
auto mymodel = create_mymodel(argc, argv);
|
||||||
int N = 10;
|
int N = 10;
|
||||||
int max_tgt_len = 500;
|
int max_tgt_len = 500;
|
||||||
int n_embd = llama_n_embd(mymodel->ctx);
|
int n_embd = llama_n_embd(llama_get_model(mymodel->ctx));
|
||||||
|
|
||||||
// add random float embd to test evaluation
|
// add random float embd to test evaluation
|
||||||
float * data = new float[N*n_embd];
|
float * data = new float[N*n_embd];
|
||||||
|
@ -42,17 +42,18 @@ int main(int argc, char ** argv) {
|
|||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
const int n_ctx_train = llama_n_ctx_train(ctx);
|
const int n_ctx_train = llama_n_ctx_train(model);
|
||||||
if (params.n_ctx > n_ctx_train) {
|
const int n_ctx = llama_n_ctx(ctx);
|
||||||
|
|
||||||
|
if (n_ctx > n_ctx_train) {
|
||||||
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||||
__func__, n_ctx_train, params.n_ctx);
|
__func__, n_ctx_train, n_ctx);
|
||||||
}
|
}
|
||||||
|
|
||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
|
||||||
}
|
}
|
||||||
|
|
||||||
int n_past = 0;
|
int n_past = 0;
|
||||||
@ -70,15 +71,15 @@ int main(int argc, char ** argv) {
|
|||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
if (embd_inp.size() > (size_t)params.n_ctx) {
|
if (embd_inp.size() > (size_t)n_ctx) {
|
||||||
fprintf(stderr, "%s: error: prompt is longer than the context window (%zu tokens, n_ctx = %d)\n",
|
fprintf(stderr, "%s: error: prompt is longer than the context window (%zu tokens, n_ctx = %d)\n",
|
||||||
__func__, embd_inp.size(), params.n_ctx);
|
__func__, embd_inp.size(), n_ctx);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
while (!embd_inp.empty()) {
|
while (!embd_inp.empty()) {
|
||||||
int n_tokens = std::min(params.n_batch, (int) embd_inp.size());
|
int n_tokens = std::min(params.n_batch, (int) embd_inp.size());
|
||||||
if (llama_decode(ctx, llama_batch_get_one(embd_inp.data(), n_tokens, n_past, 0), params.n_threads)) {
|
if (llama_decode(ctx, llama_batch_get_one(embd_inp.data(), n_tokens, n_past, 0))) {
|
||||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
@ -86,8 +87,8 @@ int main(int argc, char ** argv) {
|
|||||||
embd_inp.erase(embd_inp.begin(), embd_inp.begin() + n_tokens);
|
embd_inp.erase(embd_inp.begin(), embd_inp.begin() + n_tokens);
|
||||||
}
|
}
|
||||||
|
|
||||||
const int n_embd = llama_n_embd(ctx);
|
const int n_embd = llama_n_embd(model);
|
||||||
const auto embeddings = llama_get_embeddings(ctx);
|
const auto * embeddings = llama_get_embeddings(ctx);
|
||||||
|
|
||||||
for (int i = 0; i < n_embd; i++) {
|
for (int i = 0; i < n_embd; i++) {
|
||||||
printf("%f ", embeddings[i]);
|
printf("%f ", embeddings[i]);
|
||||||
|
5
examples/export-lora/CMakeLists.txt
Normal file
5
examples/export-lora/CMakeLists.txt
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
set(TARGET export-lora)
|
||||||
|
add_executable(${TARGET} export-lora.cpp)
|
||||||
|
install(TARGETS ${TARGET} RUNTIME)
|
||||||
|
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||||
|
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
26
examples/export-lora/README.md
Normal file
26
examples/export-lora/README.md
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
# export-lora
|
||||||
|
|
||||||
|
Apply LORA adapters to base model and export the resulting model.
|
||||||
|
|
||||||
|
```
|
||||||
|
usage: export-lora [options]
|
||||||
|
|
||||||
|
options:
|
||||||
|
-h, --help show this help message and exit
|
||||||
|
-m FNAME, --model-base FNAME model path from which to load base model (default '')
|
||||||
|
-o FNAME, --model-out FNAME path to save exported model (default '')
|
||||||
|
-l FNAME, --lora FNAME apply LoRA adapter
|
||||||
|
-s FNAME S, --lora-scaled FNAME S apply LoRA adapter with user defined scaling S
|
||||||
|
-t N, --threads N number of threads to use during computation (default: 4)
|
||||||
|
```
|
||||||
|
|
||||||
|
For example:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./bin/export-lora \
|
||||||
|
-m open-llama-3b-v2-q8_0.gguf \
|
||||||
|
-o open-llama-3b-v2-q8_0-english2tokipona-chat.gguf \
|
||||||
|
-l lora-open-llama-3b-v2-q8_0-english2tokipona-chat-LATEST.bin
|
||||||
|
```
|
||||||
|
|
||||||
|
Multiple LORA adapters can be applied by passing multiple `-l FN` or `-s FN S` command line parameters.
|
474
examples/export-lora/export-lora.cpp
Normal file
474
examples/export-lora/export-lora.cpp
Normal file
@ -0,0 +1,474 @@
|
|||||||
|
|
||||||
|
#include "common.h"
|
||||||
|
#include "ggml.h"
|
||||||
|
#include "ggml-alloc.h"
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
#include <string>
|
||||||
|
#include <thread>
|
||||||
|
|
||||||
|
static const size_t tensor_alignment = 32;
|
||||||
|
|
||||||
|
struct lora_info {
|
||||||
|
std::string filename;
|
||||||
|
float scale;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct export_lora_params {
|
||||||
|
std::string fn_model_base;
|
||||||
|
std::string fn_model_out;
|
||||||
|
std::vector<struct lora_info> lora;
|
||||||
|
int n_threads;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct lora_data {
|
||||||
|
struct lora_info info;
|
||||||
|
std::vector<uint8_t> data;
|
||||||
|
struct ggml_context * ctx;
|
||||||
|
|
||||||
|
uint32_t lora_r;
|
||||||
|
uint32_t lora_alpha;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct llama_file {
|
||||||
|
// use FILE * so we don't have to re-open the file to mmap
|
||||||
|
FILE * fp;
|
||||||
|
size_t size;
|
||||||
|
|
||||||
|
llama_file(const char * fname, const char * mode) {
|
||||||
|
fp = std::fopen(fname, mode);
|
||||||
|
if (fp == NULL) {
|
||||||
|
size = 0;
|
||||||
|
} else {
|
||||||
|
seek(0, SEEK_END);
|
||||||
|
size = tell();
|
||||||
|
seek(0, SEEK_SET);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t tell() const {
|
||||||
|
#ifdef _WIN32
|
||||||
|
__int64 ret = _ftelli64(fp);
|
||||||
|
#else
|
||||||
|
long ret = std::ftell(fp);
|
||||||
|
#endif
|
||||||
|
GGML_ASSERT(ret != -1); // this really shouldn't fail
|
||||||
|
return (size_t) ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
void seek(size_t offset, int whence) {
|
||||||
|
#ifdef _WIN32
|
||||||
|
int ret = _fseeki64(fp, (__int64) offset, whence);
|
||||||
|
#else
|
||||||
|
int ret = std::fseek(fp, (long) offset, whence);
|
||||||
|
#endif
|
||||||
|
GGML_ASSERT(ret == 0); // same
|
||||||
|
}
|
||||||
|
|
||||||
|
void read_raw(void * ptr, size_t size) {
|
||||||
|
if (size == 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
errno = 0;
|
||||||
|
std::size_t ret = std::fread(ptr, size, 1, fp);
|
||||||
|
if (ferror(fp)) {
|
||||||
|
die_fmt("read error: %s", strerror(errno));
|
||||||
|
}
|
||||||
|
if (ret != 1) {
|
||||||
|
die("unexpectedly reached end of file");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::uint32_t read_u32() {
|
||||||
|
std::uint32_t ret;
|
||||||
|
read_raw(&ret, sizeof(ret));
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string read_string(std::uint32_t len) {
|
||||||
|
std::vector<char> chars(len);
|
||||||
|
read_raw(chars.data(), len);
|
||||||
|
return std::string(chars.data(), len);
|
||||||
|
}
|
||||||
|
|
||||||
|
void write_raw(const void * ptr, size_t size) {
|
||||||
|
if (size == 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
errno = 0;
|
||||||
|
size_t ret = std::fwrite(ptr, size, 1, fp);
|
||||||
|
if (ret != 1) {
|
||||||
|
die_fmt("write error: %s", strerror(errno));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void write_u32(std::uint32_t val) {
|
||||||
|
write_raw(&val, sizeof(val));
|
||||||
|
}
|
||||||
|
|
||||||
|
bool eof() {
|
||||||
|
return tell() >= size;
|
||||||
|
}
|
||||||
|
|
||||||
|
~llama_file() {
|
||||||
|
if (fp) {
|
||||||
|
std::fclose(fp);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
static struct export_lora_params get_default_export_lora_params() {
|
||||||
|
struct export_lora_params result;
|
||||||
|
result.fn_model_base = "";
|
||||||
|
result.fn_model_out = "";
|
||||||
|
result.n_threads = GGML_DEFAULT_N_THREADS;
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void export_lora_print_usage(int /*argc*/, char ** argv, const struct export_lora_params * params) {
|
||||||
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||||
|
fprintf(stderr, "\n");
|
||||||
|
fprintf(stderr, "options:\n");
|
||||||
|
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||||
|
fprintf(stderr, " -m FNAME, --model-base FNAME model path from which to load base model (default '%s')\n", params->fn_model_base.c_str());
|
||||||
|
fprintf(stderr, " -o FNAME, --model-out FNAME path to save exported model (default '%s')\n", params->fn_model_out.c_str());
|
||||||
|
fprintf(stderr, " -l FNAME, --lora FNAME apply LoRA adapter\n");
|
||||||
|
fprintf(stderr, " -s FNAME S, --lora-scaled FNAME S apply LoRA adapter with user defined scaling S\n");
|
||||||
|
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params->n_threads);
|
||||||
|
}
|
||||||
|
|
||||||
|
static bool export_lora_params_parse(int argc, char ** argv, struct export_lora_params * params) {
|
||||||
|
bool invalid_param = false;
|
||||||
|
std::string arg;
|
||||||
|
struct export_lora_params default_params = get_default_export_lora_params();
|
||||||
|
const std::string arg_prefix = "--";
|
||||||
|
|
||||||
|
for (int i = 1; i < argc; i++) {
|
||||||
|
arg = argv[i];
|
||||||
|
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
||||||
|
std::replace(arg.begin(), arg.end(), '_', '-');
|
||||||
|
}
|
||||||
|
|
||||||
|
if (arg == "-m" || arg == "--model-base") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params->fn_model_base = argv[i];
|
||||||
|
} else if (arg == "-o" || arg == "--model-out") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params->fn_model_out = argv[i];
|
||||||
|
} else if (arg == "-l" || arg == "--lora") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
struct lora_info lora;
|
||||||
|
lora.filename = argv[i];
|
||||||
|
lora.scale = 1.0f;
|
||||||
|
params->lora.push_back(lora);
|
||||||
|
} else if (arg == "-s" || arg == "--lora-scaled") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
struct lora_info lora;
|
||||||
|
lora.filename = argv[i];
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
lora.scale = std::stof(argv[i]);
|
||||||
|
params->lora.push_back(lora);
|
||||||
|
} else if (arg == "-t" || arg == "--threads") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params->n_threads = std::stoi(argv[i]);
|
||||||
|
if (params->n_threads <= 0) {
|
||||||
|
params->n_threads = std::thread::hardware_concurrency();
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
fprintf(stderr, "error: unknown argument: '%s'\n", arg.c_str());
|
||||||
|
export_lora_print_usage(argc, argv, &default_params);
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params->fn_model_base == default_params.fn_model_base) {
|
||||||
|
fprintf(stderr, "error: please specify a filename for model-base.\n");
|
||||||
|
export_lora_print_usage(argc, argv, &default_params);
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
if (params->fn_model_out == default_params.fn_model_out) {
|
||||||
|
fprintf(stderr, "error: please specify a filename for model-out.\n");
|
||||||
|
export_lora_print_usage(argc, argv, &default_params);
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
if (invalid_param) {
|
||||||
|
fprintf(stderr, "error: invalid parameter for argument: '%s'\n", arg.c_str());
|
||||||
|
export_lora_print_usage(argc, argv, &default_params);
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void free_lora(struct lora_data * lora) {
|
||||||
|
if (lora->ctx != NULL) {
|
||||||
|
ggml_free(lora->ctx);
|
||||||
|
}
|
||||||
|
delete lora;
|
||||||
|
}
|
||||||
|
|
||||||
|
static struct lora_data * load_lora(struct lora_info * info) {
|
||||||
|
struct lora_data * result = new struct lora_data;
|
||||||
|
result->info = *info;
|
||||||
|
result->ctx = NULL;
|
||||||
|
result->lora_r = 1;
|
||||||
|
result->lora_alpha = 1;
|
||||||
|
|
||||||
|
struct llama_file file(info->filename.c_str(), "rb");
|
||||||
|
if (file.fp == NULL) {
|
||||||
|
fprintf(stderr, "warning: Could not open lora adapter '%s'. Ignoring this adapter.\n",
|
||||||
|
info->filename.c_str());
|
||||||
|
free_lora(result);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_init_params params_ggml;
|
||||||
|
params_ggml.mem_size = ggml_tensor_overhead() * GGML_MAX_NODES;
|
||||||
|
params_ggml.mem_buffer = NULL;
|
||||||
|
params_ggml.no_alloc = true;
|
||||||
|
result->ctx = ggml_init(params_ggml);
|
||||||
|
|
||||||
|
uint32_t LLAMA_FILE_MAGIC_LORA = 0x67676C61; // 'ggla'
|
||||||
|
uint32_t magic = file.read_u32();
|
||||||
|
if (magic != LLAMA_FILE_MAGIC_LORA) {
|
||||||
|
die_fmt("unexpected lora header file magic in '%s'", info->filename.c_str());
|
||||||
|
}
|
||||||
|
uint32_t version = file.read_u32();
|
||||||
|
if (version != 1) {
|
||||||
|
die_fmt("unexpected lora file version '%u' in '%s'", (unsigned) version, info->filename.c_str());
|
||||||
|
}
|
||||||
|
result->lora_r = file.read_u32();
|
||||||
|
result->lora_alpha = file.read_u32();
|
||||||
|
// read tensor infos from file
|
||||||
|
std::vector<char> name_buf;
|
||||||
|
std::vector<struct ggml_tensor *> tensors;
|
||||||
|
std::vector<size_t> tensors_offset;
|
||||||
|
size_t total_nbytes_pad = 0;
|
||||||
|
while(!file.eof()) {
|
||||||
|
int64_t ne[4] = {1,1,1,1};
|
||||||
|
uint32_t n_dims = file.read_u32();
|
||||||
|
uint32_t namelen = file.read_u32();
|
||||||
|
uint32_t type = file.read_u32();
|
||||||
|
for (uint32_t k = 0; k < n_dims; ++k) {
|
||||||
|
ne[k] = (int64_t)file.read_u32();
|
||||||
|
}
|
||||||
|
name_buf.clear();
|
||||||
|
name_buf.resize(namelen + 1, '\0');
|
||||||
|
file.read_raw(name_buf.data(), namelen);
|
||||||
|
file.seek((0-file.tell()) & 31, SEEK_CUR);
|
||||||
|
size_t offset = file.tell();
|
||||||
|
struct ggml_tensor * tensor = ggml_new_tensor(result->ctx, (enum ggml_type) type, n_dims, ne);
|
||||||
|
ggml_set_name(tensor, name_buf.data());
|
||||||
|
size_t nbytes = ggml_nbytes(tensor);
|
||||||
|
size_t nbytes_pad = ggml_nbytes_pad(tensor);
|
||||||
|
total_nbytes_pad += nbytes_pad;
|
||||||
|
tensors.push_back(tensor);
|
||||||
|
tensors_offset.push_back(offset);
|
||||||
|
file.seek(nbytes, SEEK_CUR);
|
||||||
|
}
|
||||||
|
// read tensor data
|
||||||
|
result->data.resize(total_nbytes_pad);
|
||||||
|
size_t data_offset = 0;
|
||||||
|
for (size_t i = 0; i < tensors.size(); ++i) {
|
||||||
|
struct ggml_tensor * tensor = tensors[i];
|
||||||
|
size_t offset = tensors_offset[i];
|
||||||
|
size_t nbytes = ggml_nbytes(tensor);
|
||||||
|
size_t nbytes_pad = ggml_nbytes_pad(tensor);
|
||||||
|
file.seek(offset, SEEK_SET);
|
||||||
|
tensor->data = result->data.data() + data_offset;
|
||||||
|
file.read_raw(tensor->data, nbytes);
|
||||||
|
data_offset += nbytes_pad;
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
static struct ggml_cgraph * build_graph_lora(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * tensor,
|
||||||
|
struct ggml_tensor * lora_a,
|
||||||
|
struct ggml_tensor * lora_b,
|
||||||
|
float scaling
|
||||||
|
) {
|
||||||
|
struct ggml_tensor * ab = ggml_mul_mat(ctx, lora_a, lora_b);
|
||||||
|
if (scaling != 1.0f) {
|
||||||
|
ab = ggml_scale(ctx, ab, ggml_new_f32(ctx, scaling));
|
||||||
|
}
|
||||||
|
struct ggml_tensor * res = ggml_add_inplace(ctx, tensor, ab);
|
||||||
|
|
||||||
|
struct ggml_cgraph * gf = ggml_new_graph(ctx);
|
||||||
|
ggml_build_forward_expand (gf, res);
|
||||||
|
return gf;
|
||||||
|
}
|
||||||
|
|
||||||
|
static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int n_threads) {
|
||||||
|
if (lora->ctx == NULL) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
std::string name = ggml_get_name(tensor);
|
||||||
|
std::string name_a = name + std::string(".loraA");
|
||||||
|
std::string name_b = name + std::string(".loraB");
|
||||||
|
struct ggml_tensor * lora_a = ggml_get_tensor(lora->ctx, name_a.c_str());
|
||||||
|
struct ggml_tensor * lora_b = ggml_get_tensor(lora->ctx, name_b.c_str());
|
||||||
|
if (lora_a == NULL || lora_b == NULL) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
float scaling = lora->info.scale * (float)lora->lora_alpha / (float)lora->lora_r;
|
||||||
|
|
||||||
|
struct ggml_init_params params;
|
||||||
|
params.mem_size = GGML_OBJECT_SIZE + GGML_GRAPH_SIZE + ggml_tensor_overhead()*4 + GGML_MEM_ALIGN*5;
|
||||||
|
params.mem_buffer = NULL;
|
||||||
|
params.no_alloc = true;
|
||||||
|
struct ggml_context * ctx = NULL;
|
||||||
|
struct ggml_allocr * alloc = NULL;
|
||||||
|
struct ggml_cgraph * gf = NULL;
|
||||||
|
|
||||||
|
ctx = ggml_init(params);
|
||||||
|
alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||||
|
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
|
||||||
|
size_t alloc_size = ggml_allocr_alloc_graph(alloc, gf);
|
||||||
|
ggml_allocr_free(alloc);
|
||||||
|
ggml_free(ctx);
|
||||||
|
|
||||||
|
static std::vector<uint8_t> data_compute;
|
||||||
|
data_compute.resize(alloc_size + tensor_alignment);
|
||||||
|
|
||||||
|
ctx = ggml_init(params);
|
||||||
|
alloc = ggml_allocr_new(data_compute.data(), data_compute.size(), tensor_alignment);
|
||||||
|
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
|
||||||
|
ggml_allocr_alloc_graph(alloc, gf);
|
||||||
|
ggml_allocr_free(alloc);
|
||||||
|
|
||||||
|
struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads);
|
||||||
|
static std::vector<uint8_t> data_work;
|
||||||
|
data_work.resize(cplan.work_size);
|
||||||
|
cplan.work_data = data_work.data();
|
||||||
|
|
||||||
|
ggml_graph_compute(gf, &cplan);
|
||||||
|
|
||||||
|
ggml_free(ctx);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void export_lora(struct export_lora_params * params) {
|
||||||
|
// load all loras
|
||||||
|
std::vector<struct lora_data *> loras;
|
||||||
|
for (size_t i = 0; i < params->lora.size(); ++i) {
|
||||||
|
struct lora_data * lora = load_lora(¶ms->lora[i]);
|
||||||
|
if (lora != NULL) {
|
||||||
|
loras.push_back(lora);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (loras.size() == 0) {
|
||||||
|
fprintf(stderr, "warning: no lora adapters will be applied.\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
// open input file
|
||||||
|
struct llama_file fin(params->fn_model_base.c_str(), "rb");
|
||||||
|
if (!fin.fp) {
|
||||||
|
die_fmt("Could not open file '%s'\n", params->fn_model_base.c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
// open base model gguf, read tensors without their data
|
||||||
|
struct ggml_context * ctx_in;
|
||||||
|
struct gguf_init_params params_gguf;
|
||||||
|
params_gguf.no_alloc = true;
|
||||||
|
params_gguf.ctx = &ctx_in;
|
||||||
|
struct gguf_context * gguf_in = gguf_init_from_file(params->fn_model_base.c_str(), params_gguf);
|
||||||
|
|
||||||
|
// create new gguf
|
||||||
|
struct gguf_context * gguf_out = gguf_init_empty();
|
||||||
|
|
||||||
|
// copy meta data from base model: kv and tensors
|
||||||
|
gguf_set_kv(gguf_out, gguf_in);
|
||||||
|
int n_tensors = gguf_get_n_tensors(gguf_in);
|
||||||
|
for (int i=0; i < n_tensors; ++i) {
|
||||||
|
const char * name = gguf_get_tensor_name(gguf_in, i);
|
||||||
|
struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name);
|
||||||
|
gguf_add_tensor(gguf_out, tensor);
|
||||||
|
}
|
||||||
|
|
||||||
|
// create output file
|
||||||
|
struct llama_file fout(params->fn_model_out.c_str(), "wb");
|
||||||
|
if (!fout.fp) {
|
||||||
|
die_fmt("Could not create file '%s'\n", params->fn_model_out.c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
// write gguf meta data
|
||||||
|
std::vector<uint8_t> meta;
|
||||||
|
meta.resize(gguf_get_meta_size(gguf_out));
|
||||||
|
gguf_get_meta_data(gguf_out, meta.data());
|
||||||
|
fout.write_raw(meta.data(), meta.size());
|
||||||
|
|
||||||
|
std::vector<uint8_t> data;
|
||||||
|
std::vector<uint8_t> padding;
|
||||||
|
for (int i=0; i < n_tensors; ++i) {
|
||||||
|
const char * name = gguf_get_tensor_name(gguf_in, i);
|
||||||
|
struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name);
|
||||||
|
|
||||||
|
// read tensor data
|
||||||
|
data.resize(ggml_nbytes(tensor));
|
||||||
|
tensor->data = data.data();
|
||||||
|
size_t offset = gguf_get_tensor_offset(gguf_in, i);
|
||||||
|
fin.seek(offset + meta.size(), SEEK_SET);
|
||||||
|
fin.read_raw(data.data(), data.size());
|
||||||
|
|
||||||
|
// apply all loras
|
||||||
|
for (size_t k = 0; k < loras.size(); ++k) {
|
||||||
|
apply_lora(tensor, loras[k], params->n_threads);
|
||||||
|
}
|
||||||
|
|
||||||
|
// write tensor data + padding
|
||||||
|
padding.clear();
|
||||||
|
padding.resize(GGML_PAD(data.size(), gguf_get_alignment(gguf_out)) - data.size(), 0);
|
||||||
|
|
||||||
|
GGML_ASSERT(fout.tell() == offset + meta.size());
|
||||||
|
// fout.seek(offset + meta.size(), SEEK_SET);
|
||||||
|
fout.write_raw(data.data(), data.size());
|
||||||
|
fout.write_raw(padding.data(), padding.size());
|
||||||
|
|
||||||
|
if (i % 2 == 0) {
|
||||||
|
printf(".");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
|
||||||
|
// close gguf
|
||||||
|
gguf_free(gguf_out);
|
||||||
|
gguf_free(gguf_in);
|
||||||
|
|
||||||
|
// free loras
|
||||||
|
for (size_t i = 0; i < loras.size(); ++i) {
|
||||||
|
free_lora(loras[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char ** argv) {
|
||||||
|
struct export_lora_params params = get_default_export_lora_params();
|
||||||
|
|
||||||
|
if (!export_lora_params_parse(argc, argv, ¶ms)) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
export_lora(¶ms);
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
5
examples/finetune/CMakeLists.txt
Normal file
5
examples/finetune/CMakeLists.txt
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
set(TARGET finetune)
|
||||||
|
add_executable(${TARGET} finetune.cpp)
|
||||||
|
install(TARGETS ${TARGET} RUNTIME)
|
||||||
|
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||||
|
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
90
examples/finetune/README.md
Normal file
90
examples/finetune/README.md
Normal file
@ -0,0 +1,90 @@
|
|||||||
|
# finetune
|
||||||
|
|
||||||
|
Basic usage instructions:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# get training data
|
||||||
|
wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt
|
||||||
|
|
||||||
|
# finetune LORA adapter
|
||||||
|
./bin/finetune \
|
||||||
|
--model-base open-llama-3b-v2-q8_0.gguf \
|
||||||
|
--checkpoint-in chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf \
|
||||||
|
--checkpoint-out chk-lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.gguf \
|
||||||
|
--lora-out lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.bin \
|
||||||
|
--train-data "shakespeare.txt" \
|
||||||
|
--save-every 10 \
|
||||||
|
--threads 6 --adam-iter 30 --batch 4 --ctx 64 \
|
||||||
|
--use-checkpointing
|
||||||
|
|
||||||
|
# predict
|
||||||
|
./bin/main -m open-llama-3b-v2-q8_0.gguf --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
|
||||||
|
```
|
||||||
|
|
||||||
|
Finetune output files will be saved every N iterations (config with `--save-every N`).
|
||||||
|
The pattern 'ITERATION' in the output filenames will be replaced with the iteration number and with 'LATEST' for the latest output.
|
||||||
|
So in above example after 10 iterations these files will be written:
|
||||||
|
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-10.gguf
|
||||||
|
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf
|
||||||
|
- lora-open-llama-3b-v2-q8_0-shakespeare-10.bin
|
||||||
|
- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
|
||||||
|
|
||||||
|
After 10 more iterations:
|
||||||
|
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-20.gguf
|
||||||
|
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf
|
||||||
|
- lora-open-llama-3b-v2-q8_0-shakespeare-20.bin
|
||||||
|
- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
|
||||||
|
|
||||||
|
Checkpoint files (`--checkpoint-in FN`, `--checkpoint-out FN`) store the training process. When the input checkpoint file does not exist, it will begin finetuning a new randomly initialized adapter.
|
||||||
|
|
||||||
|
llama.cpp compatible LORA adapters will be saved with filename specified by `--lora-out FN`.
|
||||||
|
These LORA adapters can then be used by `main` together with the base model, like in the 'predict' example command above.
|
||||||
|
|
||||||
|
In `main` you can also load multiple LORA adapters, which will then be mixed together.
|
||||||
|
|
||||||
|
For example if you have two LORA adapters `lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin` and `lora-open-llama-3b-v2-q8_0-bible-LATEST.bin`, you can mix them together like this:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./bin/main -m open-llama-3b-v2-q8_0.gguf \
|
||||||
|
--lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin \
|
||||||
|
--lora lora-open-llama-3b-v2-q8_0-bible-LATEST.bin
|
||||||
|
```
|
||||||
|
|
||||||
|
You can change how strong each LORA adapter is applied to the base model by using `--lora-scaled FN SCALE` instead of `--lora FN`.
|
||||||
|
|
||||||
|
For example to apply 40% of the 'shakespeare' LORA adapter, 80% of the 'bible' LORA adapter and 100% of yet another one:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./bin/main -m open-llama-3b-v2-q8_0.gguf \
|
||||||
|
--lora-scaled lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin 0.4 \
|
||||||
|
--lora-scaled lora-open-llama-3b-v2-q8_0-bible-LATEST.bin 0.8 \
|
||||||
|
--lora lora-open-llama-3b-v2-q8_0-yet-another-one-LATEST.bin
|
||||||
|
```
|
||||||
|
|
||||||
|
The scale numbers don't need to add up to one, and you can also use numbers greater than 1 to further increase the influence of an adapter. But making the values to big will sometimes result in worse output. Play around to find good values.
|
||||||
|
|
||||||
|
Gradient checkpointing reduces the memory requirements by ~50% but increases the runtime.
|
||||||
|
If you have enough RAM, you can make finetuning a bit faster by disabling checkpointing with `--no-checkpointing`.
|
||||||
|
|
||||||
|
The default LORA rank can be specified with `--lora-r N`.
|
||||||
|
The LORA rank can be configured for each model tensor type separately with these command line options:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
--lora-r N LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default 4)
|
||||||
|
--rank-att-norm N LORA rank for attention norm tensor (default 1)
|
||||||
|
--rank-ffn-norm N LORA rank for feed-forward norm tensor (default 1)
|
||||||
|
--rank-out-norm N LORA rank for output norm tensor (default 1)
|
||||||
|
--rank-tok-embd N LORA rank for token embeddings tensor (default 4)
|
||||||
|
--rank-out N LORA rank for output tensor (default 4)
|
||||||
|
--rank-wq N LORA rank for wq tensor (default 4)
|
||||||
|
--rank-wk N LORA rank for wk tensor (default 4)
|
||||||
|
--rank-wv N LORA rank for wv tensor (default 4)
|
||||||
|
--rank-wo N LORA rank for wo tensor (default 4)
|
||||||
|
--rank-w1 N LORA rank for w1 tensor (default 4)
|
||||||
|
--rank-w2 N LORA rank for w2 tensor (default 4)
|
||||||
|
--rank-w3 N LORA rank for w3 tensor (default 4)
|
||||||
|
```
|
||||||
|
|
||||||
|
The LORA rank of 'norm' tensors should always be 1.
|
||||||
|
|
||||||
|
To see all available options use `finetune --help`.
|
489
examples/finetune/convert-finetune-checkpoint-to-gguf.py
Normal file
489
examples/finetune/convert-finetune-checkpoint-to-gguf.py
Normal file
@ -0,0 +1,489 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# finetune checkpoint --> gguf conversion
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import gguf
|
||||||
|
import os
|
||||||
|
import struct
|
||||||
|
import sys
|
||||||
|
import numpy as np
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
# gguf constants
|
||||||
|
LLM_KV_OPTIMIZER_TYPE = "optimizer.type"
|
||||||
|
LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"
|
||||||
|
LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"
|
||||||
|
LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"
|
||||||
|
LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"
|
||||||
|
LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"
|
||||||
|
LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"
|
||||||
|
LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"
|
||||||
|
LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"
|
||||||
|
LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"
|
||||||
|
LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"
|
||||||
|
LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"
|
||||||
|
LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"
|
||||||
|
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"
|
||||||
|
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"
|
||||||
|
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"
|
||||||
|
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"
|
||||||
|
LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"
|
||||||
|
|
||||||
|
LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"
|
||||||
|
LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"
|
||||||
|
LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"
|
||||||
|
|
||||||
|
LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"
|
||||||
|
LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"
|
||||||
|
LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"
|
||||||
|
LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"
|
||||||
|
LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"
|
||||||
|
LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"
|
||||||
|
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"
|
||||||
|
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"
|
||||||
|
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"
|
||||||
|
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"
|
||||||
|
|
||||||
|
LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model"
|
||||||
|
LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"
|
||||||
|
LLM_KV_TRAINING_TYPE = "training.type"
|
||||||
|
LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
|
||||||
|
LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
|
||||||
|
LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
|
||||||
|
LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
|
||||||
|
|
||||||
|
LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD = "training.lora.rank.token_embd"
|
||||||
|
LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm"
|
||||||
|
LLM_KV_TRAINING_LORA_RANK_OUTPUT = "training.lora.rank.output"
|
||||||
|
LLM_KV_TRAINING_LORA_RANK_ATTN_NORM = "training.lora.rank.attn_norm"
|
||||||
|
LLM_KV_TRAINING_LORA_RANK_ATTN_Q = "training.lora.rank.attn_q"
|
||||||
|
LLM_KV_TRAINING_LORA_RANK_ATTN_K = "training.lora.rank.attn_k"
|
||||||
|
LLM_KV_TRAINING_LORA_RANK_ATTN_V = "training.lora.rank.attn_v"
|
||||||
|
LLM_KV_TRAINING_LORA_RANK_ATTN_OUT = "training.lora.rank.attn_output"
|
||||||
|
LLM_KV_TRAINING_LORA_RANK_FFN_NORM = "training.lora.rank.ffn_norm"
|
||||||
|
LLM_KV_TRAINING_LORA_RANK_FFN_GATE = "training.lora.rank.ffn_gate"
|
||||||
|
LLM_KV_TRAINING_LORA_RANK_FFN_DOWN = "training.lora.rank.ffn_down"
|
||||||
|
LLM_KV_TRAINING_LORA_RANK_FFN_UP = "training.lora.rank.ffn_up"
|
||||||
|
|
||||||
|
class Tensor:
|
||||||
|
def __init__(self, dtype='f', ne=None):
|
||||||
|
if ne is None:
|
||||||
|
ne = []
|
||||||
|
self.dtype = dtype
|
||||||
|
self.ne = ne
|
||||||
|
self.nbytes = 0
|
||||||
|
if self.dtype == 'f':
|
||||||
|
if len(self.ne) == 0:
|
||||||
|
self.nbytes = 0
|
||||||
|
else:
|
||||||
|
self.nbytes = int(np.product(self.ne)) * 4
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unhandled data type '{self.dtype}'")
|
||||||
|
|
||||||
|
def load(self, data, offset):
|
||||||
|
nd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
namelen = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
dtype = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
|
||||||
|
assert(nd == len(self.ne))
|
||||||
|
ne = []
|
||||||
|
for d in range(nd):
|
||||||
|
n = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
ne.append(n)
|
||||||
|
|
||||||
|
if tuple(ne) != tuple(self.ne):
|
||||||
|
raise ValueError(f"Tensor.load: Expected number of elements {str(self.ne)} does not match what is read from file {str(ne)}")
|
||||||
|
|
||||||
|
if self.dtype == 'f':
|
||||||
|
assert(dtype == 0)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unhandled data type '{self.dtype}'")
|
||||||
|
|
||||||
|
self.name = bytes(data[offset:offset+namelen]); offset += namelen
|
||||||
|
# 32-byte alignment
|
||||||
|
offset += (0 - offset) & 31
|
||||||
|
self.data = data[offset:offset+self.nbytes]
|
||||||
|
offset += self.nbytes
|
||||||
|
return offset
|
||||||
|
|
||||||
|
def max_storage_size(self):
|
||||||
|
result = 0
|
||||||
|
result += 4 # nd
|
||||||
|
result += 4 # namelen
|
||||||
|
result += 4 # dtype
|
||||||
|
result += len(self.ne)*8 # ne
|
||||||
|
result += 48 # name (maximum as of commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9)
|
||||||
|
result += 31 # 32-byte alignment
|
||||||
|
result += self.nbytes
|
||||||
|
return result
|
||||||
|
|
||||||
|
def save_gguf(self, gguf_writer, name):
|
||||||
|
gguf_writer.add_tensor(
|
||||||
|
name=name,
|
||||||
|
tensor=self.data,
|
||||||
|
raw_shape=np.array(list(reversed(self.ne))),
|
||||||
|
raw_dtype=gguf.GGMLQuantizationType.F32)
|
||||||
|
|
||||||
|
class OptimizationContext:
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def load(self, data, offset):
|
||||||
|
self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]
|
||||||
|
offset += 4
|
||||||
|
|
||||||
|
if self.version != 1:
|
||||||
|
raise ValueError('Invalid version of optimization context in checkpoint file')
|
||||||
|
|
||||||
|
self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
|
||||||
|
self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
|
||||||
|
|
||||||
|
self.adam_m = Tensor('f', [self.nx])
|
||||||
|
self.adam_v = Tensor('f', [self.nx])
|
||||||
|
self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
|
||||||
|
|
||||||
|
self.lbfgs_x = Tensor('f', [self.nx])
|
||||||
|
self.lbfgs_xp = Tensor('f', [self.nx])
|
||||||
|
self.lbfgs_g = Tensor('f', [self.nx])
|
||||||
|
self.lbfgs_gp = Tensor('f', [self.nx])
|
||||||
|
self.lbfgs_d = Tensor('f', [self.nx])
|
||||||
|
self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
|
||||||
|
self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
|
||||||
|
self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
|
||||||
|
self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
|
||||||
|
self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
|
||||||
|
|
||||||
|
# forgot to save type in version 1:
|
||||||
|
# guess self.type from number of remaining bytes
|
||||||
|
size_type_0 = 12 + sum([t.max_storage_size() for t in
|
||||||
|
[self.adam_m, self.adam_v]
|
||||||
|
+([self.adam_pf] if (self.past > 0) else [])])
|
||||||
|
size_type_1 = 24 + sum([t.max_storage_size() for t in
|
||||||
|
[self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g,
|
||||||
|
self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf,
|
||||||
|
self.lbfgs_lmal, self.lbfgs_lmys,
|
||||||
|
self.lbfgs_lms, self.lbfgs_lmy]
|
||||||
|
+([self.lbfgs_pf] if (self.past > 0) else [])])
|
||||||
|
# due to alignment padding the size might not by exact
|
||||||
|
# but the difference in size for both types is significant,
|
||||||
|
# so we can just use whichever is closest
|
||||||
|
remaining = len(data) - offset
|
||||||
|
if abs(remaining - size_type_0) < abs(remaining - size_type_1):
|
||||||
|
self.type = 0
|
||||||
|
else:
|
||||||
|
self.type = 1
|
||||||
|
|
||||||
|
if self.type == 0:
|
||||||
|
offset = self.adam_m.load(data, offset)
|
||||||
|
offset = self.adam_v.load(data, offset)
|
||||||
|
offset = self.adam_pf.load(data,offset)
|
||||||
|
|
||||||
|
self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
|
||||||
|
elif self.type == 1:
|
||||||
|
offset = self.lbfgs_x.load(data, offset)
|
||||||
|
offset = self.lbfgs_xp.load(data, offset)
|
||||||
|
offset = self.lbfgs_g.load(data, offset)
|
||||||
|
offset = self.lbfgs_gp.load(data, offset)
|
||||||
|
offset = self.lbfgs_d.load(data, offset)
|
||||||
|
offset = self.lbfgs_pf.load(data, offset)
|
||||||
|
offset = self.lbfgs_lmal.load(data, offset)
|
||||||
|
offset = self.lbfgs_lmys.load(data, offset)
|
||||||
|
offset = self.lbfgs_lms.load(data, offset)
|
||||||
|
offset = self.lbfgs_lmy.load(data, offset)
|
||||||
|
|
||||||
|
self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Invalid optimizer type '{self.type}'")
|
||||||
|
|
||||||
|
return offset
|
||||||
|
|
||||||
|
def save_gguf(self, gguf_writer):
|
||||||
|
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_FILE_VERSION, 0)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, self.past)
|
||||||
|
gguf_writer.add_uint64(LLM_KV_OPTIMIZER_PARAMETER_COUNT, self.nx)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ITERATION_COUNT, self.iter)
|
||||||
|
gguf_writer.add_bool(LLM_KV_OPTIMIZER_JUST_INITIALIZED, self.just_initialized)
|
||||||
|
|
||||||
|
if self.type == 0:
|
||||||
|
gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM)
|
||||||
|
gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, self.adam_fx_best)
|
||||||
|
gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, self.adam_fx_prev)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, self.adam_n_no_improvement)
|
||||||
|
|
||||||
|
self.adam_m.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS)
|
||||||
|
self.adam_v.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS)
|
||||||
|
if self.past > 0:
|
||||||
|
self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES)
|
||||||
|
|
||||||
|
elif self.type == 1:
|
||||||
|
gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m)
|
||||||
|
gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best)
|
||||||
|
gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step)
|
||||||
|
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j)
|
||||||
|
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k)
|
||||||
|
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement)
|
||||||
|
|
||||||
|
self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS)
|
||||||
|
self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS)
|
||||||
|
self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS)
|
||||||
|
self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS)
|
||||||
|
self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION)
|
||||||
|
if self.past > 0:
|
||||||
|
self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES)
|
||||||
|
self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA)
|
||||||
|
self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS)
|
||||||
|
self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S)
|
||||||
|
self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y)
|
||||||
|
else:
|
||||||
|
raise ValueError('Unknown optimizer type')
|
||||||
|
|
||||||
|
class LoraParams:
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def load(self, data, offset):
|
||||||
|
self.n_rank_attention_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.n_rank_wq = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.n_rank_wk = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.n_rank_wv = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.n_rank_wo = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.n_rank_ffn_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.n_rank_w1 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.n_rank_w2 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.n_rank_w3 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.n_rank_tok_embeddings = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.n_rank_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.n_rank_output = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
return offset
|
||||||
|
|
||||||
|
def save_gguf(self, gguf_writer):
|
||||||
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD, self.n_rank_tok_embeddings)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM, self.n_rank_norm)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_OUTPUT, self.n_rank_output)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_NORM, self.n_rank_attention_norm)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_Q, self.n_rank_wq)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_K, self.n_rank_wk)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_V, self.n_rank_wv)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_OUT, self.n_rank_wo)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_NORM, self.n_rank_ffn_norm)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_GATE, self.n_rank_w1)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_DOWN, self.n_rank_w2)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_UP, self.n_rank_w3)
|
||||||
|
|
||||||
|
class ModelParams:
|
||||||
|
def __init__(self, n_ff = None):
|
||||||
|
self.n_ff = n_ff
|
||||||
|
|
||||||
|
def load(self, data, offset):
|
||||||
|
self.n_vocab = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.n_embd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.n_mult = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.n_head = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.n_layer = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.n_rot = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
return offset
|
||||||
|
|
||||||
|
def get_n_ff(self):
|
||||||
|
if self.n_ff is None:
|
||||||
|
# struct my_llama_model::get_n_ff in train-text-from-scratch.cpp commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9
|
||||||
|
return ((2*(4*self.n_embd)//3 + self.n_mult - 1)//self.n_mult)*self.n_mult
|
||||||
|
else:
|
||||||
|
return self.n_ff
|
||||||
|
|
||||||
|
def save_gguf(self, gguf_writer):
|
||||||
|
# self.n_vocab not saved
|
||||||
|
gguf_writer.add_embedding_length(self.n_embd)
|
||||||
|
gguf_writer.add_head_count(self.n_head)
|
||||||
|
gguf_writer.add_block_count(self.n_layer)
|
||||||
|
gguf_writer.add_rope_dimension_count(self.n_rot)
|
||||||
|
gguf_writer.add_feed_forward_length(self.get_n_ff())
|
||||||
|
|
||||||
|
def tensor_name(key, bid=None, suffix=".weight"):
|
||||||
|
return gguf.TENSOR_NAMES[key].format(bid=bid) + suffix
|
||||||
|
|
||||||
|
class Layer:
|
||||||
|
def __init__(self, params, lora_params, bid):
|
||||||
|
self.bid = bid
|
||||||
|
self.att_norm_a = Tensor('f', [lora_params.n_rank_attention_norm, params.n_embd])
|
||||||
|
self.att_norm_b = Tensor('f', [lora_params.n_rank_attention_norm, 1])
|
||||||
|
self.wq_a = Tensor('f', [lora_params.n_rank_wq, params.n_embd])
|
||||||
|
self.wq_b = Tensor('f', [lora_params.n_rank_wq, params.n_embd])
|
||||||
|
self.wk_a = Tensor('f', [lora_params.n_rank_wk, params.n_embd])
|
||||||
|
self.wk_b = Tensor('f', [lora_params.n_rank_wk, params.n_embd])
|
||||||
|
self.wv_a = Tensor('f', [lora_params.n_rank_wv, params.n_embd])
|
||||||
|
self.wv_b = Tensor('f', [lora_params.n_rank_wv, params.n_embd])
|
||||||
|
self.wo_a = Tensor('f', [lora_params.n_rank_wo, params.n_embd])
|
||||||
|
self.wo_b = Tensor('f', [lora_params.n_rank_wo, params.n_embd])
|
||||||
|
self.ffn_norm_a = Tensor('f', [lora_params.n_rank_ffn_norm, params.n_embd])
|
||||||
|
self.ffn_norm_b = Tensor('f', [lora_params.n_rank_ffn_norm, 1])
|
||||||
|
self.w1_a = Tensor('f', [lora_params.n_rank_w1, params.n_embd])
|
||||||
|
self.w1_b = Tensor('f', [lora_params.n_rank_w1, params.get_n_ff()])
|
||||||
|
self.w2_a = Tensor('f', [lora_params.n_rank_w2, params.get_n_ff()])
|
||||||
|
self.w2_b = Tensor('f', [lora_params.n_rank_w2, params.n_embd])
|
||||||
|
self.w3_a = Tensor('f', [lora_params.n_rank_w3, params.n_embd])
|
||||||
|
self.w3_b = Tensor('f', [lora_params.n_rank_w3, params.get_n_ff()])
|
||||||
|
|
||||||
|
def load(self, data, offset):
|
||||||
|
offset = self.att_norm_a.load(data, offset)
|
||||||
|
offset = self.att_norm_b.load(data, offset)
|
||||||
|
offset = self.wq_a.load(data, offset)
|
||||||
|
offset = self.wq_b.load(data, offset)
|
||||||
|
offset = self.wk_a.load(data, offset)
|
||||||
|
offset = self.wk_b.load(data, offset)
|
||||||
|
offset = self.wv_a.load(data, offset)
|
||||||
|
offset = self.wv_b.load(data, offset)
|
||||||
|
offset = self.wo_a.load(data, offset)
|
||||||
|
offset = self.wo_b.load(data, offset)
|
||||||
|
offset = self.ffn_norm_a.load(data, offset)
|
||||||
|
offset = self.ffn_norm_b.load(data, offset)
|
||||||
|
offset = self.w1_a.load(data, offset)
|
||||||
|
offset = self.w1_b.load(data, offset)
|
||||||
|
offset = self.w2_a.load(data, offset)
|
||||||
|
offset = self.w2_b.load(data, offset)
|
||||||
|
offset = self.w3_a.load(data, offset)
|
||||||
|
offset = self.w3_b.load(data, offset)
|
||||||
|
return offset
|
||||||
|
|
||||||
|
def save_gguf(self, gguf_writer):
|
||||||
|
self.att_norm_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid, ".weight.lora_a"))
|
||||||
|
self.att_norm_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid, ".weight.lora_b"))
|
||||||
|
self.wq_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid, ".weight.lora_a"))
|
||||||
|
self.wq_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid, ".weight.lora_b"))
|
||||||
|
self.wk_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid, ".weight.lora_a"))
|
||||||
|
self.wk_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid, ".weight.lora_b"))
|
||||||
|
self.wv_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid, ".weight.lora_a"))
|
||||||
|
self.wv_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid, ".weight.lora_b"))
|
||||||
|
self.wo_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid, ".weight.lora_a"))
|
||||||
|
self.wo_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid, ".weight.lora_b"))
|
||||||
|
self.ffn_norm_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid, ".weight.lora_a"))
|
||||||
|
self.ffn_norm_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid, ".weight.lora_b"))
|
||||||
|
self.w1_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid, ".weight.lora_a"))
|
||||||
|
self.w1_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid, ".weight.lora_b"))
|
||||||
|
self.w2_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid, ".weight.lora_a"))
|
||||||
|
self.w2_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid, ".weight.lora_b"))
|
||||||
|
self.w3_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid, ".weight.lora_a"))
|
||||||
|
self.w3_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid, ".weight.lora_b"))
|
||||||
|
|
||||||
|
class LoraModel:
|
||||||
|
def __init__(self, n_ff = None):
|
||||||
|
self.params = ModelParams(n_ff = n_ff)
|
||||||
|
self.lora_params = LoraParams()
|
||||||
|
self.layers = []
|
||||||
|
|
||||||
|
def load(self, data, offset):
|
||||||
|
offset = self.params.load(data, offset)
|
||||||
|
offset = self.lora_params.load(data, offset)
|
||||||
|
|
||||||
|
self.tok_embd_a = Tensor('f', [self.lora_params.n_rank_tok_embeddings, self.params.n_embd])
|
||||||
|
self.tok_embd_b = Tensor('f', [self.lora_params.n_rank_tok_embeddings, self.params.n_vocab])
|
||||||
|
self.norm_a = Tensor('f', [self.lora_params.n_rank_norm, self.params.n_embd])
|
||||||
|
self.norm_b = Tensor('f', [self.lora_params.n_rank_norm, 1])
|
||||||
|
self.output_a = Tensor('f', [self.lora_params.n_rank_output, self.params.n_embd])
|
||||||
|
self.output_b = Tensor('f', [self.lora_params.n_rank_output, self.params.n_vocab])
|
||||||
|
|
||||||
|
offset = self.tok_embd_a.load(data, offset)
|
||||||
|
offset = self.tok_embd_b.load(data, offset)
|
||||||
|
offset = self.norm_a.load(data, offset)
|
||||||
|
offset = self.norm_b.load(data, offset)
|
||||||
|
offset = self.output_a.load(data, offset)
|
||||||
|
offset = self.output_b.load(data, offset)
|
||||||
|
|
||||||
|
self.layers.clear()
|
||||||
|
for bid in range(self.params.n_layer):
|
||||||
|
layer = Layer(self.params, self.lora_params, bid)
|
||||||
|
offset = layer.load(data, offset)
|
||||||
|
self.layers.append(layer)
|
||||||
|
|
||||||
|
return offset
|
||||||
|
|
||||||
|
def save_gguf(self, gguf_writer):
|
||||||
|
self.params.save_gguf(gguf_writer)
|
||||||
|
self.lora_params.save_gguf(gguf_writer)
|
||||||
|
|
||||||
|
self.tok_embd_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD, suffix=".weight.lora_a"))
|
||||||
|
self.tok_embd_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD, suffix=".weight.lora_b"))
|
||||||
|
self.norm_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM, suffix=".weight.lora_a"))
|
||||||
|
self.norm_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM, suffix=".weight.lora_b"))
|
||||||
|
self.output_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT, suffix=".weight.lora_a"))
|
||||||
|
self.output_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT, suffix=".weight.lora_b"))
|
||||||
|
|
||||||
|
for layer in self.layers:
|
||||||
|
layer.save_gguf(gguf_writer)
|
||||||
|
|
||||||
|
class LoraCheckpoint:
|
||||||
|
def __init__(self, n_ff = None):
|
||||||
|
self.model = LoraModel(n_ff = n_ff)
|
||||||
|
self.opt_ctx = OptimizationContext()
|
||||||
|
|
||||||
|
def load(self, data, offset):
|
||||||
|
magic = bytes(reversed(data[offset:offset + 4])); offset += 4
|
||||||
|
if magic != b'ggcl':
|
||||||
|
raise ValueError(f"File header magic indicates, that this is no finetune-lora checkpoint file. Expected 'ggcl', Got '{str(magic)}'")
|
||||||
|
|
||||||
|
self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
if self.version != 0:
|
||||||
|
raise ValueError('Invalid version of checkpoint file')
|
||||||
|
|
||||||
|
self.train_its = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.train_samples = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
self.train_tokens = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||||
|
|
||||||
|
offset = self.model.load(data, offset)
|
||||||
|
offset = self.opt_ctx.load(data, offset)
|
||||||
|
|
||||||
|
return offset
|
||||||
|
|
||||||
|
def save_gguf(self, gguf_writer):
|
||||||
|
gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
|
||||||
|
gguf_writer.add_layer_norm_rms_eps(1e-5)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0)
|
||||||
|
gguf_writer.add_string(LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_FINETUNE_LORA)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples)
|
||||||
|
gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens)
|
||||||
|
self.model.save_gguf(gguf_writer)
|
||||||
|
self.opt_ctx.save_gguf(gguf_writer)
|
||||||
|
|
||||||
|
def handle_args():
|
||||||
|
parser = argparse.ArgumentParser(description = 'Convert finetune checkpoints to GGUF')
|
||||||
|
parser.add_argument('--input', '-i', type = Path, help = 'Input finetune checkpoint filename', required=True)
|
||||||
|
parser.add_argument('--output', '-o', type = Path, help = 'Output GGUF filename', required=True)
|
||||||
|
parser.add_argument('--ff', type = int, help = "Feedforward size, if not provided compute from n_mult. Provide this if you get 'ValueError: Tensor.load: Expected number of elements does not match what is read from file'", required=False)
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
def main():
|
||||||
|
cfg = handle_args()
|
||||||
|
print(cfg)
|
||||||
|
data = np.memmap(cfg.input, mode = 'r')
|
||||||
|
chk = LoraCheckpoint(n_ff = cfg.ff)
|
||||||
|
offset = 0
|
||||||
|
offset = chk.load(data, offset)
|
||||||
|
# we should have read all available data
|
||||||
|
assert(offset == len(data))
|
||||||
|
|
||||||
|
gguf_writer = gguf.GGUFWriter(cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
|
||||||
|
chk.save_gguf(gguf_writer)
|
||||||
|
print(" gguf: write header")
|
||||||
|
gguf_writer.write_header_to_file()
|
||||||
|
print(" gguf: write metadata")
|
||||||
|
gguf_writer.write_kv_data_to_file()
|
||||||
|
print(" gguf: write tensors")
|
||||||
|
gguf_writer.write_tensors_to_file()
|
||||||
|
gguf_writer.close()
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
1940
examples/finetune/finetune.cpp
Normal file
1940
examples/finetune/finetune.cpp
Normal file
File diff suppressed because it is too large
Load Diff
8
examples/infill/CMakeLists.txt
Normal file
8
examples/infill/CMakeLists.txt
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
set(TARGET infill)
|
||||||
|
add_executable(${TARGET} infill.cpp)
|
||||||
|
install(TARGETS ${TARGET} RUNTIME)
|
||||||
|
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||||
|
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||||
|
if(TARGET BUILD_INFO)
|
||||||
|
add_dependencies(${TARGET} BUILD_INFO)
|
||||||
|
endif()
|
41
examples/infill/README.md
Normal file
41
examples/infill/README.md
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
# llama.cpp/example/infill
|
||||||
|
|
||||||
|
This example shows how to use the infill mode with Code Llama models supporting infill mode.
|
||||||
|
Currently the 7B and 13B models support infill mode.
|
||||||
|
|
||||||
|
Infill supports most of the options available in the main example.
|
||||||
|
|
||||||
|
For further information have a look at the main README.md in llama.cpp/example/main/README.md
|
||||||
|
|
||||||
|
## Common Options
|
||||||
|
|
||||||
|
In this section, we cover the most commonly used options for running the `infill` program with the LLaMA models:
|
||||||
|
|
||||||
|
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`).
|
||||||
|
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
|
||||||
|
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.
|
||||||
|
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference.
|
||||||
|
|
||||||
|
## Input Prompts
|
||||||
|
|
||||||
|
The `infill` program provides several ways to interact with the LLaMA models using input prompts:
|
||||||
|
|
||||||
|
- `--in-prefix PROMPT_BEFORE_CURSOR`: Provide the prefix directly as a command-line option.
|
||||||
|
- `--in-suffix PROMPT_AFTER_CURSOR`: Provide the suffix directly as a command-line option.
|
||||||
|
- `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.)
|
||||||
|
|
||||||
|
## Interaction
|
||||||
|
|
||||||
|
The `infill` program offers a seamless way to interact with LLaMA models, allowing users to receive real-time infill suggestions. The interactive mode can be triggered using `--interactive`, and `--interactive-first`
|
||||||
|
|
||||||
|
### Interaction Options
|
||||||
|
|
||||||
|
- `-i, --interactive`: Run the program in interactive mode, allowing users to get real time code suggestions from model.
|
||||||
|
- `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation.
|
||||||
|
- `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text.
|
||||||
|
|
||||||
|
### Example
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf -c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 --in-prefix "def helloworld():\n print(\"hell" --in-suffix "\n print(\"goodbye world\")\n "
|
||||||
|
```
|
769
examples/infill/infill.cpp
Normal file
769
examples/infill/infill.cpp
Normal file
@ -0,0 +1,769 @@
|
|||||||
|
#include "common.h"
|
||||||
|
|
||||||
|
#include "console.h"
|
||||||
|
#include "llama.h"
|
||||||
|
#include "build-info.h"
|
||||||
|
#include "grammar-parser.h"
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
#include <cinttypes>
|
||||||
|
#include <cmath>
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstring>
|
||||||
|
#include <ctime>
|
||||||
|
#include <fstream>
|
||||||
|
#include <iostream>
|
||||||
|
#include <sstream>
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||||
|
#include <signal.h>
|
||||||
|
#include <unistd.h>
|
||||||
|
#elif defined (_WIN32)
|
||||||
|
#define WIN32_LEAN_AND_MEAN
|
||||||
|
#ifndef NOMINMAX
|
||||||
|
#define NOMINMAX
|
||||||
|
#endif
|
||||||
|
#include <windows.h>
|
||||||
|
#include <signal.h>
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if defined(_MSC_VER)
|
||||||
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
|
#endif
|
||||||
|
|
||||||
|
static llama_context ** g_ctx;
|
||||||
|
static llama_model ** g_model;
|
||||||
|
static gpt_params * g_params;
|
||||||
|
static std::vector<llama_token> * g_input_tokens;
|
||||||
|
static std::ostringstream * g_output_ss;
|
||||||
|
static std::vector<llama_token> * g_output_tokens;
|
||||||
|
static bool is_interacting = false;
|
||||||
|
|
||||||
|
|
||||||
|
static void write_logfile(
|
||||||
|
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
||||||
|
const std::vector<llama_token> & input_tokens, const std::string & output,
|
||||||
|
const std::vector<llama_token> & output_tokens
|
||||||
|
) {
|
||||||
|
if (params.logdir.empty()) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const std::string timestamp = get_sortable_timestamp();
|
||||||
|
|
||||||
|
const bool success = create_directory_with_parents(params.logdir);
|
||||||
|
if (!success) {
|
||||||
|
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
||||||
|
__func__, params.logdir.c_str());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const std::string logfile_path = params.logdir + timestamp + ".yml";
|
||||||
|
FILE * logfile = fopen(logfile_path.c_str(), "w");
|
||||||
|
|
||||||
|
if (logfile == NULL) {
|
||||||
|
fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(logfile, "binary: infill\n");
|
||||||
|
char model_desc[128];
|
||||||
|
llama_model_desc(model, model_desc, sizeof(model_desc));
|
||||||
|
dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
|
||||||
|
|
||||||
|
fprintf(logfile, "\n");
|
||||||
|
fprintf(logfile, "######################\n");
|
||||||
|
fprintf(logfile, "# Generation Results #\n");
|
||||||
|
fprintf(logfile, "######################\n");
|
||||||
|
fprintf(logfile, "\n");
|
||||||
|
|
||||||
|
dump_string_yaml_multiline(logfile, "output", output.c_str());
|
||||||
|
dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
|
||||||
|
|
||||||
|
llama_dump_timing_info_yaml(logfile, ctx);
|
||||||
|
fclose(logfile);
|
||||||
|
}
|
||||||
|
|
||||||
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||||
|
static void sigint_handler(int signo) {
|
||||||
|
if (signo == SIGINT) {
|
||||||
|
if (!is_interacting) {
|
||||||
|
is_interacting = true;
|
||||||
|
} else {
|
||||||
|
console::cleanup();
|
||||||
|
printf("\n");
|
||||||
|
llama_print_timings(*g_ctx);
|
||||||
|
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
||||||
|
_exit(130);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
int main(int argc, char ** argv) {
|
||||||
|
gpt_params params;
|
||||||
|
g_params = ¶ms;
|
||||||
|
|
||||||
|
if (!gpt_params_parse(argc, argv, params)) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifndef LOG_DISABLE_LOGS
|
||||||
|
log_set_target(log_filename_generator("infill", "log"));
|
||||||
|
LOG_TEE("Log start\n");
|
||||||
|
log_dump_cmdline(argc, argv);
|
||||||
|
#endif // LOG_DISABLE_LOGS
|
||||||
|
|
||||||
|
console::init(params.simple_io, params.use_color);
|
||||||
|
atexit([]() { console::cleanup(); });
|
||||||
|
|
||||||
|
if (params.logits_all) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.embedding) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.n_ctx != 0 && params.n_ctx < 8) {
|
||||||
|
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
||||||
|
params.n_ctx = 8;
|
||||||
|
}
|
||||||
|
if (params.instruct) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: please use the 'main' tool for instruct mode\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
if (!params.antiprompt.empty()) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: please use the 'main' tool for antiprompt mode\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
if (params.random_prompt) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: please use the 'main' tool for random prompt mode\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
if (!params.path_prompt_cache.empty()) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: infill does not support prompt caching\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.rope_freq_base != 0.0) {
|
||||||
|
LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.rope_freq_scale != 0.0) {
|
||||||
|
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||||
|
LOG_TEE("%s: built with %s for %s\n", __func__, BUILD_COMPILER, BUILD_TARGET);
|
||||||
|
|
||||||
|
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||||
|
params.seed = time(NULL);
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG_TEE("%s: seed = %u\n", __func__, params.seed);
|
||||||
|
|
||||||
|
std::mt19937 rng(params.seed);
|
||||||
|
|
||||||
|
LOG("%s: llama backend init\n", __func__);
|
||||||
|
llama_backend_init(params.numa);
|
||||||
|
|
||||||
|
llama_model * model;
|
||||||
|
llama_context * ctx;
|
||||||
|
llama_context * ctx_guidance = NULL;
|
||||||
|
g_model = &model;
|
||||||
|
g_ctx = &ctx;
|
||||||
|
|
||||||
|
// load the model and apply lora adapter, if any
|
||||||
|
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||||
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||||
|
if (params.cfg_scale > 1.f) {
|
||||||
|
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
|
||||||
|
ctx_guidance = llama_new_context_with_model(model, lparams);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (model == NULL) {
|
||||||
|
LOG_TEE("%s: error: unable to load model\n", __func__);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int n_ctx_train = llama_n_ctx_train(model);
|
||||||
|
const int n_ctx = llama_n_ctx(ctx);
|
||||||
|
LOG("n_ctx: %d\n", n_ctx);
|
||||||
|
|
||||||
|
if (n_ctx > n_ctx_train) {
|
||||||
|
LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||||
|
__func__, n_ctx_train, n_ctx);
|
||||||
|
}
|
||||||
|
|
||||||
|
// print system information
|
||||||
|
{
|
||||||
|
LOG_TEE("\n");
|
||||||
|
LOG_TEE("%s\n", get_system_info(params).c_str());
|
||||||
|
}
|
||||||
|
const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM;
|
||||||
|
LOG("add_bos: %d\n", add_bos);
|
||||||
|
|
||||||
|
std::vector<llama_token> embd_inp;
|
||||||
|
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, add_bos);
|
||||||
|
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, add_bos);
|
||||||
|
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(ctx));
|
||||||
|
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(ctx));
|
||||||
|
embd_inp = inp_pfx;
|
||||||
|
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
||||||
|
embd_inp.push_back(llama_token_middle(ctx));
|
||||||
|
|
||||||
|
LOG("prefix: \"%s\"\n", log_tostr(params.input_prefix));
|
||||||
|
LOG("suffix: \"%s\"\n", log_tostr(params.input_suffix));
|
||||||
|
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
|
||||||
|
|
||||||
|
// Should not run without any tokens
|
||||||
|
if (embd_inp.empty()) {
|
||||||
|
embd_inp.push_back(llama_token_bos(ctx));
|
||||||
|
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Tokenize negative prompt
|
||||||
|
std::vector<llama_token> guidance_inp;
|
||||||
|
int guidance_offset = 0;
|
||||||
|
int original_prompt_len = 0;
|
||||||
|
if (ctx_guidance) {
|
||||||
|
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(params.cfg_negative_prompt));
|
||||||
|
|
||||||
|
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos);
|
||||||
|
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp));
|
||||||
|
|
||||||
|
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||||
|
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp));
|
||||||
|
|
||||||
|
original_prompt_len = original_inp.size();
|
||||||
|
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
|
||||||
|
LOG("original_prompt_len: %s", log_tostr(original_prompt_len));
|
||||||
|
LOG("guidance_offset: %s", log_tostr(guidance_offset));
|
||||||
|
}
|
||||||
|
|
||||||
|
if ((int) embd_inp.size() > n_ctx - 4) {
|
||||||
|
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
// number of tokens to keep when resetting context
|
||||||
|
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
|
||||||
|
params.n_keep = (int)embd_inp.size();
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx));
|
||||||
|
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx));
|
||||||
|
|
||||||
|
|
||||||
|
// enable interactive mode if interactive start is specified
|
||||||
|
if (params.interactive_first) {
|
||||||
|
params.interactive = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.verbose_prompt) {
|
||||||
|
LOG_TEE("\n");
|
||||||
|
LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||||
|
LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||||
|
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||||
|
LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
if (ctx_guidance) {
|
||||||
|
LOG_TEE("\n");
|
||||||
|
LOG_TEE("%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
|
||||||
|
LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
|
||||||
|
for (int i = 0; i < (int) guidance_inp.size(); i++) {
|
||||||
|
LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.n_keep > 0) {
|
||||||
|
LOG_TEE("%s: static prompt based on n_keep: '", __func__);
|
||||||
|
for (int i = 0; i < params.n_keep; i++) {
|
||||||
|
LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||||
|
}
|
||||||
|
LOG_TEE("'\n");
|
||||||
|
}
|
||||||
|
LOG_TEE("\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.interactive) {
|
||||||
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||||
|
struct sigaction sigint_action;
|
||||||
|
sigint_action.sa_handler = sigint_handler;
|
||||||
|
sigemptyset (&sigint_action.sa_mask);
|
||||||
|
sigint_action.sa_flags = 0;
|
||||||
|
sigaction(SIGINT, &sigint_action, NULL);
|
||||||
|
#elif defined (_WIN32)
|
||||||
|
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
|
||||||
|
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
|
||||||
|
};
|
||||||
|
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
LOG_TEE("%s: interactive mode on.\n", __func__);
|
||||||
|
|
||||||
|
if (params.input_prefix_bos) {
|
||||||
|
LOG_TEE("Input prefix with BOS\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!params.input_prefix.empty()) {
|
||||||
|
LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!params.input_suffix.empty()) {
|
||||||
|
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
|
||||||
|
params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
|
||||||
|
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||||
|
LOG_TEE("\n\n");
|
||||||
|
|
||||||
|
struct llama_grammar * grammar = NULL;
|
||||||
|
grammar_parser::parse_state parsed_grammar;
|
||||||
|
|
||||||
|
if (!params.grammar.empty()) {
|
||||||
|
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||||
|
// will be empty (default) if there are parse errors
|
||||||
|
if (parsed_grammar.rules.empty()) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
LOG_TEE("%s: grammar:\n", __func__);
|
||||||
|
grammar_parser::print_grammar(stderr, parsed_grammar);
|
||||||
|
LOG_TEE("\n");
|
||||||
|
|
||||||
|
{
|
||||||
|
auto it = params.logit_bias.find(llama_token_eos(ctx));
|
||||||
|
if (it != params.logit_bias.end() && it->second == -INFINITY) {
|
||||||
|
LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||||
|
grammar = llama_grammar_init(
|
||||||
|
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: replace with ring-buffer
|
||||||
|
std::vector<llama_token> last_tokens(n_ctx);
|
||||||
|
std::fill(last_tokens.begin(), last_tokens.end(), 0);
|
||||||
|
LOG_TEE("\n##### Infill mode #####\n\n");
|
||||||
|
if (params.infill) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("no need to specify '--infill', always running infill\n");
|
||||||
|
printf("************\n\n");
|
||||||
|
}
|
||||||
|
if (params.interactive) {
|
||||||
|
const char *control_message;
|
||||||
|
if (params.multiline_input) {
|
||||||
|
control_message = " - To return control to LLaMa, end your input with '\\'.\n"
|
||||||
|
" - To return control without starting a new line, end your input with '/'.\n";
|
||||||
|
} else {
|
||||||
|
control_message = " - Press Return to return control to LLaMa.\n"
|
||||||
|
" - To return control without starting a new line, end your input with '/'.\n"
|
||||||
|
" - If you want to submit another line, end your input with '\\'.\n";
|
||||||
|
}
|
||||||
|
LOG_TEE("== Running in interactive mode. ==\n");
|
||||||
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||||
|
LOG_TEE( " - Press Ctrl+C to interject at any time.\n");
|
||||||
|
#endif
|
||||||
|
LOG_TEE( "%s\n", control_message);
|
||||||
|
|
||||||
|
is_interacting = params.interactive_first;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool input_echo = true;
|
||||||
|
|
||||||
|
int n_past = 0;
|
||||||
|
int n_remain = params.n_predict;
|
||||||
|
int n_consumed = 0;
|
||||||
|
int n_past_guidance = 0;
|
||||||
|
|
||||||
|
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
|
||||||
|
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
|
||||||
|
std::ostringstream output_ss; g_output_ss = &output_ss;
|
||||||
|
|
||||||
|
// the first thing we will do is to output the prompt, so set color accordingly
|
||||||
|
console::set_display(console::prompt);
|
||||||
|
|
||||||
|
std::vector<llama_token> embd;
|
||||||
|
std::vector<llama_token> embd_guidance;
|
||||||
|
|
||||||
|
const int n_vocab = llama_n_vocab(model);
|
||||||
|
|
||||||
|
std::vector<llama_token_data> candidates;
|
||||||
|
candidates.reserve(n_vocab);
|
||||||
|
|
||||||
|
while (n_remain != 0 || params.interactive) {
|
||||||
|
// predict
|
||||||
|
if (!embd.empty()) {
|
||||||
|
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
|
||||||
|
// --prompt or --file which uses the same value.
|
||||||
|
int max_embd_size = n_ctx - 4;
|
||||||
|
|
||||||
|
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
|
||||||
|
if ((int) embd.size() > max_embd_size) {
|
||||||
|
const int skipped_tokens = (int) embd.size() - max_embd_size;
|
||||||
|
embd.resize(max_embd_size);
|
||||||
|
|
||||||
|
console::set_display(console::error);
|
||||||
|
printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
|
||||||
|
console::set_display(console::reset);
|
||||||
|
fflush(stdout);
|
||||||
|
}
|
||||||
|
|
||||||
|
// infinite text generation via context swapping
|
||||||
|
// if we run out of context:
|
||||||
|
// - take the n_keep first tokens from the original prompt (via n_past)
|
||||||
|
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
||||||
|
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
|
||||||
|
if (params.n_predict == -2) {
|
||||||
|
LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int n_left = n_past - params.n_keep - 1;
|
||||||
|
const int n_discard = n_left/2;
|
||||||
|
|
||||||
|
LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||||
|
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||||
|
|
||||||
|
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
||||||
|
llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
||||||
|
|
||||||
|
n_past -= n_discard;
|
||||||
|
|
||||||
|
if (ctx_guidance) {
|
||||||
|
n_past_guidance -= n_discard;
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
|
||||||
|
|
||||||
|
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
// evaluate tokens in batches
|
||||||
|
// embd is typically prepared beforehand to fit within a batch, but not always
|
||||||
|
|
||||||
|
if (ctx_guidance) {
|
||||||
|
int input_size = 0;
|
||||||
|
llama_token * input_buf = NULL;
|
||||||
|
|
||||||
|
if (n_past_guidance < (int) guidance_inp.size()) {
|
||||||
|
// Guidance context should have the same data with these modifications:
|
||||||
|
//
|
||||||
|
// * Replace the initial prompt
|
||||||
|
// * Shift everything by guidance_offset
|
||||||
|
embd_guidance = guidance_inp;
|
||||||
|
if (embd.begin() + original_prompt_len < embd.end()) {
|
||||||
|
embd_guidance.insert(
|
||||||
|
embd_guidance.end(),
|
||||||
|
embd.begin() + original_prompt_len,
|
||||||
|
embd.end()
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
input_buf = embd_guidance.data();
|
||||||
|
input_size = embd_guidance.size();
|
||||||
|
|
||||||
|
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance));
|
||||||
|
} else {
|
||||||
|
input_buf = embd.data();
|
||||||
|
input_size = embd.size();
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < input_size; i += params.n_batch) {
|
||||||
|
int n_eval = std::min(input_size - i, params.n_batch);
|
||||||
|
if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) {
|
||||||
|
LOG_TEE("%s : failed to eval\n", __func__);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
n_past_guidance += n_eval;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
|
||||||
|
int n_eval = (int) embd.size() - i;
|
||||||
|
if (n_eval > params.n_batch) {
|
||||||
|
n_eval = params.n_batch;
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
||||||
|
|
||||||
|
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
||||||
|
LOG_TEE("%s : failed to eval\n", __func__);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
n_past += n_eval;
|
||||||
|
|
||||||
|
LOG("n_past = %d\n", n_past);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
embd.clear();
|
||||||
|
embd_guidance.clear();
|
||||||
|
|
||||||
|
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||||
|
|
||||||
|
const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates);
|
||||||
|
|
||||||
|
last_tokens.erase(last_tokens.begin());
|
||||||
|
last_tokens.push_back(id);
|
||||||
|
|
||||||
|
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens));
|
||||||
|
|
||||||
|
embd.push_back(id);
|
||||||
|
|
||||||
|
// echo this to console
|
||||||
|
input_echo = true;
|
||||||
|
|
||||||
|
// decrement remaining sampling budget
|
||||||
|
--n_remain;
|
||||||
|
|
||||||
|
LOG("n_remain: %d\n", n_remain);
|
||||||
|
} else {
|
||||||
|
// some user input remains from prompt or interaction, forward it to processing
|
||||||
|
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||||
|
while ((int) embd_inp.size() > n_consumed) {
|
||||||
|
embd.push_back(embd_inp[n_consumed]);
|
||||||
|
last_tokens.erase(last_tokens.begin());
|
||||||
|
last_tokens.push_back(embd_inp[n_consumed]);
|
||||||
|
++n_consumed;
|
||||||
|
if ((int) embd.size() >= params.n_batch) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// display text
|
||||||
|
if (input_echo) {
|
||||||
|
for (auto id : embd) {
|
||||||
|
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||||
|
printf("%s", token_str.c_str());
|
||||||
|
|
||||||
|
if (embd.size() > 1) {
|
||||||
|
input_tokens.push_back(id);
|
||||||
|
} else {
|
||||||
|
output_tokens.push_back(id);
|
||||||
|
output_ss << token_str;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fflush(stdout);
|
||||||
|
}
|
||||||
|
// reset color to default if we there is no pending user input
|
||||||
|
if (input_echo && (int) embd_inp.size() == n_consumed) {
|
||||||
|
console::set_display(console::reset);
|
||||||
|
}
|
||||||
|
|
||||||
|
// if not currently processing queued inputs;
|
||||||
|
if ((int) embd_inp.size() <= n_consumed) {
|
||||||
|
|
||||||
|
// deal with eot token in infill mode
|
||||||
|
if ((last_tokens.back() == llama_token_eot(ctx) || is_interacting) && params.interactive){
|
||||||
|
if(is_interacting && !params.interactive_first) {
|
||||||
|
// print an eot token
|
||||||
|
printf("%s", llama_token_to_piece(ctx, llama_token_eot(ctx)).c_str());
|
||||||
|
}
|
||||||
|
fflush(stdout);
|
||||||
|
printf("\n");
|
||||||
|
console::set_display(console::user_input);
|
||||||
|
std::string buffer;
|
||||||
|
std::string line;
|
||||||
|
bool another_line=true;
|
||||||
|
// set a new prefix via stdin
|
||||||
|
do {
|
||||||
|
another_line = console::readline(line, params.multiline_input);
|
||||||
|
buffer += line;
|
||||||
|
} while (another_line);
|
||||||
|
// check if we got an empty line, if so we use the old input
|
||||||
|
if(!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
|
||||||
|
params.input_prefix = buffer;
|
||||||
|
}
|
||||||
|
buffer.clear();
|
||||||
|
// set a new suffix via stdin
|
||||||
|
do {
|
||||||
|
another_line = console::readline(line, params.multiline_input);
|
||||||
|
buffer += line;
|
||||||
|
} while (another_line);
|
||||||
|
// check if we got an empty line
|
||||||
|
if(!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
|
||||||
|
params.input_suffix = buffer;
|
||||||
|
}
|
||||||
|
buffer.clear();
|
||||||
|
// done taking input, reset color
|
||||||
|
console::set_display(console::reset);
|
||||||
|
// tokenize new prefix and suffix
|
||||||
|
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, add_bos);
|
||||||
|
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, add_bos);
|
||||||
|
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(ctx));
|
||||||
|
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(ctx));
|
||||||
|
embd_inp = inp_pfx;
|
||||||
|
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
||||||
|
embd_inp.push_back(llama_token_middle(ctx));
|
||||||
|
embd.clear();
|
||||||
|
embd_guidance.clear();
|
||||||
|
n_remain = params.n_predict;
|
||||||
|
n_past = 0;
|
||||||
|
n_consumed = 0;
|
||||||
|
// LOG_TEE("took new input\n");
|
||||||
|
is_interacting = false;
|
||||||
|
}
|
||||||
|
// deal with end of text token in interactive mode
|
||||||
|
else if (last_tokens.back() == llama_token_eos(ctx)) {
|
||||||
|
LOG("found EOS token\n");
|
||||||
|
|
||||||
|
if (params.interactive) {
|
||||||
|
|
||||||
|
is_interacting = true;
|
||||||
|
printf("\n");
|
||||||
|
console::set_display(console::user_input);
|
||||||
|
fflush(stdout);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (n_past > 0 && is_interacting && !params.interactive) {
|
||||||
|
LOG("waiting for user input\n");
|
||||||
|
|
||||||
|
if (params.input_prefix_bos) {
|
||||||
|
LOG("adding input prefix BOS token\n");
|
||||||
|
embd_inp.push_back(llama_token_bos(ctx));
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string buffer;
|
||||||
|
if (!params.input_prefix.empty()) {
|
||||||
|
LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
|
||||||
|
buffer += params.input_prefix;
|
||||||
|
printf("%s", buffer.c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string line;
|
||||||
|
bool another_line = true;
|
||||||
|
do {
|
||||||
|
another_line = console::readline(line, params.multiline_input);
|
||||||
|
buffer += line;
|
||||||
|
} while (another_line);
|
||||||
|
|
||||||
|
// done taking input, reset color
|
||||||
|
console::set_display(console::reset);
|
||||||
|
|
||||||
|
// Add tokens to embd only if the input buffer is non-empty
|
||||||
|
// Entering a empty line lets the user pass control back
|
||||||
|
if (buffer.length() > 1) {
|
||||||
|
// append input suffix if any
|
||||||
|
if (!params.input_suffix.empty()) {
|
||||||
|
LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
|
||||||
|
buffer += params.input_suffix;
|
||||||
|
printf("%s", params.input_suffix.c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG("buffer: '%s'\n", buffer.c_str());
|
||||||
|
|
||||||
|
const size_t original_size = embd_inp.size();
|
||||||
|
|
||||||
|
const auto line_inp = ::llama_tokenize(ctx, buffer, false);
|
||||||
|
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp));
|
||||||
|
|
||||||
|
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
||||||
|
|
||||||
|
for (size_t i = original_size; i < embd_inp.size(); ++i) {
|
||||||
|
const llama_token token = embd_inp[i];
|
||||||
|
output_tokens.push_back(token);
|
||||||
|
output_ss << llama_token_to_piece(ctx, token);
|
||||||
|
}
|
||||||
|
|
||||||
|
n_remain -= line_inp.size();
|
||||||
|
LOG("n_remain: %d\n", n_remain);
|
||||||
|
} else {
|
||||||
|
LOG("empty line, passing control back\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
input_echo = false; // do not echo this again
|
||||||
|
}
|
||||||
|
|
||||||
|
if (n_past > 0) {
|
||||||
|
if (is_interacting) {
|
||||||
|
// reset grammar state if we're restarting generation
|
||||||
|
if (grammar != NULL) {
|
||||||
|
llama_grammar_free(grammar);
|
||||||
|
|
||||||
|
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||||
|
grammar = llama_grammar_init(
|
||||||
|
grammar_rules.data(), grammar_rules.size(),
|
||||||
|
parsed_grammar.symbol_ids.at("root"));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
is_interacting = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// end of text token
|
||||||
|
if (!embd.empty() && embd.back() == llama_token_eos(ctx) && !params.interactive) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
|
||||||
|
// We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
|
||||||
|
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
|
||||||
|
n_remain = params.n_predict;
|
||||||
|
is_interacting = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (!params.interactive && n_remain <= 0) {
|
||||||
|
printf("%s", llama_token_to_piece(ctx, llama_token_eot(ctx)).c_str());
|
||||||
|
fflush(stdout);
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_print_timings(ctx);
|
||||||
|
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
||||||
|
|
||||||
|
if (ctx_guidance) { llama_free(ctx_guidance); }
|
||||||
|
llama_free(ctx);
|
||||||
|
llama_free_model(model);
|
||||||
|
|
||||||
|
if (grammar != NULL) {
|
||||||
|
llama_grammar_free(grammar);
|
||||||
|
}
|
||||||
|
llama_backend_free();
|
||||||
|
|
||||||
|
#ifndef LOG_DISABLE_LOGS
|
||||||
|
LOG_TEE("Log end\n");
|
||||||
|
#endif // LOG_DISABLE_LOGS
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
This is pretty much just a straight port of aigoopy/llm-jeopardy/ with an added graph viewer.
|
This is pretty much just a straight port of aigoopy/llm-jeopardy/ with an added graph viewer.
|
||||||
|
|
||||||
The jeopardy test can be used to compare the fact knowledge of different models and compare them to eachother. This is in contrast to some other tests, which test logical deduction, creativity, writing skills, etc.
|
The jeopardy test can be used to compare the fact knowledge of different models and compare them to each other. This is in contrast to some other tests, which test logical deduction, creativity, writing skills, etc.
|
||||||
|
|
||||||
|
|
||||||
Step 1: Open jeopardy.sh and modify the following:
|
Step 1: Open jeopardy.sh and modify the following:
|
||||||
|
@ -132,7 +132,6 @@ struct cmd_params {
|
|||||||
std::vector<int> n_gpu_layers;
|
std::vector<int> n_gpu_layers;
|
||||||
std::vector<int> main_gpu;
|
std::vector<int> main_gpu;
|
||||||
std::vector<bool> mul_mat_q;
|
std::vector<bool> mul_mat_q;
|
||||||
std::vector<bool> low_vram;
|
|
||||||
std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
|
std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
|
||||||
int reps;
|
int reps;
|
||||||
bool verbose;
|
bool verbose;
|
||||||
@ -149,7 +148,6 @@ static const cmd_params cmd_params_defaults = {
|
|||||||
/* n_gpu_layers */ {99},
|
/* n_gpu_layers */ {99},
|
||||||
/* main_gpu */ {0},
|
/* main_gpu */ {0},
|
||||||
/* mul_mat_q */ {true},
|
/* mul_mat_q */ {true},
|
||||||
/* low_vram */ {false},
|
|
||||||
/* tensor_split */ {{}},
|
/* tensor_split */ {{}},
|
||||||
/* reps */ 5,
|
/* reps */ 5,
|
||||||
/* verbose */ false,
|
/* verbose */ false,
|
||||||
@ -167,9 +165,8 @@ static void print_usage(int /* argc */, char ** argv) {
|
|||||||
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
|
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
|
||||||
printf(" --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str());
|
printf(" --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str());
|
||||||
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
||||||
printf(" -ngl N, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
||||||
printf(" -mg i, --main-gpu <n> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||||
printf(" -lv, --low-vram <0|1> (default: %s)\n", join(cmd_params_defaults.low_vram, ",").c_str());
|
|
||||||
printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
|
printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
|
||||||
printf(" -ts, --tensor_split <ts0/ts1/..> \n");
|
printf(" -ts, --tensor_split <ts0/ts1/..> \n");
|
||||||
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
|
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
|
||||||
@ -255,13 +252,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
params.main_gpu = split<int>(argv[i], split_delim);
|
params.main_gpu = split<int>(argv[i], split_delim);
|
||||||
} else if (arg == "-lv" || arg == "--low-vram") {
|
|
||||||
if (++i >= argc) {
|
|
||||||
invalid_param = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
auto p = split<bool>(argv[i], split_delim);
|
|
||||||
params.low_vram.insert(params.low_vram.end(), p.begin(), p.end());
|
|
||||||
} else if (arg == "-mmq" || arg == "--mul-mat-q") {
|
} else if (arg == "-mmq" || arg == "--mul-mat-q") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
@ -336,7 +326,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||||||
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
|
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
|
||||||
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
|
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
|
||||||
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
|
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
|
||||||
if (params.low_vram.empty()) { params.low_vram = cmd_params_defaults.low_vram; }
|
|
||||||
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
|
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
|
||||||
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
|
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
|
||||||
|
|
||||||
@ -353,21 +342,34 @@ struct cmd_params_instance {
|
|||||||
int n_gpu_layers;
|
int n_gpu_layers;
|
||||||
int main_gpu;
|
int main_gpu;
|
||||||
bool mul_mat_q;
|
bool mul_mat_q;
|
||||||
bool low_vram;
|
|
||||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||||
|
|
||||||
llama_context_params to_llama_params() const {
|
llama_model_params to_llama_mparams() const {
|
||||||
llama_context_params lparams = llama_context_default_params();
|
llama_model_params mparams = llama_model_default_params();
|
||||||
lparams.n_ctx = n_prompt + n_gen;
|
|
||||||
lparams.n_batch = n_batch;
|
|
||||||
lparams.f16_kv = !f32_kv;
|
|
||||||
lparams.n_gpu_layers = n_gpu_layers;
|
|
||||||
lparams.main_gpu = main_gpu;
|
|
||||||
lparams.mul_mat_q = mul_mat_q;
|
|
||||||
lparams.low_vram = low_vram;
|
|
||||||
lparams.tensor_split = tensor_split.data();
|
|
||||||
|
|
||||||
return lparams;
|
mparams.n_gpu_layers = n_gpu_layers;
|
||||||
|
mparams.main_gpu = main_gpu;
|
||||||
|
mparams.tensor_split = tensor_split.data();
|
||||||
|
|
||||||
|
return mparams;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool equal_mparams(const cmd_params_instance & other) const {
|
||||||
|
return model == other.model &&
|
||||||
|
n_gpu_layers == other.n_gpu_layers &&
|
||||||
|
main_gpu == other.main_gpu &&
|
||||||
|
tensor_split == other.tensor_split;
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_context_params to_llama_cparams() const {
|
||||||
|
llama_context_params cparams = llama_context_default_params();
|
||||||
|
|
||||||
|
cparams.n_ctx = n_prompt + n_gen;
|
||||||
|
cparams.n_batch = n_batch;
|
||||||
|
cparams.f16_kv = !f32_kv;
|
||||||
|
cparams.mul_mat_q = mul_mat_q;
|
||||||
|
|
||||||
|
return cparams;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -375,13 +377,12 @@ static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_p
|
|||||||
std::vector<cmd_params_instance> instances;
|
std::vector<cmd_params_instance> instances;
|
||||||
|
|
||||||
for (const auto & m : params.model)
|
for (const auto & m : params.model)
|
||||||
for (const auto & nb : params.n_batch)
|
|
||||||
for (const auto & fk : params.f32_kv)
|
|
||||||
for (const auto & nl : params.n_gpu_layers)
|
for (const auto & nl : params.n_gpu_layers)
|
||||||
for (const auto & mg : params.main_gpu)
|
for (const auto & mg : params.main_gpu)
|
||||||
for (const auto & mmq : params.mul_mat_q)
|
|
||||||
for (const auto & lv : params.low_vram)
|
|
||||||
for (const auto & ts : params.tensor_split)
|
for (const auto & ts : params.tensor_split)
|
||||||
|
for (const auto & nb : params.n_batch)
|
||||||
|
for (const auto & fk : params.f32_kv)
|
||||||
|
for (const auto & mmq : params.mul_mat_q)
|
||||||
for (const auto & nt : params.n_threads) {
|
for (const auto & nt : params.n_threads) {
|
||||||
cmd_params_instance instance = {
|
cmd_params_instance instance = {
|
||||||
/* .model = */ m,
|
/* .model = */ m,
|
||||||
@ -393,7 +394,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_p
|
|||||||
/* .n_gpu_layers = */ nl,
|
/* .n_gpu_layers = */ nl,
|
||||||
/* .main_gpu = */ mg,
|
/* .main_gpu = */ mg,
|
||||||
/* .mul_mat_q = */ mmq,
|
/* .mul_mat_q = */ mmq,
|
||||||
/* .low_vram = */ lv,
|
|
||||||
/* .tensor_split = */ ts,
|
/* .tensor_split = */ ts,
|
||||||
};
|
};
|
||||||
instances.push_back(instance);
|
instances.push_back(instance);
|
||||||
@ -404,6 +404,56 @@ static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_p
|
|||||||
static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
|
static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
|
||||||
std::vector<cmd_params_instance> instances;
|
std::vector<cmd_params_instance> instances;
|
||||||
|
|
||||||
|
#if 1
|
||||||
|
// this ordering minimizes the number of times that each model needs to be reloaded
|
||||||
|
for (const auto & m : params.model)
|
||||||
|
for (const auto & nl : params.n_gpu_layers)
|
||||||
|
for (const auto & mg : params.main_gpu)
|
||||||
|
for (const auto & ts : params.tensor_split)
|
||||||
|
for (const auto & nb : params.n_batch)
|
||||||
|
for (const auto & fk : params.f32_kv)
|
||||||
|
for (const auto & mmq : params.mul_mat_q)
|
||||||
|
for (const auto & nt : params.n_threads) {
|
||||||
|
for (const auto & n_prompt : params.n_prompt) {
|
||||||
|
if (n_prompt == 0) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
cmd_params_instance instance = {
|
||||||
|
/* .model = */ m,
|
||||||
|
/* .n_prompt = */ n_prompt,
|
||||||
|
/* .n_gen = */ 0,
|
||||||
|
/* .n_batch = */ nb,
|
||||||
|
/* .f32_kv = */ fk,
|
||||||
|
/* .n_threads = */ nt,
|
||||||
|
/* .n_gpu_layers = */ nl,
|
||||||
|
/* .main_gpu = */ mg,
|
||||||
|
/* .mul_mat_q = */ mmq,
|
||||||
|
/* .tensor_split = */ ts,
|
||||||
|
};
|
||||||
|
instances.push_back(instance);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (const auto & n_gen : params.n_gen) {
|
||||||
|
if (n_gen == 0) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
cmd_params_instance instance = {
|
||||||
|
/* .model = */ m,
|
||||||
|
/* .n_prompt = */ 0,
|
||||||
|
/* .n_gen = */ n_gen,
|
||||||
|
/* .n_batch = */ nb,
|
||||||
|
/* .f32_kv = */ fk,
|
||||||
|
/* .n_threads = */ nt,
|
||||||
|
/* .n_gpu_layers = */ nl,
|
||||||
|
/* .main_gpu = */ mg,
|
||||||
|
/* .mul_mat_q = */ mmq,
|
||||||
|
/* .tensor_split = */ ts,
|
||||||
|
};
|
||||||
|
instances.push_back(instance);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
// this ordering separates the prompt and generation tests
|
||||||
for (const auto & n_prompt : params.n_prompt) {
|
for (const auto & n_prompt : params.n_prompt) {
|
||||||
if (n_prompt == 0) {
|
if (n_prompt == 0) {
|
||||||
continue;
|
continue;
|
||||||
@ -419,6 +469,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||||||
auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
|
auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
|
||||||
instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
|
instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
|
||||||
}
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
return instances;
|
return instances;
|
||||||
}
|
}
|
||||||
@ -443,7 +494,6 @@ struct test {
|
|||||||
int n_gpu_layers;
|
int n_gpu_layers;
|
||||||
int main_gpu;
|
int main_gpu;
|
||||||
bool mul_mat_q;
|
bool mul_mat_q;
|
||||||
bool low_vram;
|
|
||||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||||
int n_prompt;
|
int n_prompt;
|
||||||
int n_gen;
|
int n_gen;
|
||||||
@ -463,7 +513,6 @@ struct test {
|
|||||||
n_gpu_layers = inst.n_gpu_layers;
|
n_gpu_layers = inst.n_gpu_layers;
|
||||||
main_gpu = inst.main_gpu;
|
main_gpu = inst.main_gpu;
|
||||||
mul_mat_q = inst.mul_mat_q;
|
mul_mat_q = inst.mul_mat_q;
|
||||||
low_vram = inst.low_vram;
|
|
||||||
tensor_split = inst.tensor_split;
|
tensor_split = inst.tensor_split;
|
||||||
n_prompt = inst.n_prompt;
|
n_prompt = inst.n_prompt;
|
||||||
n_gen = inst.n_gen;
|
n_gen = inst.n_gen;
|
||||||
@ -524,7 +573,7 @@ struct test {
|
|||||||
"cpu_info", "gpu_info",
|
"cpu_info", "gpu_info",
|
||||||
"model_filename", "model_type", "model_size", "model_n_params",
|
"model_filename", "model_type", "model_size", "model_n_params",
|
||||||
"n_batch", "n_threads", "f16_kv",
|
"n_batch", "n_threads", "f16_kv",
|
||||||
"n_gpu_layers", "main_gpu", "mul_mat_q", "low_vram", "tensor_split",
|
"n_gpu_layers", "main_gpu", "mul_mat_q", "tensor_split",
|
||||||
"n_prompt", "n_gen", "test_time",
|
"n_prompt", "n_gen", "test_time",
|
||||||
"avg_ns", "stddev_ns",
|
"avg_ns", "stddev_ns",
|
||||||
"avg_ts", "stddev_ts"
|
"avg_ts", "stddev_ts"
|
||||||
@ -543,7 +592,7 @@ struct test {
|
|||||||
return INT;
|
return INT;
|
||||||
}
|
}
|
||||||
if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
|
if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
|
||||||
field == "f16_kv" || field == "mul_mat_q" || field == "low_vram") {
|
field == "f16_kv" || field == "mul_mat_q") {
|
||||||
return BOOL;
|
return BOOL;
|
||||||
}
|
}
|
||||||
if (field == "avg_ts" || field == "stddev_ts") {
|
if (field == "avg_ts" || field == "stddev_ts") {
|
||||||
@ -574,7 +623,7 @@ struct test {
|
|||||||
cpu_info, gpu_info,
|
cpu_info, gpu_info,
|
||||||
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
|
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
|
||||||
std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv),
|
std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv),
|
||||||
std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), std::to_string(low_vram), tensor_split_str,
|
std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), tensor_split_str,
|
||||||
std::to_string(n_prompt), std::to_string(n_gen), test_time,
|
std::to_string(n_prompt), std::to_string(n_gen), test_time,
|
||||||
std::to_string(avg_ns()), std::to_string(stdev_ns()),
|
std::to_string(avg_ns()), std::to_string(stdev_ns()),
|
||||||
std::to_string(avg_ts()), std::to_string(stdev_ts())
|
std::to_string(avg_ts()), std::to_string(stdev_ts())
|
||||||
@ -606,9 +655,9 @@ struct printer {
|
|||||||
virtual ~printer() {}
|
virtual ~printer() {}
|
||||||
|
|
||||||
FILE * fout;
|
FILE * fout;
|
||||||
virtual void print_header(const cmd_params & params) { (void) params; };
|
virtual void print_header(const cmd_params & params) { (void) params; }
|
||||||
virtual void print_test(const test & t) = 0;
|
virtual void print_test(const test & t) = 0;
|
||||||
virtual void print_footer() { };
|
virtual void print_footer() { }
|
||||||
};
|
};
|
||||||
|
|
||||||
struct csv_printer : public printer {
|
struct csv_printer : public printer {
|
||||||
@ -766,9 +815,6 @@ struct markdown_printer : public printer {
|
|||||||
if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
|
if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
|
||||||
fields.push_back("mul_mat_q");
|
fields.push_back("mul_mat_q");
|
||||||
}
|
}
|
||||||
if (params.low_vram.size() > 1 || params.low_vram != cmd_params_defaults.low_vram) {
|
|
||||||
fields.push_back("low_vram");
|
|
||||||
}
|
|
||||||
if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
|
if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
|
||||||
fields.push_back("tensor_split");
|
fields.push_back("tensor_split");
|
||||||
}
|
}
|
||||||
@ -889,17 +935,23 @@ struct sql_printer : public printer {
|
|||||||
static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
|
static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
|
||||||
std::vector<llama_token> tokens(n_batch, llama_token_bos(ctx));
|
std::vector<llama_token> tokens(n_batch, llama_token_bos(ctx));
|
||||||
int n_processed = 0;
|
int n_processed = 0;
|
||||||
|
|
||||||
|
llama_set_n_threads(ctx, n_threads, n_threads);
|
||||||
|
|
||||||
while (n_processed < n_prompt) {
|
while (n_processed < n_prompt) {
|
||||||
int n_tokens = std::min(n_prompt - n_processed, n_batch);
|
int n_tokens = std::min(n_prompt - n_processed, n_batch);
|
||||||
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0), n_threads);
|
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
|
||||||
n_processed += n_tokens;
|
n_processed += n_tokens;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
|
static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
|
||||||
llama_token token = llama_token_bos(ctx);
|
llama_token token = llama_token_bos(ctx);
|
||||||
|
|
||||||
|
llama_set_n_threads(ctx, n_threads, n_threads);
|
||||||
|
|
||||||
for (int i = 0; i < n_gen; i++) {
|
for (int i = 0; i < n_gen; i++) {
|
||||||
llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0), n_threads);
|
llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -958,17 +1010,25 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
|
std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
|
||||||
|
|
||||||
for (const auto & inst : params_instances) {
|
llama_model * lmodel = nullptr;
|
||||||
// TODO: keep the model between tests when possible
|
const cmd_params_instance * prev_inst = nullptr;
|
||||||
llama_context_params lparams = inst.to_llama_params();
|
|
||||||
|
|
||||||
llama_model * lmodel = llama_load_model_from_file(inst.model.c_str(), lparams);
|
for (const auto & inst : params_instances) {
|
||||||
if (lmodel == NULL) {
|
// keep the same model between tests when possible
|
||||||
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
|
if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
|
||||||
return 1;
|
if (lmodel) {
|
||||||
|
llama_free_model(lmodel);
|
||||||
|
}
|
||||||
|
|
||||||
|
lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
|
||||||
|
if (lmodel == NULL) {
|
||||||
|
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
prev_inst = &inst;
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_context * ctx = llama_new_context_with_model(lmodel, lparams);
|
llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
|
||||||
if (ctx == NULL) {
|
if (ctx == NULL) {
|
||||||
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
|
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
|
||||||
llama_free_model(lmodel);
|
llama_free_model(lmodel);
|
||||||
@ -1006,9 +1066,10 @@ int main(int argc, char ** argv) {
|
|||||||
llama_print_timings(ctx);
|
llama_print_timings(ctx);
|
||||||
|
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
llama_free_model(lmodel);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
llama_free_model(lmodel);
|
||||||
|
|
||||||
p->print_footer();
|
p->print_footer();
|
||||||
|
|
||||||
llama_backend_free();
|
llama_backend_free();
|
||||||
|
@ -28,6 +28,16 @@ configure_file(${_common_path}/../build-info.h
|
|||||||
target_include_directories(common PUBLIC ${LLAMA_INCLUDE_DIR}
|
target_include_directories(common PUBLIC ${LLAMA_INCLUDE_DIR}
|
||||||
${CMAKE_CURRENT_BINARY_DIR})
|
${CMAKE_CURRENT_BINARY_DIR})
|
||||||
|
|
||||||
|
# If the common project was part of "main-cmake-pkg" the transient
|
||||||
|
# defines would automatically be attached. Because the common func-
|
||||||
|
# tionality is separate, but dependent upon the defines, it must be
|
||||||
|
# explicitly extracted from the "llama" target.
|
||||||
|
#
|
||||||
|
get_target_property(_llama_transient_defines llama
|
||||||
|
INTERFACE_COMPILE_DEFINITIONS)
|
||||||
|
|
||||||
|
target_compile_definitions(common PRIVATE "${_llama_transient_defines}")
|
||||||
|
|
||||||
add_executable(${TARGET} ${CMAKE_CURRENT_LIST_DIR}/../main/main.cpp)
|
add_executable(${TARGET} ${CMAKE_CURRENT_LIST_DIR}/../main/main.cpp)
|
||||||
target_include_directories(${TARGET} PRIVATE ${_common_path})
|
target_include_directories(${TARGET} PRIVATE ${_common_path})
|
||||||
install(TARGETS ${TARGET} RUNTIME)
|
install(TARGETS ${TARGET} RUNTIME)
|
||||||
|
@ -262,7 +262,8 @@ These options help improve the performance and memory usage of the LLaMA models.
|
|||||||
|
|
||||||
### Number of Threads
|
### Number of Threads
|
||||||
|
|
||||||
- `-t N, --threads N`: Set the number of threads to use during computation. For optimal performance, it is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Using the correct number of threads can greatly improve performance.
|
- `-t N, --threads N`: Set the number of threads to use during generation. For optimal performance, it is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Using the correct number of threads can greatly improve performance.
|
||||||
|
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. In some systems, it is beneficial to use a higher number of threads during batch processing than during generation. If not specified, the number of threads used for batch processing will be the same as the number of threads used for generation.
|
||||||
|
|
||||||
### Mlock
|
### Mlock
|
||||||
|
|
||||||
@ -305,6 +306,5 @@ These options provide extra functionality and customization when running the LLa
|
|||||||
- `-ngl N, --n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
- `-ngl N, --n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
||||||
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
|
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
|
||||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
|
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
|
||||||
- `-lv, --low-vram`: Do not allocate a VRAM scratch buffer for holding temporary results. Reduces VRAM usage at the cost of performance, particularly prompt processing speed. Requires cuBLAS.
|
|
||||||
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
||||||
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
||||||
|
@ -144,12 +144,17 @@ int main(int argc, char ** argv) {
|
|||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (params.rope_freq_base != 10000.0) {
|
if (params.n_ctx != 0 && params.n_ctx < 8) {
|
||||||
LOG_TEE("%s: warning: changing RoPE frequency base to %g (default 10000.0)\n", __func__, params.rope_freq_base);
|
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
||||||
|
params.n_ctx = 8;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (params.rope_freq_scale != 1.0) {
|
if (params.rope_freq_base != 0.0) {
|
||||||
LOG_TEE("%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale);
|
LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.rope_freq_scale != 0.0) {
|
||||||
|
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
|
||||||
}
|
}
|
||||||
|
|
||||||
LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||||
@ -192,20 +197,19 @@ int main(int argc, char ** argv) {
|
|||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
const int n_ctx_train = llama_n_ctx_train(ctx);
|
const int n_ctx_train = llama_n_ctx_train(model);
|
||||||
if (params.n_ctx > n_ctx_train) {
|
const int n_ctx = llama_n_ctx(ctx);
|
||||||
|
LOG("n_ctx: %d\n", n_ctx);
|
||||||
|
|
||||||
|
if (n_ctx > n_ctx_train) {
|
||||||
LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||||
__func__, n_ctx_train, params.n_ctx);
|
__func__, n_ctx_train, n_ctx);
|
||||||
} else if (params.n_ctx < 8) {
|
|
||||||
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
|
||||||
params.n_ctx = 8;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
LOG_TEE("\n");
|
LOG_TEE("\n");
|
||||||
LOG_TEE("system_info: n_threads = %d / %d | %s\n",
|
LOG_TEE("%s\n", get_system_info(params).c_str());
|
||||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
|
||||||
}
|
}
|
||||||
|
|
||||||
std::string path_session = params.path_prompt_cache;
|
std::string path_session = params.path_prompt_cache;
|
||||||
@ -219,7 +223,7 @@ int main(int argc, char ** argv) {
|
|||||||
if (fp != NULL) {
|
if (fp != NULL) {
|
||||||
std::fclose(fp);
|
std::fclose(fp);
|
||||||
|
|
||||||
session_tokens.resize(params.n_ctx);
|
session_tokens.resize(n_ctx);
|
||||||
size_t n_token_count_out = 0;
|
size_t n_token_count_out = 0;
|
||||||
if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
|
if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
|
||||||
LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
|
LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
|
||||||
@ -234,7 +238,7 @@ int main(int argc, char ** argv) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
const bool add_bos = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM;
|
||||||
LOG("add_bos: %d\n", add_bos);
|
LOG("add_bos: %d\n", add_bos);
|
||||||
|
|
||||||
std::vector<llama_token> embd_inp;
|
std::vector<llama_token> embd_inp;
|
||||||
@ -275,9 +279,6 @@ int main(int argc, char ** argv) {
|
|||||||
LOG("guidance_offset: %s", log_tostr(guidance_offset));
|
LOG("guidance_offset: %s", log_tostr(guidance_offset));
|
||||||
}
|
}
|
||||||
|
|
||||||
const int n_ctx = llama_n_ctx(ctx);
|
|
||||||
LOG("n_ctx: %d\n", n_ctx);
|
|
||||||
|
|
||||||
if ((int) embd_inp.size() > n_ctx - 4) {
|
if ((int) embd_inp.size() > n_ctx - 4) {
|
||||||
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
||||||
return 1;
|
return 1;
|
||||||
@ -474,7 +475,7 @@ int main(int argc, char ** argv) {
|
|||||||
std::vector<llama_token> embd;
|
std::vector<llama_token> embd;
|
||||||
std::vector<llama_token> embd_guidance;
|
std::vector<llama_token> embd_guidance;
|
||||||
|
|
||||||
const int n_vocab = llama_n_vocab(ctx);
|
const int n_vocab = llama_n_vocab(model);
|
||||||
|
|
||||||
std::vector<llama_token_data> candidates;
|
std::vector<llama_token_data> candidates;
|
||||||
candidates.reserve(n_vocab);
|
candidates.reserve(n_vocab);
|
||||||
@ -550,6 +551,9 @@ int main(int argc, char ** argv) {
|
|||||||
if (i > 0) {
|
if (i > 0) {
|
||||||
embd.erase(embd.begin(), embd.begin() + i);
|
embd.erase(embd.begin(), embd.begin() + i);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// remove any "future" tokens that we might have inherited from the session from the KV cache
|
||||||
|
llama_kv_cache_tokens_rm(ctx, n_past, -1);
|
||||||
}
|
}
|
||||||
|
|
||||||
// evaluate tokens in batches
|
// evaluate tokens in batches
|
||||||
@ -584,7 +588,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
for (int i = 0; i < input_size; i += params.n_batch) {
|
for (int i = 0; i < input_size; i += params.n_batch) {
|
||||||
int n_eval = std::min(input_size - i, params.n_batch);
|
int n_eval = std::min(input_size - i, params.n_batch);
|
||||||
if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0), params.n_threads)) {
|
if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) {
|
||||||
LOG_TEE("%s : failed to eval\n", __func__);
|
LOG_TEE("%s : failed to eval\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
@ -601,7 +605,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
||||||
|
|
||||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0), params.n_threads)) {
|
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
||||||
LOG_TEE("%s : failed to eval\n", __func__);
|
LOG_TEE("%s : failed to eval\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
@ -674,7 +678,7 @@ int main(int argc, char ** argv) {
|
|||||||
}
|
}
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
}
|
}
|
||||||
// reset color to default if we there is no pending user input
|
// reset color to default if there is no pending user input
|
||||||
if (input_echo && (int) embd_inp.size() == n_consumed) {
|
if (input_echo && (int) embd_inp.size() == n_consumed) {
|
||||||
console::set_display(console::reset);
|
console::set_display(console::reset);
|
||||||
}
|
}
|
||||||
@ -701,10 +705,8 @@ int main(int argc, char ** argv) {
|
|||||||
if (last_output.find(antiprompt, search_start_pos) != std::string::npos) {
|
if (last_output.find(antiprompt, search_start_pos) != std::string::npos) {
|
||||||
if (params.interactive) {
|
if (params.interactive) {
|
||||||
is_interacting = true;
|
is_interacting = true;
|
||||||
console::set_display(console::user_input);
|
|
||||||
}
|
}
|
||||||
is_antiprompt = true;
|
is_antiprompt = true;
|
||||||
fflush(stdout);
|
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -728,8 +730,6 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
is_interacting = true;
|
is_interacting = true;
|
||||||
printf("\n");
|
printf("\n");
|
||||||
console::set_display(console::user_input);
|
|
||||||
fflush(stdout);
|
|
||||||
} else if (params.instruct) {
|
} else if (params.instruct) {
|
||||||
is_interacting = true;
|
is_interacting = true;
|
||||||
}
|
}
|
||||||
@ -754,6 +754,9 @@ int main(int argc, char ** argv) {
|
|||||||
printf("%s", buffer.c_str());
|
printf("%s", buffer.c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// color user input only
|
||||||
|
console::set_display(console::user_input);
|
||||||
|
|
||||||
std::string line;
|
std::string line;
|
||||||
bool another_line = true;
|
bool another_line = true;
|
||||||
do {
|
do {
|
||||||
@ -859,7 +862,7 @@ int main(int argc, char ** argv) {
|
|||||||
llama_backend_free();
|
llama_backend_free();
|
||||||
|
|
||||||
#ifndef LOG_DISABLE_LOGS
|
#ifndef LOG_DISABLE_LOGS
|
||||||
LOG_TEE("Log end\n")
|
LOG_TEE("Log end\n");
|
||||||
#endif // LOG_DISABLE_LOGS
|
#endif // LOG_DISABLE_LOGS
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
|
@ -10,6 +10,7 @@
|
|||||||
#include <cstdio>
|
#include <cstdio>
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
#include <ctime>
|
||||||
|
|
||||||
// trim whitespace from the beginning and end of a string
|
// trim whitespace from the beginning and end of a string
|
||||||
static std::string trim(const std::string & str) {
|
static std::string trim(const std::string & str) {
|
||||||
@ -70,6 +71,26 @@ struct client {
|
|||||||
std::vector<llama_token> tokens_prev;
|
std::vector<llama_token> tokens_prev;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
static void print_date_time() {
|
||||||
|
std::time_t current_time = std::time(nullptr);
|
||||||
|
std::tm* local_time = std::localtime(¤t_time);
|
||||||
|
char buffer[80];
|
||||||
|
strftime(buffer, sizeof(buffer), "%Y-%m-%d %H:%M:%S", local_time);
|
||||||
|
|
||||||
|
printf("\n\033[35mrun parameters as at %s\033[0m\n", buffer);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Define a split string function to ...
|
||||||
|
static std::vector<std::string> split_string(const std::string& input, char delimiter) {
|
||||||
|
std::vector<std::string> tokens;
|
||||||
|
std::istringstream stream(input);
|
||||||
|
std::string token;
|
||||||
|
while (std::getline(stream, token, delimiter)) {
|
||||||
|
tokens.push_back(token);
|
||||||
|
}
|
||||||
|
return tokens;
|
||||||
|
}
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
srand(1234);
|
srand(1234);
|
||||||
|
|
||||||
@ -104,11 +125,28 @@ int main(int argc, char ** argv) {
|
|||||||
params.logits_all = true;
|
params.logits_all = true;
|
||||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||||
|
|
||||||
|
// load the prompts from an external file if there are any
|
||||||
|
if (params.prompt.empty()) {
|
||||||
|
printf("\n\033[32mNo new questions so proceed with build-in defaults.\033[0m\n");
|
||||||
|
} else {
|
||||||
|
// Output each line of the input params.prompts vector and copy to k_prompts
|
||||||
|
int index = 0;
|
||||||
|
printf("\n\033[32mNow printing the external prompt file %s\033[0m\n\n", params.prompt_file.c_str());
|
||||||
|
|
||||||
|
std::vector<std::string> prompts = split_string(params.prompt, '\n');
|
||||||
|
for (const auto& prompt : prompts) {
|
||||||
|
k_prompts.resize(index + 1);
|
||||||
|
k_prompts[index] = prompt;
|
||||||
|
index++;
|
||||||
|
printf("%3d prompt: %s\n", index, prompt.c_str());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
fprintf(stderr, "\n\n");
|
fprintf(stderr, "\n\n");
|
||||||
fflush(stderr);
|
fflush(stderr);
|
||||||
|
|
||||||
const int n_ctx = llama_n_ctx(ctx);
|
const int n_ctx = llama_n_ctx(ctx);
|
||||||
const int n_vocab = llama_n_vocab(ctx);
|
const int n_vocab = llama_n_vocab(model);
|
||||||
|
|
||||||
std::vector<client> clients(n_clients);
|
std::vector<client> clients(n_clients);
|
||||||
for (size_t i = 0; i < clients.size(); ++i) {
|
for (size_t i = 0; i < clients.size(); ++i) {
|
||||||
@ -129,7 +167,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
// the max batch size is as large as the context to handle cases where we get very long input prompt from multiple
|
// the max batch size is as large as the context to handle cases where we get very long input prompt from multiple
|
||||||
// users. regardless of the size, the main loop will chunk the batch into a maximum of params.n_batch tokens at a time
|
// users. regardless of the size, the main loop will chunk the batch into a maximum of params.n_batch tokens at a time
|
||||||
llama_batch batch = llama_batch_init(params.n_ctx, 0);
|
llama_batch batch = llama_batch_init(n_ctx, 0);
|
||||||
|
|
||||||
int32_t n_total_prompt = 0;
|
int32_t n_total_prompt = 0;
|
||||||
int32_t n_total_gen = 0;
|
int32_t n_total_gen = 0;
|
||||||
@ -153,7 +191,7 @@ int main(int argc, char ** argv) {
|
|||||||
batch.logits[i] = false;
|
batch.logits[i] = false;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (llama_decode(ctx, batch, params.n_threads) != 0) {
|
if (llama_decode(ctx, batch) != 0) {
|
||||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
@ -233,7 +271,7 @@ int main(int argc, char ** argv) {
|
|||||||
client.n_decoded = 0;
|
client.n_decoded = 0;
|
||||||
client.i_batch = batch.n_tokens - 1;
|
client.i_batch = batch.n_tokens - 1;
|
||||||
|
|
||||||
LOG_TEE("\033[1mClient %3d, seq %4d, started decoding ...\033[0m\n", client.id, client.seq_id);
|
LOG_TEE("\033[31mClient %3d, seq %4d, started decoding ...\033[0m\n", client.id, client.seq_id);
|
||||||
|
|
||||||
g_seq_id += 1;
|
g_seq_id += 1;
|
||||||
|
|
||||||
@ -272,7 +310,7 @@ int main(int argc, char ** argv) {
|
|||||||
0, 0, 0, // unused
|
0, 0, 0, // unused
|
||||||
};
|
};
|
||||||
|
|
||||||
const int ret = llama_decode(ctx, batch_view, params.n_threads);
|
const int ret = llama_decode(ctx, batch_view);
|
||||||
if (ret != 0) {
|
if (ret != 0) {
|
||||||
if (n_batch == 1 || ret < 0) {
|
if (n_batch == 1 || ret < 0) {
|
||||||
// if you get here, it means the KV cache is full - try increasing it via the context size
|
// if you get here, it means the KV cache is full - try increasing it via the context size
|
||||||
@ -332,12 +370,12 @@ int main(int argc, char ** argv) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// delete only the generated part of the sequence, i.e. keep the system prompt in the cache
|
// delete only the generated part of the sequence, i.e. keep the system prompt in the cache
|
||||||
llama_kv_cache_seq_rm(ctx, client.id, n_tokens_system, n_ctx);
|
llama_kv_cache_seq_rm(ctx, client.id, n_tokens_system, -1);
|
||||||
|
|
||||||
const auto t_main_end = ggml_time_us();
|
const auto t_main_end = ggml_time_us();
|
||||||
|
|
||||||
LOG_TEE("\033[1mClient %3d, seq %4d, prompt %4d t, response %4d t, time %5.2f s, speed %5.2f t/s, cache miss %d \033[0m \n\nInput: %s\nResponse: %s\n\n",
|
LOG_TEE("\033[31mClient %3d, seq %3d/%3d, prompt %4d t, response %4d t, time %5.2f s, speed %5.2f t/s, cache miss %d \033[0m \nInput: %s\n\033[35mResponse: %s\033[0m\n\n",
|
||||||
client.id, client.seq_id, client.n_prompt, client.n_decoded,
|
client.id, client.seq_id, n_seq, client.n_prompt, client.n_decoded,
|
||||||
(t_main_end - client.t_start_prompt) / 1e6,
|
(t_main_end - client.t_start_prompt) / 1e6,
|
||||||
(double) (client.n_prompt + client.n_decoded) / (t_main_end - client.t_start_prompt) * 1e6,
|
(double) (client.n_prompt + client.n_decoded) / (t_main_end - client.t_start_prompt) * 1e6,
|
||||||
n_cache_miss,
|
n_cache_miss,
|
||||||
@ -357,13 +395,21 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
const auto t_main_end = ggml_time_us();
|
const auto t_main_end = ggml_time_us();
|
||||||
|
|
||||||
LOG_TEE("\n\n");
|
print_date_time();
|
||||||
|
|
||||||
|
LOG_TEE("\n%s: n_parallel = %d, n_sequences = %d, cont_batching = %d, system tokens = %d\n", __func__, n_clients, n_seq, cont_batching, n_tokens_system);
|
||||||
|
if (params.prompt_file.empty()) {
|
||||||
|
params.prompt_file = "used built-in defaults";
|
||||||
|
}
|
||||||
|
LOG_TEE("External prompt file: \033[32m%s\033[0m\n", params.prompt_file.c_str());
|
||||||
|
LOG_TEE("Model and path used: \033[32m%s\033[0m\n\n", params.model.c_str());
|
||||||
|
|
||||||
LOG_TEE("Total prompt tokens: %6d, speed: %5.2f t/s\n", n_total_prompt, (double) (n_total_prompt ) / (t_main_end - t_main_start) * 1e6);
|
LOG_TEE("Total prompt tokens: %6d, speed: %5.2f t/s\n", n_total_prompt, (double) (n_total_prompt ) / (t_main_end - t_main_start) * 1e6);
|
||||||
LOG_TEE("Total gen tokens: %6d, speed: %5.2f t/s\n", n_total_gen, (double) (n_total_gen ) / (t_main_end - t_main_start) * 1e6);
|
LOG_TEE("Total gen tokens: %6d, speed: %5.2f t/s\n", n_total_gen, (double) (n_total_gen ) / (t_main_end - t_main_start) * 1e6);
|
||||||
LOG_TEE("Total speed (AVG): %6s speed: %5.2f t/s\n", "", (double) (n_total_prompt + n_total_gen) / (t_main_end - t_main_start) * 1e6);
|
LOG_TEE("Total speed (AVG): %6s speed: %5.2f t/s\n", "", (double) (n_total_prompt + n_total_gen) / (t_main_end - t_main_start) * 1e6);
|
||||||
LOG_TEE("Cache misses: %6d\n", n_cache_miss);
|
LOG_TEE("Cache misses: %6d\n", n_cache_miss);
|
||||||
|
|
||||||
LOG_TEE("\n\n");
|
LOG_TEE("\n");
|
||||||
|
|
||||||
llama_print_timings(ctx);
|
llama_print_timings(ctx);
|
||||||
|
|
||||||
|
@ -150,16 +150,18 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
|||||||
// Output: `perplexity: 13.5106 [114/114]`
|
// Output: `perplexity: 13.5106 [114/114]`
|
||||||
// BOS tokens will be added for each chunk before eval
|
// BOS tokens will be added for each chunk before eval
|
||||||
|
|
||||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
|
||||||
const bool add_bos = is_spm;
|
const bool add_bos = is_spm;
|
||||||
|
|
||||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||||
|
|
||||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||||
|
|
||||||
if (int(tokens.size()) < 2*params.n_ctx) {
|
const int n_ctx = llama_n_ctx(ctx);
|
||||||
fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*params.n_ctx,
|
|
||||||
params.n_ctx);
|
if (int(tokens.size()) < 2*n_ctx) {
|
||||||
|
fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
|
||||||
|
n_ctx);
|
||||||
fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
|
fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
|
||||||
return {std::move(tokens), 0., {}, {}};
|
return {std::move(tokens), 0., {}, {}};
|
||||||
}
|
}
|
||||||
@ -175,20 +177,20 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
|||||||
return {tokens, -1, logit_history, prob_history};
|
return {tokens, -1, logit_history, prob_history};
|
||||||
}
|
}
|
||||||
|
|
||||||
const int calc_chunk = params.n_ctx;
|
const int calc_chunk = n_ctx;
|
||||||
|
|
||||||
fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
|
fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
|
||||||
|
|
||||||
if (int(tokens.size()) <= calc_chunk) {
|
if (int(tokens.size()) <= calc_chunk) {
|
||||||
fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
|
fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
|
||||||
tokens.size(), params.n_ctx, params.ppl_stride);
|
tokens.size(), n_ctx, params.ppl_stride);
|
||||||
return {tokens, -1, logit_history, prob_history};
|
return {tokens, -1, logit_history, prob_history};
|
||||||
}
|
}
|
||||||
|
|
||||||
const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
|
const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
|
||||||
|
|
||||||
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
||||||
const int n_vocab = llama_n_vocab(ctx);
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||||
const int n_batch = params.n_batch;
|
const int n_batch = params.n_batch;
|
||||||
|
|
||||||
int count = 0;
|
int count = 0;
|
||||||
@ -215,7 +217,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
|||||||
const int batch_size = std::min(end - batch_start, n_batch);
|
const int batch_size = std::min(end - batch_start, n_batch);
|
||||||
|
|
||||||
//fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
|
//fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
|
||||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0), params.n_threads)) {
|
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
||||||
//fprintf(stderr, "%s : failed to eval\n", __func__);
|
//fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
return {tokens, -1, logit_history, prob_history};
|
return {tokens, -1, logit_history, prob_history};
|
||||||
}
|
}
|
||||||
@ -250,7 +252,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
|||||||
}
|
}
|
||||||
|
|
||||||
//fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
|
//fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
|
||||||
for (int j = params.n_ctx - params.ppl_stride - 1; j < params.n_ctx - 1; ++j) {
|
for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) {
|
||||||
|
|
||||||
// Calculate probability of next token, given the previous ones.
|
// Calculate probability of next token, given the previous ones.
|
||||||
const std::vector<float> tok_logits(
|
const std::vector<float> tok_logits(
|
||||||
@ -287,8 +289,9 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||||||
// Output: `perplexity: 13.5106 [114/114]`
|
// Output: `perplexity: 13.5106 [114/114]`
|
||||||
// BOS tokens will be added for each chunk before eval
|
// BOS tokens will be added for each chunk before eval
|
||||||
|
|
||||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
|
||||||
const bool add_bos = is_spm;
|
const bool add_bos = is_spm;
|
||||||
|
const int n_ctx = llama_n_ctx(ctx);
|
||||||
|
|
||||||
auto tim1 = std::chrono::high_resolution_clock::now();
|
auto tim1 = std::chrono::high_resolution_clock::now();
|
||||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||||
@ -298,9 +301,9 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||||||
auto tim2 = std::chrono::high_resolution_clock::now();
|
auto tim2 = std::chrono::high_resolution_clock::now();
|
||||||
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
||||||
|
|
||||||
if (int(tokens.size()) < 2*params.n_ctx) {
|
if (int(tokens.size()) < 2*n_ctx) {
|
||||||
fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*params.n_ctx,
|
fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
|
||||||
params.n_ctx);
|
n_ctx);
|
||||||
fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
|
fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
|
||||||
return {std::move(tokens), 0., {}, {}};
|
return {std::move(tokens), 0., {}, {}};
|
||||||
}
|
}
|
||||||
@ -311,10 +314,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||||||
std::vector<float> prob_history;
|
std::vector<float> prob_history;
|
||||||
prob_history.resize(tokens.size());
|
prob_history.resize(tokens.size());
|
||||||
|
|
||||||
const int n_chunk_max = tokens.size() / params.n_ctx;
|
const int n_chunk_max = tokens.size() / n_ctx;
|
||||||
|
|
||||||
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
||||||
const int n_vocab = llama_n_vocab(ctx);
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||||
const int n_batch = params.n_batch;
|
const int n_batch = params.n_batch;
|
||||||
|
|
||||||
int count = 0;
|
int count = 0;
|
||||||
@ -326,10 +329,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||||||
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
|
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
|
||||||
|
|
||||||
for (int i = 0; i < n_chunk; ++i) {
|
for (int i = 0; i < n_chunk; ++i) {
|
||||||
const int start = i * params.n_ctx;
|
const int start = i * n_ctx;
|
||||||
const int end = start + params.n_ctx;
|
const int end = start + n_ctx;
|
||||||
|
|
||||||
const int num_batches = (params.n_ctx + n_batch - 1) / n_batch;
|
const int num_batches = (n_ctx + n_batch - 1) / n_batch;
|
||||||
|
|
||||||
std::vector<float> logits;
|
std::vector<float> logits;
|
||||||
|
|
||||||
@ -350,7 +353,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||||||
tokens[batch_start] = llama_token_bos(ctx);
|
tokens[batch_start] = llama_token_bos(ctx);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0), params.n_threads)) {
|
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
||||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
return {tokens, -1, logit_history, prob_history};
|
return {tokens, -1, logit_history, prob_history};
|
||||||
}
|
}
|
||||||
@ -358,7 +361,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||||||
// restore the original token in case it was set to BOS
|
// restore the original token in case it was set to BOS
|
||||||
tokens[batch_start] = token_org;
|
tokens[batch_start] = token_org;
|
||||||
|
|
||||||
const auto batch_logits = llama_get_logits(ctx);
|
const auto * batch_logits = llama_get_logits(ctx);
|
||||||
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -387,10 +390,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||||||
// Example, we have a context window of 512, we will compute perplexity for each of the
|
// Example, we have a context window of 512, we will compute perplexity for each of the
|
||||||
// last 256 tokens. Then, we split the input up into context window size chunks to
|
// last 256 tokens. Then, we split the input up into context window size chunks to
|
||||||
// process the entire prompt.
|
// process the entire prompt.
|
||||||
const int first = params.n_ctx/2;
|
const int first = n_ctx/2;
|
||||||
process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first,
|
process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
|
||||||
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
|
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
|
||||||
count += params.n_ctx - first - 1;
|
count += n_ctx - first - 1;
|
||||||
|
|
||||||
// perplexity is e^(average negative log-likelihood)
|
// perplexity is e^(average negative log-likelihood)
|
||||||
if (params.ppl_output_type == 0) {
|
if (params.ppl_output_type == 0) {
|
||||||
@ -399,7 +402,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||||||
double av = nll/count;
|
double av = nll/count;
|
||||||
double av2 = nll2/count - av*av;
|
double av2 = nll2/count - av*av;
|
||||||
if (av2 > 0) av2 = sqrt(av2/(count-1));
|
if (av2 > 0) av2 = sqrt(av2/(count-1));
|
||||||
printf("%8d %.4lf %4lf %4lf\n", i*params.n_ctx, std::exp(nll / count), av, av2);
|
printf("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
|
||||||
}
|
}
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
}
|
}
|
||||||
@ -420,7 +423,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||||||
}
|
}
|
||||||
|
|
||||||
static std::vector<float> hellaswag_evaluate_tokens(
|
static std::vector<float> hellaswag_evaluate_tokens(
|
||||||
llama_context * ctx, std::vector<int> & tokens, int n_past, int n_batch, int n_vocab, int n_thread
|
llama_context * ctx, std::vector<int> & tokens, int n_past, int n_batch, int n_vocab
|
||||||
) {
|
) {
|
||||||
std::vector<float> result;
|
std::vector<float> result;
|
||||||
result.reserve(tokens.size() * n_vocab);
|
result.reserve(tokens.size() * n_vocab);
|
||||||
@ -428,7 +431,7 @@ static std::vector<float> hellaswag_evaluate_tokens(
|
|||||||
for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) {
|
for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) {
|
||||||
size_t n_tokens = tokens.size() - i_chunk * n_batch;
|
size_t n_tokens = tokens.size() - i_chunk * n_batch;
|
||||||
n_tokens = std::min(n_tokens, size_t(n_batch));
|
n_tokens = std::min(n_tokens, size_t(n_batch));
|
||||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + i_chunk * n_batch, n_tokens, n_past, 0), n_thread)) {
|
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + i_chunk * n_batch, n_tokens, n_past, 0))) {
|
||||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
return {};
|
return {};
|
||||||
}
|
}
|
||||||
@ -475,7 +478,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
|||||||
size_t hs_task_count = prompt_lines.size()/6;
|
size_t hs_task_count = prompt_lines.size()/6;
|
||||||
fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
|
fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
|
||||||
|
|
||||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
|
||||||
fprintf(stderr, "================================= is_spm = %d\n", is_spm);
|
fprintf(stderr, "================================= is_spm = %d\n", is_spm);
|
||||||
|
|
||||||
// This is needed as usual for LLaMA models
|
// This is needed as usual for LLaMA models
|
||||||
@ -530,7 +533,8 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
|||||||
printf("\ntask\tacc_norm\n");
|
printf("\ntask\tacc_norm\n");
|
||||||
|
|
||||||
double acc = 0.0f;
|
double acc = 0.0f;
|
||||||
const int n_vocab = llama_n_vocab(ctx);
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||||
|
const int n_ctx = llama_n_ctx(ctx);
|
||||||
|
|
||||||
std::vector<std::vector<int>> ending_tokens(4);
|
std::vector<std::vector<int>> ending_tokens(4);
|
||||||
|
|
||||||
@ -558,7 +562,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
|||||||
auto query_size = query_embd.size();
|
auto query_size = query_embd.size();
|
||||||
|
|
||||||
// Stop if query wont fit the ctx window
|
// Stop if query wont fit the ctx window
|
||||||
if (query_size > (size_t)params.n_ctx) {
|
if (query_size > (size_t)n_ctx) {
|
||||||
fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
|
fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
@ -571,7 +575,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
|||||||
// clear the KV cache
|
// clear the KV cache
|
||||||
llama_kv_cache_tokens_rm(ctx, -1, -1);
|
llama_kv_cache_tokens_rm(ctx, -1, -1);
|
||||||
|
|
||||||
auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab, params.n_threads);
|
auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab);
|
||||||
if (logits.empty()) {
|
if (logits.empty()) {
|
||||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
return;
|
return;
|
||||||
@ -608,7 +612,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
|||||||
query_size = query_embd.size();
|
query_size = query_embd.size();
|
||||||
|
|
||||||
// Stop if query wont fit the ctx window
|
// Stop if query wont fit the ctx window
|
||||||
if (context_size + query_size > (size_t)params.n_ctx) {
|
if (context_size + query_size > (size_t)n_ctx) {
|
||||||
fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
|
fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
@ -620,7 +624,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
|||||||
//}
|
//}
|
||||||
|
|
||||||
// Evaluate the query
|
// Evaluate the query
|
||||||
logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab, params.n_threads);
|
logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab);
|
||||||
if (logits.empty()) {
|
if (logits.empty()) {
|
||||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
return;
|
return;
|
||||||
@ -716,7 +720,7 @@ int main(int argc, char ** argv) {
|
|||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
const int n_ctx_train = llama_n_ctx_train(ctx);
|
const int n_ctx_train = llama_n_ctx_train(model);
|
||||||
if (params.n_ctx > n_ctx_train) {
|
if (params.n_ctx > n_ctx_train) {
|
||||||
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||||
__func__, n_ctx_train, params.n_ctx);
|
__func__, n_ctx_train, params.n_ctx);
|
||||||
@ -725,8 +729,7 @@ int main(int argc, char ** argv) {
|
|||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
|
||||||
}
|
}
|
||||||
|
|
||||||
struct results_perplexity results;
|
struct results_perplexity results;
|
||||||
|
@ -309,21 +309,22 @@ int main(int argc, char ** argv) {
|
|||||||
llama_context * ctx;
|
llama_context * ctx;
|
||||||
|
|
||||||
{
|
{
|
||||||
auto lparams = llama_context_default_params();
|
auto mparams = llama_model_default_params();
|
||||||
|
mparams.use_mlock = false;
|
||||||
|
|
||||||
lparams.n_ctx = 256;
|
model = llama_load_model_from_file(params.model.c_str(), mparams);
|
||||||
lparams.seed = 1;
|
|
||||||
lparams.f16_kv = false;
|
|
||||||
lparams.use_mlock = false;
|
|
||||||
|
|
||||||
model = llama_load_model_from_file(params.model.c_str(), lparams);
|
|
||||||
|
|
||||||
if (model == NULL) {
|
if (model == NULL) {
|
||||||
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
|
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
ctx = llama_new_context_with_model(model, lparams);
|
auto cparams = llama_context_default_params();
|
||||||
|
cparams.n_ctx = 256;
|
||||||
|
cparams.seed = 1;
|
||||||
|
cparams.f16_kv = false;
|
||||||
|
|
||||||
|
ctx = llama_new_context_with_model(model, cparams);
|
||||||
|
|
||||||
if (ctx == NULL) {
|
if (ctx == NULL) {
|
||||||
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
|
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
|
||||||
|
@ -72,6 +72,7 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
|
|||||||
// usage:
|
// usage:
|
||||||
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
|
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
|
||||||
//
|
//
|
||||||
|
[[noreturn]]
|
||||||
static void usage(const char * executable) {
|
static void usage(const char * executable) {
|
||||||
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
||||||
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
||||||
|
@ -23,23 +23,17 @@ int main(int argc, char ** argv) {
|
|||||||
params.n_predict = 16;
|
params.n_predict = 16;
|
||||||
}
|
}
|
||||||
|
|
||||||
auto lparams = llama_context_default_params();
|
|
||||||
|
|
||||||
lparams.n_ctx = params.n_ctx;
|
|
||||||
lparams.seed = params.seed;
|
|
||||||
lparams.f16_kv = params.memory_f16;
|
|
||||||
lparams.use_mmap = params.use_mmap;
|
|
||||||
lparams.use_mlock = params.use_mlock;
|
|
||||||
|
|
||||||
auto n_past = 0;
|
auto n_past = 0;
|
||||||
auto last_n_tokens_data = std::vector<llama_token>(params.repeat_last_n, 0);
|
auto last_n_tokens_data = std::vector<llama_token>(params.repeat_last_n, 0);
|
||||||
|
|
||||||
// init
|
// init
|
||||||
auto * model = llama_load_model_from_file(params.model.c_str(), lparams);
|
llama_model * model;
|
||||||
|
llama_context * ctx;
|
||||||
|
|
||||||
|
std::tie(model, ctx) = llama_init_from_gpt_params( params );
|
||||||
if (model == nullptr) {
|
if (model == nullptr) {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
auto * ctx = llama_new_context_with_model(model, lparams);
|
|
||||||
if (ctx == nullptr) {
|
if (ctx == nullptr) {
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
return 1;
|
return 1;
|
||||||
@ -54,7 +48,7 @@ int main(int argc, char ** argv) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// evaluate prompt
|
// evaluate prompt
|
||||||
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt_tokens, n_past, 0), params.n_threads);
|
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt_tokens, n_past, 0));
|
||||||
|
|
||||||
last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens);
|
last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens);
|
||||||
n_past += n_prompt_tokens;
|
n_past += n_prompt_tokens;
|
||||||
@ -79,7 +73,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
for (auto i = 0; i < params.n_predict; i++) {
|
for (auto i = 0; i < params.n_predict; i++) {
|
||||||
auto * logits = llama_get_logits(ctx);
|
auto * logits = llama_get_logits(ctx);
|
||||||
auto n_vocab = llama_n_vocab(ctx);
|
auto n_vocab = llama_n_vocab(model);
|
||||||
std::vector<llama_token_data> candidates;
|
std::vector<llama_token_data> candidates;
|
||||||
candidates.reserve(n_vocab);
|
candidates.reserve(n_vocab);
|
||||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||||
@ -91,7 +85,7 @@ int main(int argc, char ** argv) {
|
|||||||
last_n_tokens_data.push_back(next_token);
|
last_n_tokens_data.push_back(next_token);
|
||||||
|
|
||||||
printf("%s", next_token_str.c_str());
|
printf("%s", next_token_str.c_str());
|
||||||
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0), params.n_threads)) {
|
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
||||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
@ -106,7 +100,7 @@ int main(int argc, char ** argv) {
|
|||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
|
|
||||||
// make new context
|
// make new context
|
||||||
auto * ctx2 = llama_new_context_with_model(model, lparams);
|
auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
|
||||||
|
|
||||||
// Load state (rng, logits, embedding and kv_cache) from file
|
// Load state (rng, logits, embedding and kv_cache) from file
|
||||||
{
|
{
|
||||||
@ -139,7 +133,7 @@ int main(int argc, char ** argv) {
|
|||||||
// second run
|
// second run
|
||||||
for (auto i = 0; i < params.n_predict; i++) {
|
for (auto i = 0; i < params.n_predict; i++) {
|
||||||
auto * logits = llama_get_logits(ctx2);
|
auto * logits = llama_get_logits(ctx2);
|
||||||
auto n_vocab = llama_n_vocab(ctx2);
|
auto n_vocab = llama_n_vocab(model);
|
||||||
std::vector<llama_token_data> candidates;
|
std::vector<llama_token_data> candidates;
|
||||||
candidates.reserve(n_vocab);
|
candidates.reserve(n_vocab);
|
||||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||||
@ -151,7 +145,7 @@ int main(int argc, char ** argv) {
|
|||||||
last_n_tokens_data.push_back(next_token);
|
last_n_tokens_data.push_back(next_token);
|
||||||
|
|
||||||
printf("%s", next_token_str.c_str());
|
printf("%s", next_token_str.c_str());
|
||||||
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0), params.n_threads)) {
|
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
||||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||||
llama_free(ctx2);
|
llama_free(ctx2);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
|
@ -4,14 +4,14 @@ This example demonstrates a simple HTTP API server and a simple web front end to
|
|||||||
|
|
||||||
Command line options:
|
Command line options:
|
||||||
|
|
||||||
- `--threads N`, `-t N`: Set the number of threads to use during computation.
|
- `--threads N`, `-t N`: Set the number of threads to use during generation.
|
||||||
|
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation.
|
||||||
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
|
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
|
||||||
- `-m ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
|
- `-m ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
|
||||||
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
|
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
|
||||||
- `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
- `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
||||||
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
|
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
|
||||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
|
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
|
||||||
- `-lv, --low-vram`: Do not allocate a VRAM scratch buffer for holding temporary results. Reduces VRAM usage at the cost of performance, particularly prompt processing speed. Requires cuBLAS.
|
|
||||||
- `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `512`.
|
- `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `512`.
|
||||||
- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended.
|
- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended.
|
||||||
- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
|
- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
|
||||||
@ -114,9 +114,9 @@ node index.js
|
|||||||
|
|
||||||
`top_k`: Limit the next token selection to the K most probable tokens (default: 40).
|
`top_k`: Limit the next token selection to the K most probable tokens (default: 40).
|
||||||
|
|
||||||
`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.9).
|
`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.95).
|
||||||
|
|
||||||
`n_predict`: Set the number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. (default: 128, -1 = infinity).
|
`n_predict`: Set the number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. (default: -1, -1 = infinity).
|
||||||
|
|
||||||
`n_keep`: Specify the number of tokens from the initial prompt to retain when the model resets its internal context.
|
`n_keep`: Specify the number of tokens from the initial prompt to retain when the model resets its internal context.
|
||||||
By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the initial prompt.
|
By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the initial prompt.
|
||||||
@ -156,6 +156,8 @@ node index.js
|
|||||||
|
|
||||||
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced (default: []).
|
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced (default: []).
|
||||||
|
|
||||||
|
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token (default: 0)
|
||||||
|
|
||||||
- **POST** `/tokenize`: Tokenize a given text.
|
- **POST** `/tokenize`: Tokenize a given text.
|
||||||
|
|
||||||
*Options:*
|
*Options:*
|
||||||
@ -176,6 +178,16 @@ node index.js
|
|||||||
|
|
||||||
`content`: Set the text to process.
|
`content`: Set the text to process.
|
||||||
|
|
||||||
|
**POST** `/infill`: For code infilling. Takes a prefix and a suffix and returns the predicted completion as stream.
|
||||||
|
|
||||||
|
*Options:*
|
||||||
|
|
||||||
|
`input_prefix`: Set the prefix of the code to infill.
|
||||||
|
|
||||||
|
`input_suffix`: Set the suffix of the code to infill.
|
||||||
|
|
||||||
|
It also accepts all the options of `/completion` except `stream` and `prompt`.
|
||||||
|
|
||||||
## More examples
|
## More examples
|
||||||
|
|
||||||
### Interactive mode
|
### Interactive mode
|
||||||
|
@ -27,10 +27,10 @@ def is_present(json, key):
|
|||||||
buf = json[key]
|
buf = json[key]
|
||||||
except KeyError:
|
except KeyError:
|
||||||
return False
|
return False
|
||||||
|
if json[key] == None:
|
||||||
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#convert chat to prompt
|
#convert chat to prompt
|
||||||
def convert_chat(messages):
|
def convert_chat(messages):
|
||||||
prompt = "" + args.chat_prompt.replace("\\n", "\n")
|
prompt = "" + args.chat_prompt.replace("\\n", "\n")
|
||||||
|
@ -200,6 +200,7 @@ struct llama_server_context
|
|||||||
llama_model *model = nullptr;
|
llama_model *model = nullptr;
|
||||||
llama_context *ctx = nullptr;
|
llama_context *ctx = nullptr;
|
||||||
gpt_params params;
|
gpt_params params;
|
||||||
|
int n_ctx;
|
||||||
|
|
||||||
grammar_parser::parse_state parsed_grammar;
|
grammar_parser::parse_state parsed_grammar;
|
||||||
llama_grammar *grammar = nullptr;
|
llama_grammar *grammar = nullptr;
|
||||||
@ -239,7 +240,7 @@ struct llama_server_context
|
|||||||
num_prompt_tokens = 0;
|
num_prompt_tokens = 0;
|
||||||
num_tokens_predicted = 0;
|
num_tokens_predicted = 0;
|
||||||
generated_text = "";
|
generated_text = "";
|
||||||
generated_text.reserve(params.n_ctx);
|
generated_text.reserve(n_ctx);
|
||||||
generated_token_probs.clear();
|
generated_token_probs.clear();
|
||||||
truncated = false;
|
truncated = false;
|
||||||
stopped_eos = false;
|
stopped_eos = false;
|
||||||
@ -265,8 +266,8 @@ struct llama_server_context
|
|||||||
LOG_ERROR("unable to load model", {{"model", params_.model}});
|
LOG_ERROR("unable to load model", {{"model", params_.model}});
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
n_ctx = llama_n_ctx(ctx);
|
||||||
last_n_tokens.resize(params.n_ctx);
|
last_n_tokens.resize(n_ctx);
|
||||||
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
@ -341,9 +342,15 @@ struct llama_server_context
|
|||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
void loadPrompt()
|
void loadInfill()
|
||||||
{
|
{
|
||||||
auto prompt_tokens = tokenize(prompt, true); // always add BOS
|
auto prefix_tokens = tokenize(params.input_prefix, true); // always add BOS
|
||||||
|
auto suffix_tokens = tokenize(params.input_suffix, true); // always add BOS
|
||||||
|
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(ctx));
|
||||||
|
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(ctx));
|
||||||
|
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
||||||
|
prefix_tokens.push_back(llama_token_middle(ctx));
|
||||||
|
auto prompt_tokens = prefix_tokens;
|
||||||
|
|
||||||
num_prompt_tokens = prompt_tokens.size();
|
num_prompt_tokens = prompt_tokens.size();
|
||||||
|
|
||||||
@ -356,6 +363,8 @@ struct llama_server_context
|
|||||||
// if input prompt is too big, truncate like normal
|
// if input prompt is too big, truncate like normal
|
||||||
if (num_prompt_tokens >= (size_t)params.n_ctx)
|
if (num_prompt_tokens >= (size_t)params.n_ctx)
|
||||||
{
|
{
|
||||||
|
printf("Input prompt is too big, truncating. Can only take %d tokens but got %zu\n", params.n_ctx, num_prompt_tokens);
|
||||||
|
// todo we probably want to cut from both sides
|
||||||
const int n_left = (params.n_ctx - params.n_keep) / 2;
|
const int n_left = (params.n_ctx - params.n_keep) / 2;
|
||||||
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
||||||
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
||||||
@ -379,11 +388,67 @@ struct llama_server_context
|
|||||||
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// compare the evaluated prompt with the new prompt
|
||||||
|
n_past = common_part(embd, prompt_tokens);
|
||||||
|
embd = prompt_tokens;
|
||||||
|
if (n_past == num_prompt_tokens)
|
||||||
|
{
|
||||||
|
// we have to evaluate at least 1 token to generate logits.
|
||||||
|
printf("we have to evaluate at least 1 token to generate logits\n");
|
||||||
|
n_past--;
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG_VERBOSE("prompt ingested", {
|
||||||
|
{"n_past", n_past},
|
||||||
|
{"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)},
|
||||||
|
{"to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
|
||||||
|
});
|
||||||
|
|
||||||
|
has_next_token = true;
|
||||||
|
}
|
||||||
|
void loadPrompt()
|
||||||
|
{
|
||||||
|
auto prompt_tokens = tokenize(prompt, true); // always add BOS
|
||||||
|
|
||||||
|
num_prompt_tokens = prompt_tokens.size();
|
||||||
|
|
||||||
|
if (params.n_keep < 0)
|
||||||
|
{
|
||||||
|
params.n_keep = (int)num_prompt_tokens;
|
||||||
|
}
|
||||||
|
params.n_keep = std::min(n_ctx - 4, params.n_keep);
|
||||||
|
|
||||||
|
// if input prompt is too big, truncate like normal
|
||||||
|
if (num_prompt_tokens >= (size_t)n_ctx)
|
||||||
|
{
|
||||||
|
const int n_left = (n_ctx - params.n_keep) / 2;
|
||||||
|
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
||||||
|
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
||||||
|
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
||||||
|
std::copy(prompt_tokens.end() - n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
||||||
|
|
||||||
|
LOG_VERBOSE("input truncated", {
|
||||||
|
{"n_ctx", n_ctx},
|
||||||
|
{"n_keep", params.n_keep},
|
||||||
|
{"n_left", n_left},
|
||||||
|
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
|
||||||
|
});
|
||||||
|
|
||||||
|
truncated = true;
|
||||||
|
prompt_tokens = new_tokens;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
const size_t ps = num_prompt_tokens;
|
||||||
|
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
|
||||||
|
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
||||||
|
}
|
||||||
|
|
||||||
// compare the evaluated prompt with the new prompt
|
// compare the evaluated prompt with the new prompt
|
||||||
n_past = common_part(embd, prompt_tokens);
|
n_past = common_part(embd, prompt_tokens);
|
||||||
|
|
||||||
// since #3228 we now have to manually manage the KV cache
|
// since #3228 we now have to manually manage the KV cache
|
||||||
llama_kv_cache_seq_rm(ctx, 0, n_past, params.n_ctx);
|
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
|
||||||
|
|
||||||
embd = prompt_tokens;
|
embd = prompt_tokens;
|
||||||
if (n_past == num_prompt_tokens)
|
if (n_past == num_prompt_tokens)
|
||||||
@ -413,7 +478,7 @@ struct llama_server_context
|
|||||||
completion_token_output result;
|
completion_token_output result;
|
||||||
result.tok = -1;
|
result.tok = -1;
|
||||||
|
|
||||||
if (embd.size() >= (size_t)params.n_ctx)
|
if (embd.size() >= (size_t)n_ctx)
|
||||||
{
|
{
|
||||||
// Shift context
|
// Shift context
|
||||||
|
|
||||||
@ -433,26 +498,27 @@ struct llama_server_context
|
|||||||
|
|
||||||
truncated = true;
|
truncated = true;
|
||||||
LOG_VERBOSE("input truncated", {
|
LOG_VERBOSE("input truncated", {
|
||||||
{"n_ctx", params.n_ctx},
|
{"n_ctx", n_ctx},
|
||||||
{"n_keep", params.n_keep},
|
{"n_keep", params.n_keep},
|
||||||
{"n_left", n_left},
|
{"n_left", n_left},
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool tg = true;
|
||||||
while (n_past < embd.size())
|
while (n_past < embd.size())
|
||||||
{
|
{
|
||||||
int n_eval = (int)embd.size() - n_past;
|
int n_eval = (int)embd.size() - n_past;
|
||||||
|
tg = n_eval == 1;
|
||||||
if (n_eval > params.n_batch)
|
if (n_eval > params.n_batch)
|
||||||
{
|
{
|
||||||
n_eval = params.n_batch;
|
n_eval = params.n_batch;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (llama_decode(ctx, llama_batch_get_one(&embd[n_past], n_eval, n_past, 0), params.n_threads))
|
if (llama_decode(ctx, llama_batch_get_one(&embd[n_past], n_eval, n_past, 0)))
|
||||||
{
|
{
|
||||||
LOG_ERROR("failed to eval", {
|
LOG_ERROR("failed to eval", {
|
||||||
{"n_eval", n_eval},
|
{"n_eval", n_eval},
|
||||||
{"n_past", n_past},
|
{"n_past", n_past},
|
||||||
{"n_threads", params.n_threads},
|
|
||||||
{"embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
|
{"embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
|
||||||
});
|
});
|
||||||
has_next_token = false;
|
has_next_token = false;
|
||||||
@ -468,98 +534,20 @@ struct llama_server_context
|
|||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
// out of user input, sample next token
|
|
||||||
const float temp = params.temp;
|
|
||||||
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
|
|
||||||
const float top_p = params.top_p;
|
|
||||||
const float tfs_z = params.tfs_z;
|
|
||||||
const float typical_p = params.typical_p;
|
|
||||||
const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n;
|
|
||||||
const float repeat_penalty = params.repeat_penalty;
|
|
||||||
const float alpha_presence = params.presence_penalty;
|
|
||||||
const float alpha_frequency = params.frequency_penalty;
|
|
||||||
const int mirostat = params.mirostat;
|
|
||||||
const float mirostat_tau = params.mirostat_tau;
|
|
||||||
const float mirostat_eta = params.mirostat_eta;
|
|
||||||
const bool penalize_nl = params.penalize_nl;
|
|
||||||
const int32_t n_probs = params.n_probs;
|
|
||||||
|
|
||||||
{
|
{
|
||||||
auto *logits = llama_get_logits(ctx);
|
// out of user input, sample next token
|
||||||
auto n_vocab = llama_n_vocab(ctx);
|
|
||||||
|
|
||||||
// Apply params.logit_bias map
|
|
||||||
for (const auto &it : params.logit_bias)
|
|
||||||
{
|
|
||||||
logits[it.first] += it.second;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<llama_token_data> candidates;
|
std::vector<llama_token_data> candidates;
|
||||||
candidates.reserve(n_vocab);
|
candidates.reserve(llama_n_vocab(model));
|
||||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++)
|
|
||||||
|
result.tok = llama_sample_token(ctx, NULL, grammar, params, last_n_tokens, candidates);
|
||||||
|
|
||||||
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||||
|
|
||||||
|
const int32_t n_probs = params.n_probs;
|
||||||
|
if (params.temp <= 0 && n_probs > 0)
|
||||||
{
|
{
|
||||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
// For llama_sample_token_greedy we need to sort candidates
|
||||||
}
|
llama_sample_softmax(ctx, &candidates_p);
|
||||||
|
|
||||||
llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
|
|
||||||
|
|
||||||
// Apply penalties
|
|
||||||
float nl_logit = logits[llama_token_nl(ctx)];
|
|
||||||
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx);
|
|
||||||
llama_sample_repetition_penalty(ctx, &candidates_p,
|
|
||||||
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
||||||
last_n_repeat, repeat_penalty);
|
|
||||||
llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
|
||||||
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
||||||
last_n_repeat, alpha_frequency, alpha_presence);
|
|
||||||
if (!penalize_nl)
|
|
||||||
{
|
|
||||||
logits[llama_token_nl(ctx)] = nl_logit;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (grammar != nullptr) {
|
|
||||||
llama_sample_grammar(ctx, &candidates_p, grammar);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (temp <= 0)
|
|
||||||
{
|
|
||||||
// Greedy sampling
|
|
||||||
result.tok = llama_sample_token_greedy(ctx, &candidates_p);
|
|
||||||
if (n_probs > 0)
|
|
||||||
{
|
|
||||||
llama_sample_softmax(ctx, &candidates_p);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
if (mirostat == 1)
|
|
||||||
{
|
|
||||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
||||||
const int mirostat_m = 100;
|
|
||||||
llama_sample_temp(ctx, &candidates_p, temp);
|
|
||||||
result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
|
||||||
}
|
|
||||||
else if (mirostat == 2)
|
|
||||||
{
|
|
||||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
||||||
llama_sample_temp(ctx, &candidates_p, temp);
|
|
||||||
result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
// Temperature sampling
|
|
||||||
size_t min_keep = std::max(1, n_probs);
|
|
||||||
llama_sample_top_k(ctx, &candidates_p, top_k, min_keep);
|
|
||||||
llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep);
|
|
||||||
llama_sample_typical(ctx, &candidates_p, typical_p, min_keep);
|
|
||||||
llama_sample_top_p(ctx, &candidates_p, top_p, min_keep);
|
|
||||||
llama_sample_temp(ctx, &candidates_p, temp);
|
|
||||||
result.tok = llama_sample_token(ctx, &candidates_p);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (grammar != nullptr) {
|
|
||||||
llama_grammar_accept_token(ctx, grammar, result.tok);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
|
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
|
||||||
@ -569,7 +557,9 @@ struct llama_server_context
|
|||||||
|
|
||||||
last_n_tokens.erase(last_n_tokens.begin());
|
last_n_tokens.erase(last_n_tokens.begin());
|
||||||
last_n_tokens.push_back(result.tok);
|
last_n_tokens.push_back(result.tok);
|
||||||
num_tokens_predicted++;
|
if (tg) {
|
||||||
|
num_tokens_predicted++;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// add it to the context
|
// add it to the context
|
||||||
@ -690,7 +680,7 @@ struct llama_server_context
|
|||||||
|
|
||||||
std::vector<float> getEmbedding()
|
std::vector<float> getEmbedding()
|
||||||
{
|
{
|
||||||
static const int n_embd = llama_n_embd(ctx);
|
static const int n_embd = llama_n_embd(model);
|
||||||
if (!params.embedding)
|
if (!params.embedding)
|
||||||
{
|
{
|
||||||
LOG_WARNING("embedding disabled", {
|
LOG_WARNING("embedding disabled", {
|
||||||
@ -734,7 +724,6 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|||||||
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
||||||
printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
||||||
printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
|
printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
|
||||||
printf(" -lv, --low-vram don't allocate VRAM scratch buffer\n");
|
|
||||||
printf(" -nommq, --no-mul-mat-q\n");
|
printf(" -nommq, --no-mul-mat-q\n");
|
||||||
printf(" use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
|
printf(" use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
|
||||||
printf(" Not recommended since this is both slower and uses more VRAM.\n");
|
printf(" Not recommended since this is both slower and uses more VRAM.\n");
|
||||||
@ -918,14 +907,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
|
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
|
||||||
#endif // GGML_USE_CUBLAS
|
|
||||||
}
|
|
||||||
else if (arg == "--low-vram" || arg == "-lv")
|
|
||||||
{
|
|
||||||
#ifdef GGML_USE_CUBLAS
|
|
||||||
params.low_vram = true;
|
|
||||||
#else
|
|
||||||
LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n", {});
|
|
||||||
#endif // GGML_USE_CUBLAS
|
#endif // GGML_USE_CUBLAS
|
||||||
}
|
}
|
||||||
else if (arg == "--no-mul-mat-q" || arg == "-nommq")
|
else if (arg == "--no-mul-mat-q" || arg == "-nommq")
|
||||||
@ -956,7 +937,23 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
params.lora_adapter = argv[i];
|
params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
|
||||||
|
params.use_mmap = false;
|
||||||
|
}
|
||||||
|
else if (arg == "--lora-scaled")
|
||||||
|
{
|
||||||
|
if (++i >= argc)
|
||||||
|
{
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
const char * lora_adapter = argv[i];
|
||||||
|
if (++i >= argc)
|
||||||
|
{
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
|
||||||
params.use_mmap = false;
|
params.use_mmap = false;
|
||||||
}
|
}
|
||||||
else if (arg == "--lora-base")
|
else if (arg == "--lora-base")
|
||||||
@ -1015,7 +1012,7 @@ static json format_generation_settings(llama_server_context &llama)
|
|||||||
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
|
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
|
||||||
|
|
||||||
return json{
|
return json{
|
||||||
{"n_ctx", llama.params.n_ctx},
|
{"n_ctx", llama.n_ctx},
|
||||||
{"model", llama.params.model_alias},
|
{"model", llama.params.model_alias},
|
||||||
{"seed", llama.params.seed},
|
{"seed", llama.params.seed},
|
||||||
{"temp", llama.params.temp},
|
{"temp", llama.params.temp},
|
||||||
@ -1053,8 +1050,6 @@ static json format_timings(llama_server_context &llama)
|
|||||||
{
|
{
|
||||||
const auto timings = llama_get_timings(llama.ctx);
|
const auto timings = llama_get_timings(llama.ctx);
|
||||||
|
|
||||||
assert(timings.n_eval == ptrdiff_t(llama.num_tokens_predicted));
|
|
||||||
|
|
||||||
return json{
|
return json{
|
||||||
{"prompt_n", timings.n_p_eval},
|
{"prompt_n", timings.n_p_eval},
|
||||||
{"prompt_ms", timings.t_p_eval_ms},
|
{"prompt_ms", timings.t_p_eval_ms},
|
||||||
@ -1175,7 +1170,7 @@ static void parse_options_completion(const json &body, llama_server_context &lla
|
|||||||
const auto &logit_bias = body.find("logit_bias");
|
const auto &logit_bias = body.find("logit_bias");
|
||||||
if (logit_bias != body.end() && logit_bias->is_array())
|
if (logit_bias != body.end() && logit_bias->is_array())
|
||||||
{
|
{
|
||||||
const int n_vocab = llama_n_vocab(llama.ctx);
|
const int n_vocab = llama_n_vocab(llama.model);
|
||||||
for (const auto &el : *logit_bias)
|
for (const auto &el : *logit_bias)
|
||||||
{
|
{
|
||||||
if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
|
if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
|
||||||
@ -1212,6 +1207,27 @@ static void parse_options_completion(const json &body, llama_server_context &lla
|
|||||||
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
|
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void parse_options_infill(const json &body, llama_server_context &llama)
|
||||||
|
{
|
||||||
|
if (body.count("input_prefix") != 0)
|
||||||
|
{
|
||||||
|
llama.params.input_prefix = body["input_prefix"];
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
llama.params.input_prefix = "";
|
||||||
|
}
|
||||||
|
if (body.count("input_suffix") != 0)
|
||||||
|
{
|
||||||
|
llama.params.input_suffix = body["input_suffix"];
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
llama.params.input_suffix = "";
|
||||||
|
}
|
||||||
|
parse_options_completion(body, llama);
|
||||||
|
}
|
||||||
|
|
||||||
static void log_server_request(const Request &req, const Response &res)
|
static void log_server_request(const Request &req, const Response &res)
|
||||||
{
|
{
|
||||||
LOG_INFO("request", {
|
LOG_INFO("request", {
|
||||||
@ -1308,6 +1324,7 @@ int main(int argc, char **argv)
|
|||||||
{"commit", BUILD_COMMIT}});
|
{"commit", BUILD_COMMIT}});
|
||||||
LOG_INFO("system info", {
|
LOG_INFO("system info", {
|
||||||
{"n_threads", params.n_threads},
|
{"n_threads", params.n_threads},
|
||||||
|
{"n_threads_batch", params.n_threads_batch},
|
||||||
{"total_threads", std::thread::hardware_concurrency()},
|
{"total_threads", std::thread::hardware_concurrency()},
|
||||||
{"system_info", llama_print_system_info()},
|
{"system_info", llama_print_system_info()},
|
||||||
});
|
});
|
||||||
@ -1371,7 +1388,7 @@ int main(int argc, char **argv)
|
|||||||
if (llama.params.n_beams) {
|
if (llama.params.n_beams) {
|
||||||
// Fill llama.generated_token_probs vector with final beam.
|
// Fill llama.generated_token_probs vector with final beam.
|
||||||
llama_beam_search(llama.ctx, beam_search_callback, &llama, llama.params.n_beams,
|
llama_beam_search(llama.ctx, beam_search_callback, &llama, llama.params.n_beams,
|
||||||
llama.n_past, llama.n_remain, llama.params.n_threads);
|
llama.n_past, llama.n_remain);
|
||||||
// Translate llama.generated_token_probs to llama.generated_text.
|
// Translate llama.generated_token_probs to llama.generated_text.
|
||||||
append_to_generated_text_from_generated_token_probs(llama);
|
append_to_generated_text_from_generated_token_probs(llama);
|
||||||
} else {
|
} else {
|
||||||
@ -1511,6 +1528,127 @@ int main(int argc, char **argv)
|
|||||||
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
||||||
} });
|
} });
|
||||||
|
|
||||||
|
svr.Post("/infill", [&llama](const Request &req, Response &res)
|
||||||
|
{
|
||||||
|
auto lock = llama.lock();
|
||||||
|
|
||||||
|
llama.rewind();
|
||||||
|
|
||||||
|
llama_reset_timings(llama.ctx);
|
||||||
|
|
||||||
|
parse_options_infill(json::parse(req.body), llama);
|
||||||
|
|
||||||
|
if (!llama.loadGrammar())
|
||||||
|
{
|
||||||
|
res.status = 400;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
llama.loadInfill();
|
||||||
|
llama.beginCompletion();
|
||||||
|
const auto chunked_content_provider = [&](size_t, DataSink & sink) {
|
||||||
|
size_t sent_count = 0;
|
||||||
|
size_t sent_token_probs_index = 0;
|
||||||
|
|
||||||
|
while (llama.has_next_token) {
|
||||||
|
const completion_token_output token_with_probs = llama.doCompletion();
|
||||||
|
if (token_with_probs.tok == -1 || llama.multibyte_pending > 0) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
const std::string token_text = llama_token_to_piece(llama.ctx, token_with_probs.tok);
|
||||||
|
|
||||||
|
size_t pos = std::min(sent_count, llama.generated_text.size());
|
||||||
|
|
||||||
|
const std::string str_test = llama.generated_text.substr(pos);
|
||||||
|
bool is_stop_full = false;
|
||||||
|
size_t stop_pos =
|
||||||
|
llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
|
||||||
|
if (stop_pos != std::string::npos) {
|
||||||
|
is_stop_full = true;
|
||||||
|
llama.generated_text.erase(
|
||||||
|
llama.generated_text.begin() + pos + stop_pos,
|
||||||
|
llama.generated_text.end());
|
||||||
|
pos = std::min(sent_count, llama.generated_text.size());
|
||||||
|
} else {
|
||||||
|
is_stop_full = false;
|
||||||
|
stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
|
||||||
|
STOP_PARTIAL);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (
|
||||||
|
stop_pos == std::string::npos ||
|
||||||
|
// Send rest of the text if we are at the end of the generation
|
||||||
|
(!llama.has_next_token && !is_stop_full && stop_pos > 0)
|
||||||
|
) {
|
||||||
|
const std::string to_send = llama.generated_text.substr(pos, std::string::npos);
|
||||||
|
|
||||||
|
sent_count += to_send.size();
|
||||||
|
|
||||||
|
std::vector<completion_token_output> probs_output = {};
|
||||||
|
|
||||||
|
if (llama.params.n_probs > 0) {
|
||||||
|
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
|
||||||
|
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
|
||||||
|
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
|
||||||
|
if (probs_pos < probs_stop_pos) {
|
||||||
|
probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
|
||||||
|
}
|
||||||
|
sent_token_probs_index = probs_stop_pos;
|
||||||
|
}
|
||||||
|
|
||||||
|
const json data = format_partial_response(llama, to_send, probs_output);
|
||||||
|
|
||||||
|
const std::string str =
|
||||||
|
"data: " +
|
||||||
|
data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
||||||
|
"\n\n";
|
||||||
|
|
||||||
|
LOG_VERBOSE("data stream", {
|
||||||
|
{ "to_send", str }
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!sink.write(str.data(), str.size())) {
|
||||||
|
LOG_VERBOSE("stream closed", {});
|
||||||
|
llama_print_timings(llama.ctx);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!llama.has_next_token) {
|
||||||
|
// Generation is done, send extra information.
|
||||||
|
const json data = format_final_response(
|
||||||
|
llama,
|
||||||
|
"",
|
||||||
|
std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.begin() + sent_token_probs_index)
|
||||||
|
);
|
||||||
|
|
||||||
|
const std::string str =
|
||||||
|
"data: " +
|
||||||
|
data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
||||||
|
"\n\n";
|
||||||
|
|
||||||
|
LOG_VERBOSE("data stream", {
|
||||||
|
{ "to_send", str }
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!sink.write(str.data(), str.size())) {
|
||||||
|
LOG_VERBOSE("stream closed", {});
|
||||||
|
llama_print_timings(llama.ctx);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_print_timings(llama.ctx);
|
||||||
|
sink.done();
|
||||||
|
return true;
|
||||||
|
};
|
||||||
|
const auto on_complete = [&](bool) {
|
||||||
|
llama.mutex.unlock();
|
||||||
|
};
|
||||||
|
lock.release();
|
||||||
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
||||||
|
});
|
||||||
|
|
||||||
svr.Get("/model.json", [&llama](const Request &, Response &res)
|
svr.Get("/model.json", [&llama](const Request &, Response &res)
|
||||||
{
|
{
|
||||||
const json data = format_generation_settings(llama);
|
const json data = format_generation_settings(llama);
|
||||||
|
@ -33,18 +33,28 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
llama_backend_init(params.numa);
|
llama_backend_init(params.numa);
|
||||||
|
|
||||||
llama_context_params ctx_params = llama_context_default_params();
|
// initialize the model
|
||||||
|
|
||||||
ctx_params.seed = 1234;
|
llama_model_params model_params = llama_model_default_params();
|
||||||
ctx_params.n_ctx = 2048;
|
|
||||||
|
|
||||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
|
// model_params.n_gpu_layers = 99; // offload all layers to the GPU
|
||||||
|
|
||||||
|
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||||
|
|
||||||
if (model == NULL) {
|
if (model == NULL) {
|
||||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// initialize the context
|
||||||
|
|
||||||
|
llama_context_params ctx_params = llama_context_default_params();
|
||||||
|
|
||||||
|
ctx_params.seed = 1234;
|
||||||
|
ctx_params.n_ctx = 2048;
|
||||||
|
ctx_params.n_threads = params.n_threads;
|
||||||
|
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||||
|
|
||||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||||
|
|
||||||
if (ctx == NULL) {
|
if (ctx == NULL) {
|
||||||
@ -97,7 +107,7 @@ int main(int argc, char ** argv) {
|
|||||||
// llama_decode will output logits only for the last token of the prompt
|
// llama_decode will output logits only for the last token of the prompt
|
||||||
batch.logits[batch.n_tokens - 1] = true;
|
batch.logits[batch.n_tokens - 1] = true;
|
||||||
|
|
||||||
if (llama_decode(ctx, batch, params.n_threads) != 0) {
|
if (llama_decode(ctx, batch) != 0) {
|
||||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
@ -112,7 +122,7 @@ int main(int argc, char ** argv) {
|
|||||||
while (n_cur <= n_len) {
|
while (n_cur <= n_len) {
|
||||||
// sample the next token
|
// sample the next token
|
||||||
{
|
{
|
||||||
auto n_vocab = llama_n_vocab(ctx);
|
auto n_vocab = llama_n_vocab(model);
|
||||||
auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
|
auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
|
||||||
|
|
||||||
std::vector<llama_token_data> candidates;
|
std::vector<llama_token_data> candidates;
|
||||||
@ -154,7 +164,7 @@ int main(int argc, char ** argv) {
|
|||||||
n_cur += 1;
|
n_cur += 1;
|
||||||
|
|
||||||
// evaluate the current batch with the transformer model
|
// evaluate the current batch with the transformer model
|
||||||
if (llama_decode(ctx, batch, params.n_threads)) {
|
if (llama_decode(ctx, batch)) {
|
||||||
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
|
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
@ -70,16 +70,16 @@ int main(int argc, char ** argv) {
|
|||||||
const auto t_enc_start = ggml_time_us();
|
const auto t_enc_start = ggml_time_us();
|
||||||
|
|
||||||
// eval the prompt with both models
|
// eval the prompt with both models
|
||||||
llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0, 0), params.n_threads);
|
llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
|
||||||
llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0), params.n_threads);
|
llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
|
||||||
llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input, 0, 0), params.n_threads);
|
llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input, 0, 0));
|
||||||
|
|
||||||
const auto t_enc_end = ggml_time_us();
|
const auto t_enc_end = ggml_time_us();
|
||||||
|
|
||||||
// the 2 models should have the same vocab
|
// the 2 models should have the same vocab
|
||||||
const int n_ctx = llama_n_ctx(ctx_tgt);
|
const int n_ctx = llama_n_ctx(ctx_tgt);
|
||||||
const int n_vocab = llama_n_vocab(ctx_tgt);
|
const int n_vocab = llama_n_vocab(model_tgt);
|
||||||
//GGML_ASSERT(n_vocab == llama_n_vocab(ctx_dft));
|
//GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
|
||||||
|
|
||||||
// how many tokens to draft each time
|
// how many tokens to draft each time
|
||||||
int n_draft = params.n_draft;
|
int n_draft = params.n_draft;
|
||||||
@ -172,8 +172,8 @@ int main(int argc, char ** argv) {
|
|||||||
LOG("out of drafted tokens\n");
|
LOG("out of drafted tokens\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, n_ctx);
|
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
|
||||||
llama_decode(ctx_dft, llama_batch_get_one(&id, 1, n_past_dft, 0), params.n_threads);
|
llama_decode(ctx_dft, llama_batch_get_one(&id, 1, n_past_dft, 0));
|
||||||
++n_past_dft;
|
++n_past_dft;
|
||||||
|
|
||||||
// heuristic for n_draft
|
// heuristic for n_draft
|
||||||
@ -257,8 +257,8 @@ int main(int argc, char ** argv) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// evaluate the drafted token on the draft model
|
// evaluate the drafted token on the draft model
|
||||||
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_cur, n_ctx);
|
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_cur, -1);
|
||||||
llama_decode(ctx_dft, llama_batch_get_one(&drafted.back(), 1, n_past_cur, 0), params.n_threads);
|
llama_decode(ctx_dft, llama_batch_get_one(&drafted.back(), 1, n_past_cur, 0));
|
||||||
++n_past_cur;
|
++n_past_cur;
|
||||||
|
|
||||||
if (grammar_dft != NULL) {
|
if (grammar_dft != NULL) {
|
||||||
@ -267,8 +267,8 @@ int main(int argc, char ** argv) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// evaluate the target model on the drafted tokens
|
// evaluate the target model on the drafted tokens
|
||||||
llama_kv_cache_seq_rm(ctx_tgt, 0, n_past_tgt, n_ctx);
|
llama_kv_cache_seq_rm(ctx_tgt, 0, n_past_tgt, -1);
|
||||||
llama_decode(ctx_tgt, llama_batch_get_one(drafted.data(), drafted.size(), n_past_tgt, 0), params.n_threads);
|
llama_decode(ctx_tgt, llama_batch_get_one(drafted.data(), drafted.size(), n_past_tgt, 0));
|
||||||
++n_past_tgt;
|
++n_past_tgt;
|
||||||
|
|
||||||
// the first token is always proposed by the traget model before the speculation loop
|
// the first token is always proposed by the traget model before the speculation loop
|
||||||
|
@ -10,9 +10,9 @@ wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/s
|
|||||||
./bin/train-text-from-scratch \
|
./bin/train-text-from-scratch \
|
||||||
--vocab-model ../models/ggml-vocab-llama.gguf \
|
--vocab-model ../models/ggml-vocab-llama.gguf \
|
||||||
--ctx 64 --embd 256 --head 8 --layer 16 \
|
--ctx 64 --embd 256 --head 8 --layer 16 \
|
||||||
--checkpoint-in chk-shakespeare-256x16.gguf \
|
--checkpoint-in chk-shakespeare-256x16-LATEST.gguf \
|
||||||
--checkpoint-out chk-shakespeare-256x16.gguf \
|
--checkpoint-out chk-shakespeare-256x16-ITERATION.gguf \
|
||||||
--model-out ggml-shakespeare-256x16-f32.gguf \
|
--model-out ggml-shakespeare-256x16-f32-ITERATION.gguf \
|
||||||
--train-data "shakespeare.txt" \
|
--train-data "shakespeare.txt" \
|
||||||
-t 6 -b 16 --seed 1 --adam-iter 256 \
|
-t 6 -b 16 --seed 1 --adam-iter 256 \
|
||||||
--no-checkpointing
|
--no-checkpointing
|
||||||
@ -20,3 +20,8 @@ wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/s
|
|||||||
# predict
|
# predict
|
||||||
./bin/main -m ggml-shakespeare-256x16-f32.gguf
|
./bin/main -m ggml-shakespeare-256x16-f32.gguf
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Output files will be saved every N iterations (config with `--save-every N`).
|
||||||
|
The pattern "ITERATION" in the output filenames will be replaced with the iteration number and "LATEST" for the latest output.
|
||||||
|
|
||||||
|
To train GGUF models just pass them to `--checkpoint-in FN`.
|
||||||
|
@ -47,10 +47,13 @@ LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"
|
|||||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"
|
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"
|
||||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"
|
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"
|
||||||
|
|
||||||
LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
|
LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model"
|
||||||
LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
|
LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"
|
||||||
LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
|
LLM_KV_TRAINING_TYPE = "training.type"
|
||||||
LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
|
LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
|
||||||
|
LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
|
||||||
|
LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
|
||||||
|
LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
|
||||||
|
|
||||||
class Tensor:
|
class Tensor:
|
||||||
def __init__(self, dtype='f', ne=None):
|
def __init__(self, dtype='f', ne=None):
|
||||||
@ -361,7 +364,7 @@ class ModelParams:
|
|||||||
gguf_writer.add_feed_forward_length(self.get_n_ff())
|
gguf_writer.add_feed_forward_length(self.get_n_ff())
|
||||||
|
|
||||||
def tensor_name(key, bid=None):
|
def tensor_name(key, bid=None):
|
||||||
return gguf.MODEL_TENSOR_NAMES[gguf.MODEL_ARCH.LLAMA][key].format(bid=bid) + ".weight"
|
return gguf.TENSOR_NAMES[key].format(bid=bid) + ".weight"
|
||||||
|
|
||||||
class Layer:
|
class Layer:
|
||||||
def __init__(self, params, bid):
|
def __init__(self, params, bid):
|
||||||
@ -460,6 +463,7 @@ class Checkpoint:
|
|||||||
gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
|
gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
|
||||||
gguf_writer.add_layer_norm_rms_eps(1e-5)
|
gguf_writer.add_layer_norm_rms_eps(1e-5)
|
||||||
gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0)
|
gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0)
|
||||||
|
gguf_writer.add_string(LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL)
|
||||||
gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
|
gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
|
||||||
gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples)
|
gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples)
|
||||||
gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens)
|
gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens)
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -62,7 +62,7 @@
|
|||||||
mkdir -p $out/include
|
mkdir -p $out/include
|
||||||
cp ${src}/llama.h $out/include/
|
cp ${src}/llama.h $out/include/
|
||||||
'';
|
'';
|
||||||
cmakeFlags = [ "-DLLAMA_BUILD_SERVER=ON" "-DLLAMA_MPI=ON" "-DBUILD_SHARED_LIBS=ON" "-DCMAKE_SKIP_BUILD_RPATH=ON" ];
|
cmakeFlags = [ "-DLLAMA_NATIVE=OFF" "-DLLAMA_BUILD_SERVER=ON" "-DBUILD_SHARED_LIBS=ON" "-DCMAKE_SKIP_BUILD_RPATH=ON" ];
|
||||||
in
|
in
|
||||||
{
|
{
|
||||||
packages.default = pkgs.stdenv.mkDerivation {
|
packages.default = pkgs.stdenv.mkDerivation {
|
||||||
|
177
ggml-alloc.c
177
ggml-alloc.c
@ -1,4 +1,5 @@
|
|||||||
#include "ggml-alloc.h"
|
#include "ggml-alloc.h"
|
||||||
|
#include "ggml-backend.h"
|
||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
#include <assert.h>
|
#include <assert.h>
|
||||||
#include <stdarg.h>
|
#include <stdarg.h>
|
||||||
@ -6,25 +7,6 @@
|
|||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
#include <string.h>
|
#include <string.h>
|
||||||
|
|
||||||
#ifdef __has_include
|
|
||||||
#if __has_include(<unistd.h>)
|
|
||||||
#include <unistd.h>
|
|
||||||
#if defined(_POSIX_MAPPED_FILES)
|
|
||||||
#include <sys/types.h>
|
|
||||||
#include <sys/mman.h>
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(_WIN32)
|
|
||||||
#define WIN32_LEAN_AND_MEAN
|
|
||||||
#ifndef NOMINMAX
|
|
||||||
#define NOMINMAX
|
|
||||||
#endif
|
|
||||||
#include <windows.h>
|
|
||||||
#include <memoryapi.h>
|
|
||||||
#endif
|
|
||||||
|
|
||||||
|
|
||||||
#define UNUSED(x) (void)(x)
|
#define UNUSED(x) (void)(x)
|
||||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||||
@ -77,11 +59,12 @@ struct free_block {
|
|||||||
size_t size;
|
size_t size;
|
||||||
};
|
};
|
||||||
|
|
||||||
#define MAX_FREE_BLOCKS 128
|
#define MAX_FREE_BLOCKS 256
|
||||||
|
|
||||||
struct ggml_allocr {
|
struct ggml_allocr {
|
||||||
|
struct ggml_backend_buffer * buffer;
|
||||||
|
bool buffer_owned;
|
||||||
void * data;
|
void * data;
|
||||||
size_t size;
|
|
||||||
size_t alignment;
|
size_t alignment;
|
||||||
int n_free_blocks;
|
int n_free_blocks;
|
||||||
struct free_block free_blocks[MAX_FREE_BLOCKS];
|
struct free_block free_blocks[MAX_FREE_BLOCKS];
|
||||||
@ -119,16 +102,9 @@ static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tens
|
|||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
static size_t ggml_allocr_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
|
||||||
return ggml_nbytes(tensor);
|
|
||||||
|
|
||||||
UNUSED(alloc);
|
|
||||||
}
|
|
||||||
|
|
||||||
// check if a tensor is allocated by this buffer
|
// check if a tensor is allocated by this buffer
|
||||||
static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) {
|
static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) {
|
||||||
void * ptr = tensor->data;
|
return tensor->buffer == alloc->buffer;
|
||||||
return ptr >= alloc->data && (char *)ptr < (char *)alloc->data + alloc->max_size;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static bool ggml_is_view(struct ggml_tensor * t) {
|
static bool ggml_is_view(struct ggml_tensor * t) {
|
||||||
@ -136,11 +112,10 @@ static bool ggml_is_view(struct ggml_tensor * t) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||||
#ifdef GGML_ALLOCATOR_DEBUG
|
|
||||||
GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources
|
GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources
|
||||||
GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
|
GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
|
||||||
#endif
|
|
||||||
size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
|
size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor);
|
||||||
size = aligned_offset(NULL, size, alloc->alignment);
|
size = aligned_offset(NULL, size, alloc->alignment);
|
||||||
|
|
||||||
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
|
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
|
||||||
@ -187,6 +162,9 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
|
|||||||
}
|
}
|
||||||
|
|
||||||
tensor->data = addr;
|
tensor->data = addr;
|
||||||
|
AT_PRINTF("%s: allocated data at %p\n", __func__, tensor->data);
|
||||||
|
tensor->buffer = alloc->buffer;
|
||||||
|
ggml_backend_buffer_init_tensor(alloc->buffer, tensor);
|
||||||
|
|
||||||
#ifdef GGML_ALLOCATOR_DEBUG
|
#ifdef GGML_ALLOCATOR_DEBUG
|
||||||
add_allocated_tensor(alloc, tensor);
|
add_allocated_tensor(alloc, tensor);
|
||||||
@ -207,18 +185,21 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
|
|||||||
|
|
||||||
// this is a very naive implementation, but for our case the number of free blocks should be very small
|
// this is a very naive implementation, but for our case the number of free blocks should be very small
|
||||||
static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||||
void * ptr = tensor->data;
|
|
||||||
|
|
||||||
if (ggml_allocr_is_own(alloc, tensor) == false) {
|
if (ggml_allocr_is_own(alloc, tensor) == false) {
|
||||||
// the tensor was not allocated in this buffer
|
// the tensor was not allocated in this buffer
|
||||||
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
|
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
|
||||||
// the easiest way to deal with this is just to ignore it
|
// the easiest way to deal with this is just to ignore it
|
||||||
|
AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
|
void * ptr = tensor->data;
|
||||||
|
|
||||||
|
size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor);
|
||||||
size = aligned_offset(NULL, size, alloc->alignment);
|
size = aligned_offset(NULL, size, alloc->alignment);
|
||||||
AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
|
AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks);
|
||||||
|
|
||||||
|
ggml_backend_buffer_free_tensor(alloc->buffer, tensor);
|
||||||
|
|
||||||
#ifdef GGML_ALLOCATOR_DEBUG
|
#ifdef GGML_ALLOCATOR_DEBUG
|
||||||
remove_allocated_tensor(alloc, tensor);
|
remove_allocated_tensor(alloc, tensor);
|
||||||
@ -283,15 +264,18 @@ void ggml_allocr_reset(struct ggml_allocr * alloc) {
|
|||||||
alloc->n_free_blocks = 1;
|
alloc->n_free_blocks = 1;
|
||||||
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
|
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
|
||||||
alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
|
alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
|
||||||
alloc->free_blocks[0].size = alloc->size - align_offset;
|
alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset;
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
|
struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
|
||||||
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
|
struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(NULL, data, size);
|
||||||
|
|
||||||
|
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr));
|
||||||
|
|
||||||
*alloc = (struct ggml_allocr){
|
*alloc = (struct ggml_allocr){
|
||||||
/*.data = */ data,
|
/*.buffer = */ buffer,
|
||||||
/*.size = */ size,
|
/*.buffer_owned = */ true,
|
||||||
|
/*.base = */ ggml_backend_buffer_get_base(buffer),
|
||||||
/*.alignment = */ alignment,
|
/*.alignment = */ alignment,
|
||||||
/*.n_free_blocks = */ 0,
|
/*.n_free_blocks = */ 0,
|
||||||
/*.free_blocks = */ {{0}},
|
/*.free_blocks = */ {{0}},
|
||||||
@ -310,74 +294,26 @@ struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment)
|
|||||||
return alloc;
|
return alloc;
|
||||||
}
|
}
|
||||||
|
|
||||||
// OS specific functions to allocate and free uncommitted virtual memory
|
|
||||||
static void * alloc_vmem(size_t size) {
|
|
||||||
#if defined(_WIN32)
|
|
||||||
return VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
|
|
||||||
#elif defined(_POSIX_MAPPED_FILES)
|
|
||||||
void * ptr = mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0);
|
|
||||||
if (ptr == MAP_FAILED) {
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
return ptr;
|
|
||||||
#else
|
|
||||||
// use a fixed address for other platforms
|
|
||||||
uintptr_t base_addr = (uintptr_t)-size - 0x100;
|
|
||||||
return (void *)base_addr;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
static void free_vmem(void * base_addr, size_t size) {
|
|
||||||
#if defined(_WIN32)
|
|
||||||
VirtualFree(base_addr, 0, MEM_RELEASE);
|
|
||||||
UNUSED(size);
|
|
||||||
#elif defined(_POSIX_MAPPED_FILES)
|
|
||||||
munmap(base_addr, size);
|
|
||||||
#else
|
|
||||||
// nothing to do
|
|
||||||
UNUSED(base_addr);
|
|
||||||
UNUSED(size);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
// allocate uncommitted virtual memory to measure the size of the graph
|
|
||||||
static void alloc_measure_vmem(void ** base_addr, size_t * size) {
|
|
||||||
// 128GB for 64-bit, 1GB for 32-bit
|
|
||||||
*size = sizeof(void *) == 4 ? 1ULL<<30 : 1ULL<<37;
|
|
||||||
do {
|
|
||||||
*base_addr = alloc_vmem(*size);
|
|
||||||
if (*base_addr != NULL) {
|
|
||||||
AT_PRINTF("allocated %.2f GB of virtual memory for measure buffer at %p\n", *size / 1024.0 / 1024.0 / 1024.0, *base_addr);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
// try again with half the size
|
|
||||||
*size /= 2;
|
|
||||||
} while (*size > 0);
|
|
||||||
|
|
||||||
GGML_ASSERT(!"failed to allocate virtual memory for measure buffer");
|
|
||||||
}
|
|
||||||
|
|
||||||
static void free_measure_vmem(void * base_addr, size_t size) {
|
|
||||||
free_vmem(base_addr, size);
|
|
||||||
}
|
|
||||||
|
|
||||||
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
|
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
|
||||||
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
|
struct ggml_allocr * alloc = ggml_allocr_new((void *)0x1000, (size_t)-0x1001, alignment);
|
||||||
|
alloc->measure = true;
|
||||||
|
|
||||||
void * base_addr;
|
return alloc;
|
||||||
size_t size;
|
}
|
||||||
|
|
||||||
alloc_measure_vmem(&base_addr, &size);
|
struct ggml_allocr * ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
|
||||||
|
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr));
|
||||||
|
|
||||||
*alloc = (struct ggml_allocr){
|
*alloc = (struct ggml_allocr){
|
||||||
/*.data = */ base_addr,
|
/*.buffer = */ buffer,
|
||||||
/*.size = */ size,
|
/*.buffer_owned = */ false,
|
||||||
/*.alignment = */ alignment,
|
/*.base = */ ggml_backend_buffer_get_base(buffer),
|
||||||
|
/*.alignment = */ ggml_backend_buffer_get_alignment(buffer),
|
||||||
/*.n_free_blocks = */ 0,
|
/*.n_free_blocks = */ 0,
|
||||||
/*.free_blocks = */ {{0}},
|
/*.free_blocks = */ {{0}},
|
||||||
/*.hash_table = */ {{0}},
|
/*.hash_table = */ {{0}},
|
||||||
/*.max_size = */ 0,
|
/*.max_size = */ 0,
|
||||||
/*.measure = */ true,
|
/*.measure = */ false,
|
||||||
/*.parse_seq = */ {0},
|
/*.parse_seq = */ {0},
|
||||||
/*.parse_seq_len = */ 0,
|
/*.parse_seq_len = */ 0,
|
||||||
#ifdef GGML_ALLOCATOR_DEBUG
|
#ifdef GGML_ALLOCATOR_DEBUG
|
||||||
@ -391,8 +327,8 @@ struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void ggml_allocr_free(struct ggml_allocr * alloc) {
|
void ggml_allocr_free(struct ggml_allocr * alloc) {
|
||||||
if (alloc->measure) {
|
if (alloc->buffer_owned) {
|
||||||
free_measure_vmem(alloc->data, alloc->size);
|
ggml_backend_buffer_free(alloc->buffer);
|
||||||
}
|
}
|
||||||
free(alloc);
|
free(alloc);
|
||||||
}
|
}
|
||||||
@ -435,7 +371,6 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
|
|||||||
case GGML_OP_ROPE:
|
case GGML_OP_ROPE:
|
||||||
case GGML_OP_RMS_NORM:
|
case GGML_OP_RMS_NORM:
|
||||||
case GGML_OP_SOFT_MAX:
|
case GGML_OP_SOFT_MAX:
|
||||||
case GGML_OP_CONT:
|
|
||||||
return true;
|
return true;
|
||||||
|
|
||||||
default:
|
default:
|
||||||
@ -443,12 +378,23 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void init_view(struct ggml_allocr * alloc, struct ggml_tensor * view) {
|
||||||
|
assert(view->view_src != NULL && view->view_src->data != NULL);
|
||||||
|
view->backend = view->view_src->backend;
|
||||||
|
view->buffer = view->view_src->buffer;
|
||||||
|
view->data = (char *)view->view_src->data + view->view_offs;
|
||||||
|
|
||||||
|
// FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend
|
||||||
|
// due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras
|
||||||
|
assert(ggml_allocr_is_measure(alloc) || view->buffer->backend == alloc->buffer->backend);
|
||||||
|
ggml_backend_buffer_init_tensor(alloc->buffer, view);
|
||||||
|
}
|
||||||
|
|
||||||
static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
|
static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
|
||||||
struct hash_node * ht = alloc->hash_table;
|
struct hash_node * ht = alloc->hash_table;
|
||||||
if (node->data == NULL) {
|
if (node->data == NULL) {
|
||||||
if (ggml_is_view(node)) {
|
if (ggml_is_view(node)) {
|
||||||
assert(node->view_src->data != NULL);
|
init_view(alloc, node);
|
||||||
node->data = (char *)node->view_src->data + node->view_offs;
|
|
||||||
} else {
|
} else {
|
||||||
// see if we can reuse a parent's buffer (inplace)
|
// see if we can reuse a parent's buffer (inplace)
|
||||||
if (ggml_op_can_inplace(node->op)) {
|
if (ggml_op_can_inplace(node->op)) {
|
||||||
@ -476,13 +422,17 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
|
|||||||
// adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
|
// adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
|
||||||
// for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
|
// for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
|
||||||
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
|
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
|
||||||
node->data = parent->data;
|
node->view_src = view_src;
|
||||||
|
view_src_hn->n_views += 1;
|
||||||
|
init_view(alloc, node);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
|
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
|
||||||
node->data = parent->data;
|
node->view_src = parent;
|
||||||
|
p_hn->n_views += 1;
|
||||||
|
init_view(alloc, node);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -493,7 +443,7 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static size_t ggml_allocr_alloc_graph_tensors_n(
|
size_t ggml_allocr_alloc_graph_n(
|
||||||
struct ggml_allocr * alloc,
|
struct ggml_allocr * alloc,
|
||||||
struct ggml_cgraph ** graphs, int n_graphs,
|
struct ggml_cgraph ** graphs, int n_graphs,
|
||||||
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
|
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
|
||||||
@ -511,6 +461,10 @@ static size_t ggml_allocr_alloc_graph_tensors_n(
|
|||||||
if (ggml_is_view(node)) {
|
if (ggml_is_view(node)) {
|
||||||
struct ggml_tensor * view_src = node->view_src;
|
struct ggml_tensor * view_src = node->view_src;
|
||||||
hash_get(ht, view_src)->n_views += 1;
|
hash_get(ht, view_src)->n_views += 1;
|
||||||
|
if (node->buffer == NULL && node->data != NULL) {
|
||||||
|
// view of a pre-allocated tensor, didn't call init_view() yet
|
||||||
|
init_view(alloc, node);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||||
@ -519,6 +473,9 @@ static size_t ggml_allocr_alloc_graph_tensors_n(
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
hash_get(ht, parent)->n_children += 1;
|
hash_get(ht, parent)->n_children += 1;
|
||||||
|
if (ggml_is_view(parent) && parent->buffer == NULL && parent->data != NULL) {
|
||||||
|
init_view(alloc, parent);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -629,5 +586,9 @@ static size_t ggml_allocr_alloc_graph_tensors_n(
|
|||||||
}
|
}
|
||||||
|
|
||||||
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
|
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
|
||||||
return ggml_allocr_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
|
return ggml_allocr_alloc_graph_n(alloc, &graph, 1, NULL, NULL);
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t ggml_allocr_max_size(struct ggml_allocr * alloc) {
|
||||||
|
return alloc->max_size;
|
||||||
}
|
}
|
||||||
|
15
ggml-alloc.h
15
ggml-alloc.h
@ -6,20 +6,27 @@
|
|||||||
extern "C" {
|
extern "C" {
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
struct ggml_backend_buffer;
|
||||||
|
|
||||||
GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
|
GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
|
||||||
GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
|
GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
|
||||||
|
GGML_API struct ggml_allocr * ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer);
|
||||||
|
|
||||||
// tell the allocator to parse nodes following the order described in the list
|
// tell the allocator to parse nodes following the order described in the list
|
||||||
// you should call this if your graph are optimized to execute out-of-order
|
// you should call this if your graph are optimized to execute out-of-order
|
||||||
GGML_API void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n);
|
GGML_API void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n);
|
||||||
|
|
||||||
GGML_API void ggml_allocr_free(struct ggml_allocr * alloc);
|
GGML_API void ggml_allocr_free (struct ggml_allocr * alloc);
|
||||||
GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc);
|
GGML_API bool ggml_allocr_is_measure (struct ggml_allocr * alloc);
|
||||||
GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc);
|
GGML_API void ggml_allocr_reset (struct ggml_allocr * alloc);
|
||||||
GGML_API void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor);
|
GGML_API void ggml_allocr_alloc (struct ggml_allocr * alloc, struct ggml_tensor * tensor);
|
||||||
GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph);
|
GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph);
|
||||||
|
GGML_API size_t ggml_allocr_max_size (struct ggml_allocr * alloc);
|
||||||
|
|
||||||
|
GGML_API size_t ggml_allocr_alloc_graph_n(
|
||||||
|
struct ggml_allocr * alloc,
|
||||||
|
struct ggml_cgraph ** graphs, int n_graphs,
|
||||||
|
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs);
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
|
385
ggml-backend.c
Normal file
385
ggml-backend.c
Normal file
@ -0,0 +1,385 @@
|
|||||||
|
#include "ggml-backend.h"
|
||||||
|
#include "ggml-alloc.h"
|
||||||
|
|
||||||
|
#include <assert.h>
|
||||||
|
#include <stdarg.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <string.h>
|
||||||
|
|
||||||
|
#define UNUSED GGML_UNUSED
|
||||||
|
|
||||||
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||||
|
|
||||||
|
// backend buffer
|
||||||
|
|
||||||
|
ggml_backend_buffer_t ggml_backend_buffer_init(
|
||||||
|
struct ggml_backend * backend,
|
||||||
|
struct ggml_backend_buffer_i iface,
|
||||||
|
ggml_backend_buffer_context_t context,
|
||||||
|
size_t size) {
|
||||||
|
ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
|
||||||
|
|
||||||
|
GGML_ASSERT(iface.get_base != NULL);
|
||||||
|
|
||||||
|
(*buffer) = (struct ggml_backend_buffer) {
|
||||||
|
/* .interface = */ iface,
|
||||||
|
/* .backend = */ backend,
|
||||||
|
/* .context = */ context,
|
||||||
|
/* .size = */ size,
|
||||||
|
};
|
||||||
|
|
||||||
|
return buffer;
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
|
||||||
|
if (buffer->iface.free_buffer != NULL) {
|
||||||
|
buffer->iface.free_buffer(buffer);
|
||||||
|
}
|
||||||
|
free(buffer);
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
|
||||||
|
return ggml_backend_get_alignment(buffer->backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||||
|
return buffer->iface.get_base(buffer);
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
|
||||||
|
return buffer->size;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||||
|
if (buffer->iface.get_alloc_size) {
|
||||||
|
return buffer->iface.get_alloc_size(buffer, tensor);
|
||||||
|
}
|
||||||
|
return ggml_nbytes(tensor);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||||
|
if (buffer->iface.init_tensor) {
|
||||||
|
buffer->iface.init_tensor(buffer, tensor);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||||
|
if (buffer->iface.free_tensor) {
|
||||||
|
buffer->iface.free_tensor(buffer, tensor);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// backend
|
||||||
|
|
||||||
|
ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor) {
|
||||||
|
return tensor->buffer->backend;
|
||||||
|
}
|
||||||
|
|
||||||
|
const char * ggml_backend_name(ggml_backend_t backend) {
|
||||||
|
return backend->iface.get_name(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_backend_free(ggml_backend_t backend) {
|
||||||
|
backend->iface.free(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
|
||||||
|
return backend->iface.alloc_buffer(backend, size);
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t ggml_backend_get_alignment(ggml_backend_t backend) {
|
||||||
|
return backend->iface.get_alignment(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_backend_tensor_set_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||||
|
ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||||
|
ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||||
|
ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
|
||||||
|
ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor));
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||||
|
ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
|
||||||
|
ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor));
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_backend_synchronize(ggml_backend_t backend) {
|
||||||
|
backend->iface.synchronize(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||||
|
return backend->iface.graph_plan_create(backend, cgraph);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||||
|
backend->iface.graph_plan_free(backend, plan);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||||
|
backend->iface.graph_plan_compute(backend, plan);
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||||
|
backend->iface.graph_compute(backend, cgraph);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||||
|
return backend->iface.supports_op(backend, op);
|
||||||
|
}
|
||||||
|
|
||||||
|
// backend copy
|
||||||
|
|
||||||
|
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
||||||
|
if (a->type != b->type) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||||
|
if (a->ne[i] != b->ne[i]) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
if (a->nb[i] != b->nb[i]) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||||
|
//printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]);
|
||||||
|
//printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
|
||||||
|
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
|
||||||
|
|
||||||
|
// printf("cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
|
||||||
|
|
||||||
|
if (src == dst) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: allow backends to support copy to/from same backend
|
||||||
|
|
||||||
|
if (ggml_get_backend(dst)->iface.cpy_tensor_from != NULL) {
|
||||||
|
ggml_get_backend(dst)->iface.cpy_tensor_from(ggml_get_backend(dst)->context, src, dst);
|
||||||
|
} else if (ggml_get_backend(src)->iface.cpy_tensor_to != NULL) {
|
||||||
|
ggml_get_backend(src)->iface.cpy_tensor_to(ggml_get_backend(src)->context, src, dst);
|
||||||
|
} else {
|
||||||
|
// shouldn't be hit when copying from/to CPU
|
||||||
|
#ifndef NDEBUG
|
||||||
|
fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to are implemented for backends %s and %s, falling back to get/set\n", ggml_backend_name(src->buffer->backend), ggml_backend_name(dst->buffer->backend));
|
||||||
|
#endif
|
||||||
|
size_t nbytes = ggml_nbytes(src);
|
||||||
|
void * data = malloc(nbytes);
|
||||||
|
ggml_backend_tensor_get(src, data, 0, nbytes);
|
||||||
|
ggml_backend_tensor_set(dst, data, 0, nbytes);
|
||||||
|
free(data);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// backend CPU
|
||||||
|
|
||||||
|
struct ggml_backend_cpu_context {
|
||||||
|
int n_threads;
|
||||||
|
void * work_data;
|
||||||
|
size_t work_size;
|
||||||
|
};
|
||||||
|
|
||||||
|
static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
|
||||||
|
return "CPU";
|
||||||
|
|
||||||
|
UNUSED(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_cpu_free(ggml_backend_t backend) {
|
||||||
|
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
||||||
|
free(cpu_ctx->work_data);
|
||||||
|
free(cpu_ctx);
|
||||||
|
free(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||||
|
return (void *)buffer->context;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||||
|
free(buffer->context);
|
||||||
|
UNUSED(buffer);
|
||||||
|
}
|
||||||
|
|
||||||
|
static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
|
||||||
|
/* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
|
||||||
|
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
|
||||||
|
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||||
|
/* .init_tensor = */ NULL, // no initialization required
|
||||||
|
/* .free_tensor = */ NULL, // no cleanup required
|
||||||
|
};
|
||||||
|
|
||||||
|
// for buffers from ptr, free is not called
|
||||||
|
static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
|
||||||
|
/* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
|
||||||
|
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
|
||||||
|
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||||
|
/* .init_tensor = */ NULL,
|
||||||
|
/* .free_tensor = */ NULL,
|
||||||
|
};
|
||||||
|
|
||||||
|
static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
|
||||||
|
|
||||||
|
static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_t backend, size_t size) {
|
||||||
|
size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
|
||||||
|
void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
|
||||||
|
|
||||||
|
return ggml_backend_buffer_init(backend, cpu_backend_buffer_i, data, size);
|
||||||
|
}
|
||||||
|
|
||||||
|
static size_t ggml_backend_cpu_get_alignment(ggml_backend_t backend) {
|
||||||
|
return TENSOR_ALIGNMENT;
|
||||||
|
UNUSED(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_cpu_set_tensor_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||||
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||||
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||||
|
|
||||||
|
memcpy((char *)tensor->data + offset, data, size);
|
||||||
|
|
||||||
|
UNUSED(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_cpu_get_tensor_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||||
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
||||||
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||||
|
|
||||||
|
memcpy(data, (const char *)tensor->data + offset, size);
|
||||||
|
|
||||||
|
UNUSED(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_cpu_synchronize(ggml_backend_t backend) {
|
||||||
|
UNUSED(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||||
|
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
|
||||||
|
|
||||||
|
UNUSED(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||||
|
// for a backend such as CUDA that can queue async calls, it is ok to do this asynchronously, but it may not be the case for other backends
|
||||||
|
ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src));
|
||||||
|
|
||||||
|
UNUSED(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_backend_plan_cpu {
|
||||||
|
struct ggml_cplan cplan;
|
||||||
|
struct ggml_cgraph cgraph;
|
||||||
|
};
|
||||||
|
|
||||||
|
static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||||
|
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
||||||
|
|
||||||
|
struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
|
||||||
|
|
||||||
|
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
|
||||||
|
cpu_plan->cgraph = *cgraph;
|
||||||
|
|
||||||
|
if (cpu_plan->cplan.work_size > 0) {
|
||||||
|
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
|
||||||
|
}
|
||||||
|
|
||||||
|
return cpu_plan;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||||
|
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
|
||||||
|
|
||||||
|
free(cpu_plan->cplan.work_data);
|
||||||
|
free(cpu_plan);
|
||||||
|
|
||||||
|
UNUSED(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||||
|
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
|
||||||
|
|
||||||
|
ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
|
||||||
|
|
||||||
|
UNUSED(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||||
|
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
||||||
|
|
||||||
|
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
|
||||||
|
|
||||||
|
if (cpu_ctx->work_size < cplan.work_size) {
|
||||||
|
// TODO: may be faster to free and use malloc to avoid the copy
|
||||||
|
cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
|
||||||
|
cpu_ctx->work_size = cplan.work_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
cplan.work_data = cpu_ctx->work_data;
|
||||||
|
|
||||||
|
ggml_graph_compute(cgraph, &cplan);
|
||||||
|
}
|
||||||
|
|
||||||
|
static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||||
|
return true;
|
||||||
|
UNUSED(backend);
|
||||||
|
UNUSED(op);
|
||||||
|
}
|
||||||
|
|
||||||
|
static struct ggml_backend_i cpu_backend_i = {
|
||||||
|
/* .get_name = */ ggml_backend_cpu_name,
|
||||||
|
/* .free = */ ggml_backend_cpu_free,
|
||||||
|
/* .alloc_buffer = */ ggml_backend_cpu_alloc_buffer,
|
||||||
|
/* .get_alignment = */ ggml_backend_cpu_get_alignment,
|
||||||
|
/* .set_tensor_async = */ ggml_backend_cpu_set_tensor_async,
|
||||||
|
/* .get_tensor_async = */ ggml_backend_cpu_get_tensor_async,
|
||||||
|
/* .synchronize = */ ggml_backend_cpu_synchronize,
|
||||||
|
/* .cpy_tensor_from = */ ggml_backend_cpu_cpy_tensor_from,
|
||||||
|
/* .cpy_tensor_to = */ ggml_backend_cpu_cpy_tensor_to,
|
||||||
|
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
|
||||||
|
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
|
||||||
|
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
|
||||||
|
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
|
||||||
|
/* .supports_op = */ ggml_backend_cpu_supports_op,
|
||||||
|
};
|
||||||
|
|
||||||
|
ggml_backend_t ggml_backend_cpu_init(void) {
|
||||||
|
struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
|
||||||
|
|
||||||
|
ctx->n_threads = GGML_DEFAULT_N_THREADS;
|
||||||
|
ctx->work_data = NULL;
|
||||||
|
ctx->work_size = 0;
|
||||||
|
|
||||||
|
ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
|
||||||
|
|
||||||
|
*cpu_backend = (struct ggml_backend) {
|
||||||
|
/* .interface = */ cpu_backend_i,
|
||||||
|
/* .context = */ ctx
|
||||||
|
};
|
||||||
|
return cpu_backend;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool ggml_backend_is_cpu(ggml_backend_t backend) {
|
||||||
|
return backend->iface.get_name == ggml_backend_cpu_name;
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
|
||||||
|
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
|
||||||
|
|
||||||
|
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
|
||||||
|
ctx->n_threads = n_threads;
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size) {
|
||||||
|
return ggml_backend_buffer_init(backend_cpu, cpu_backend_buffer_i_from_ptr, ptr, size);
|
||||||
|
}
|
143
ggml-backend.h
Normal file
143
ggml-backend.h
Normal file
@ -0,0 +1,143 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "ggml.h"
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
extern "C" {
|
||||||
|
#endif
|
||||||
|
struct ggml_backend;
|
||||||
|
struct ggml_backend_buffer;
|
||||||
|
|
||||||
|
// type-erased backend-specific types / wrappers
|
||||||
|
typedef void * ggml_backend_context_t;
|
||||||
|
typedef void * ggml_backend_graph_plan_t;
|
||||||
|
typedef void * ggml_backend_buffer_context_t;
|
||||||
|
|
||||||
|
// avoid accessing internals of these types
|
||||||
|
typedef struct ggml_backend * ggml_backend_t;
|
||||||
|
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
|
||||||
|
|
||||||
|
//
|
||||||
|
// backend buffer
|
||||||
|
//
|
||||||
|
|
||||||
|
struct ggml_backend_buffer_i {
|
||||||
|
void (*free_buffer) (ggml_backend_buffer_t buffer);
|
||||||
|
void * (*get_base) (ggml_backend_buffer_t buffer); // get base pointer
|
||||||
|
size_t (*get_alloc_size)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-allocation callback
|
||||||
|
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // post-allocation callback
|
||||||
|
void (*free_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-free callback
|
||||||
|
};
|
||||||
|
|
||||||
|
// TODO: hide behind API
|
||||||
|
struct ggml_backend_buffer {
|
||||||
|
struct ggml_backend_buffer_i iface;
|
||||||
|
|
||||||
|
ggml_backend_t backend;
|
||||||
|
ggml_backend_buffer_context_t context;
|
||||||
|
|
||||||
|
size_t size;
|
||||||
|
};
|
||||||
|
|
||||||
|
// backend buffer functions
|
||||||
|
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
|
||||||
|
struct ggml_backend * backend,
|
||||||
|
struct ggml_backend_buffer_i iface,
|
||||||
|
ggml_backend_buffer_context_t context,
|
||||||
|
size_t size);
|
||||||
|
|
||||||
|
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
|
||||||
|
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||||
|
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
|
||||||
|
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
||||||
|
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||||
|
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||||
|
GGML_API void ggml_backend_buffer_free_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||||
|
|
||||||
|
//
|
||||||
|
// backend
|
||||||
|
//
|
||||||
|
|
||||||
|
struct ggml_backend_i {
|
||||||
|
const char * (*get_name)(ggml_backend_t backend);
|
||||||
|
|
||||||
|
void (*free)(ggml_backend_t backend);
|
||||||
|
|
||||||
|
// buffer allocation
|
||||||
|
ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_t backend, size_t size);
|
||||||
|
|
||||||
|
// get buffer alignment
|
||||||
|
size_t (*get_alignment)(ggml_backend_t backend);
|
||||||
|
|
||||||
|
// tensor data access
|
||||||
|
// these functions can be asynchronous, helper functions are provided for synchronous access that automatically call synchronize
|
||||||
|
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||||
|
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||||
|
void (*synchronize) (ggml_backend_t backend);
|
||||||
|
|
||||||
|
// (optional) copy tensor between different backends, allow for single-copy tranfers
|
||||||
|
void (*cpy_tensor_from)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||||
|
void (*cpy_tensor_to) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||||
|
|
||||||
|
// compute graph with a plan
|
||||||
|
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||||
|
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||||
|
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||||
|
|
||||||
|
// compute graph without a plan
|
||||||
|
void (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||||
|
|
||||||
|
// check if the backend supports an operation
|
||||||
|
bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||||
|
};
|
||||||
|
|
||||||
|
// TODO: hide behind API
|
||||||
|
struct ggml_backend {
|
||||||
|
struct ggml_backend_i iface;
|
||||||
|
|
||||||
|
ggml_backend_context_t context;
|
||||||
|
};
|
||||||
|
|
||||||
|
// backend helper functions
|
||||||
|
GGML_API ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor);
|
||||||
|
|
||||||
|
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
|
||||||
|
GGML_API void ggml_backend_free(ggml_backend_t backend);
|
||||||
|
|
||||||
|
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
|
||||||
|
|
||||||
|
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
|
||||||
|
|
||||||
|
GGML_API void ggml_backend_tensor_set_async( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||||
|
GGML_API void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||||
|
|
||||||
|
GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||||
|
GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||||
|
|
||||||
|
GGML_API void ggml_backend_synchronize(ggml_backend_t backend);
|
||||||
|
|
||||||
|
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||||
|
|
||||||
|
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||||
|
GGML_API void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||||
|
GGML_API void ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||||
|
GGML_API bool ggml_backend_supports_op (ggml_backend_t backend, const struct ggml_tensor * op);
|
||||||
|
|
||||||
|
// tensor copy between different backends
|
||||||
|
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||||
|
|
||||||
|
//
|
||||||
|
// CPU backend
|
||||||
|
//
|
||||||
|
|
||||||
|
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
|
||||||
|
|
||||||
|
GGML_API bool ggml_backend_is_cpu(ggml_backend_t backend);
|
||||||
|
|
||||||
|
GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads);
|
||||||
|
|
||||||
|
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size);
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
}
|
||||||
|
#endif
|
753
ggml-cuda.cu
753
ggml-cuda.cu
File diff suppressed because it is too large
Load Diff
@ -1,6 +1,7 @@
|
|||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
|
#include "ggml-backend.h"
|
||||||
|
|
||||||
#ifdef GGML_USE_HIPBLAS
|
#ifdef GGML_USE_HIPBLAS
|
||||||
#define GGML_CUDA_NAME "ROCm"
|
#define GGML_CUDA_NAME "ROCm"
|
||||||
@ -42,6 +43,9 @@ GGML_API bool ggml_cuda_compute_forward(struct ggml_compute_params * params, s
|
|||||||
GGML_API int ggml_cuda_get_device_count(void);
|
GGML_API int ggml_cuda_get_device_count(void);
|
||||||
GGML_API void ggml_cuda_get_device_description(int device, char * description, size_t description_size);
|
GGML_API void ggml_cuda_get_device_description(int device, char * description, size_t description_size);
|
||||||
|
|
||||||
|
// backend API
|
||||||
|
GGML_API ggml_backend_t ggml_backend_cuda_init(void); // TODO: take a list of devices to use
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
19
ggml-metal.h
19
ggml-metal.h
@ -20,6 +20,7 @@
|
|||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
|
#include "ggml-backend.h"
|
||||||
|
|
||||||
#include <stddef.h>
|
#include <stddef.h>
|
||||||
#include <stdbool.h>
|
#include <stdbool.h>
|
||||||
@ -35,10 +36,15 @@ struct ggml_cgraph;
|
|||||||
extern "C" {
|
extern "C" {
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data);
|
//
|
||||||
|
// internal API
|
||||||
|
// temporary exposed to user-code
|
||||||
|
//
|
||||||
|
|
||||||
struct ggml_metal_context;
|
struct ggml_metal_context;
|
||||||
|
|
||||||
|
void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data);
|
||||||
|
|
||||||
// number of command buffers to use
|
// number of command buffers to use
|
||||||
struct ggml_metal_context * ggml_metal_init(int n_cb);
|
struct ggml_metal_context * ggml_metal_init(int n_cb);
|
||||||
void ggml_metal_free(struct ggml_metal_context * ctx);
|
void ggml_metal_free(struct ggml_metal_context * ctx);
|
||||||
@ -83,6 +89,17 @@ int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx);
|
|||||||
// creates gf->n_threads command buffers in parallel
|
// creates gf->n_threads command buffers in parallel
|
||||||
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
||||||
|
|
||||||
|
//
|
||||||
|
// backend API
|
||||||
|
// user-code should use only these functions
|
||||||
|
//
|
||||||
|
|
||||||
|
GGML_API ggml_backend_t ggml_backend_metal_init(void);
|
||||||
|
|
||||||
|
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
|
||||||
|
|
||||||
|
GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb);
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
485
ggml-metal.m
485
ggml-metal.m
@ -81,18 +81,18 @@ struct ggml_metal_context {
|
|||||||
GGML_METAL_DECL_KERNEL(get_rows_q6_K);
|
GGML_METAL_DECL_KERNEL(get_rows_q6_K);
|
||||||
GGML_METAL_DECL_KERNEL(rms_norm);
|
GGML_METAL_DECL_KERNEL(rms_norm);
|
||||||
GGML_METAL_DECL_KERNEL(norm);
|
GGML_METAL_DECL_KERNEL(norm);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_f32_f32);
|
GGML_METAL_DECL_KERNEL(mul_mv_f32_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
|
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_1row);
|
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_1row);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_l4);
|
GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_l4);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
|
GGML_METAL_DECL_KERNEL(mul_mv_q4_0_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
|
GGML_METAL_DECL_KERNEL(mul_mv_q4_1_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32);
|
GGML_METAL_DECL_KERNEL(mul_mv_q8_0_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q2_K_f32);
|
GGML_METAL_DECL_KERNEL(mul_mv_q2_K_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q3_K_f32);
|
GGML_METAL_DECL_KERNEL(mul_mv_q3_K_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32);
|
GGML_METAL_DECL_KERNEL(mul_mv_q4_K_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32);
|
GGML_METAL_DECL_KERNEL(mul_mv_q5_K_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32);
|
GGML_METAL_DECL_KERNEL(mul_mv_q6_K_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mm_f32_f32);
|
GGML_METAL_DECL_KERNEL(mul_mm_f32_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
|
GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
|
||||||
GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
|
GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
|
||||||
@ -109,6 +109,8 @@ struct ggml_metal_context {
|
|||||||
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
|
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
|
||||||
GGML_METAL_DECL_KERNEL(cpy_f32_f32);
|
GGML_METAL_DECL_KERNEL(cpy_f32_f32);
|
||||||
GGML_METAL_DECL_KERNEL(cpy_f16_f16);
|
GGML_METAL_DECL_KERNEL(cpy_f16_f16);
|
||||||
|
GGML_METAL_DECL_KERNEL(concat);
|
||||||
|
GGML_METAL_DECL_KERNEL(sqr);
|
||||||
|
|
||||||
#undef GGML_METAL_DECL_KERNEL
|
#undef GGML_METAL_DECL_KERNEL
|
||||||
};
|
};
|
||||||
@ -183,56 +185,44 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||||||
|
|
||||||
ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
|
ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
|
||||||
|
|
||||||
#ifdef GGML_SWIFT
|
// load library
|
||||||
// load the default.metallib file
|
|
||||||
{
|
{
|
||||||
NSError * error = nil;
|
NSBundle * bundle = nil;
|
||||||
|
#ifdef SWIFT_PACKAGE
|
||||||
NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
|
bundle = SWIFTPM_MODULE_BUNDLE;
|
||||||
NSString * llamaBundlePath = [bundle pathForResource:@"llama_llama" ofType:@"bundle"];
|
|
||||||
NSBundle * llamaBundle = [NSBundle bundleWithPath:llamaBundlePath];
|
|
||||||
NSString * libPath = [llamaBundle pathForResource:@"default" ofType:@"metallib"];
|
|
||||||
NSURL * libURL = [NSURL fileURLWithPath:libPath];
|
|
||||||
|
|
||||||
// Load the metallib file into a Metal library
|
|
||||||
ctx->library = [ctx->device newLibraryWithURL:libURL error:&error];
|
|
||||||
|
|
||||||
if (error) {
|
|
||||||
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#else
|
#else
|
||||||
UNUSED(msl_library_source);
|
bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
|
||||||
|
#endif
|
||||||
// read the source from "ggml-metal.metal" into a string and use newLibraryWithSource
|
|
||||||
{
|
|
||||||
NSError * error = nil;
|
NSError * error = nil;
|
||||||
|
NSString * libPath = [bundle pathForResource:@"default" ofType:@"metallib"];
|
||||||
|
if (libPath != nil) {
|
||||||
|
NSURL * libURL = [NSURL fileURLWithPath:libPath];
|
||||||
|
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [libPath UTF8String]);
|
||||||
|
ctx->library = [ctx->device newLibraryWithURL:libURL error:&error];
|
||||||
|
} else {
|
||||||
|
GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
|
||||||
|
|
||||||
//NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"];
|
NSString * sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
|
||||||
NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
|
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [sourcePath UTF8String]);
|
||||||
NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
|
NSString * src = [NSString stringWithContentsOfFile:sourcePath encoding:NSUTF8StringEncoding error:&error];
|
||||||
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [path UTF8String]);
|
if (error) {
|
||||||
|
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
||||||
NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
|
return NULL;
|
||||||
if (error) {
|
}
|
||||||
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
MTLCompileOptions* options = nil;
|
||||||
#ifdef GGML_QKK_64
|
#ifdef GGML_QKK_64
|
||||||
MTLCompileOptions* options = [MTLCompileOptions new];
|
options = [MTLCompileOptions new];
|
||||||
options.preprocessorMacros = @{ @"QK_K" : @(64) };
|
options.preprocessorMacros = @{ @"QK_K" : @(64) };
|
||||||
ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error];
|
|
||||||
#else
|
|
||||||
ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error];
|
|
||||||
#endif
|
#endif
|
||||||
|
ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error];
|
||||||
|
}
|
||||||
|
|
||||||
if (error) {
|
if (error) {
|
||||||
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
||||||
return NULL;
|
return NULL;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif
|
|
||||||
|
|
||||||
// load kernels
|
// load kernels
|
||||||
{
|
{
|
||||||
@ -272,40 +262,57 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||||||
GGML_METAL_ADD_KERNEL(get_rows_q6_K);
|
GGML_METAL_ADD_KERNEL(get_rows_q6_K);
|
||||||
GGML_METAL_ADD_KERNEL(rms_norm);
|
GGML_METAL_ADD_KERNEL(rms_norm);
|
||||||
GGML_METAL_ADD_KERNEL(norm);
|
GGML_METAL_ADD_KERNEL(norm);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_f32_f32);
|
GGML_METAL_ADD_KERNEL(mul_mv_f32_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
|
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_1row);
|
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_1row);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_l4);
|
GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_l4);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
|
GGML_METAL_ADD_KERNEL(mul_mv_q4_0_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
|
GGML_METAL_ADD_KERNEL(mul_mv_q4_1_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32);
|
GGML_METAL_ADD_KERNEL(mul_mv_q8_0_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q2_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mv_q2_K_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q3_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mv_q3_K_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mv_q4_K_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mv_q5_K_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mv_q6_K_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_f32_f32);
|
if ([ctx->device supportsFamily:MTLGPUFamilyApple7]) {
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_f32_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
|
||||||
GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32);
|
GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32);
|
||||||
|
GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32);
|
||||||
|
}
|
||||||
GGML_METAL_ADD_KERNEL(rope_f32);
|
GGML_METAL_ADD_KERNEL(rope_f32);
|
||||||
GGML_METAL_ADD_KERNEL(rope_f16);
|
GGML_METAL_ADD_KERNEL(rope_f16);
|
||||||
GGML_METAL_ADD_KERNEL(alibi_f32);
|
GGML_METAL_ADD_KERNEL(alibi_f32);
|
||||||
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
|
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
|
||||||
GGML_METAL_ADD_KERNEL(cpy_f32_f32);
|
GGML_METAL_ADD_KERNEL(cpy_f32_f32);
|
||||||
GGML_METAL_ADD_KERNEL(cpy_f16_f16);
|
GGML_METAL_ADD_KERNEL(cpy_f16_f16);
|
||||||
|
GGML_METAL_ADD_KERNEL(concat);
|
||||||
|
GGML_METAL_ADD_KERNEL(sqr);
|
||||||
|
|
||||||
#undef GGML_METAL_ADD_KERNEL
|
#undef GGML_METAL_ADD_KERNEL
|
||||||
}
|
}
|
||||||
|
|
||||||
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
|
||||||
#if TARGET_OS_OSX
|
#if TARGET_OS_OSX
|
||||||
|
// print MTL GPU family:
|
||||||
|
GGML_METAL_LOG_INFO("%s: GPU name: %s\n", __func__, [[ctx->device name] UTF8String]);
|
||||||
|
|
||||||
|
// determine max supported GPU family
|
||||||
|
// https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
|
||||||
|
// https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
|
||||||
|
for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) {
|
||||||
|
if ([ctx->device supportsFamily:i]) {
|
||||||
|
GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - MTLGPUFamilyApple1 + 1, i);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
||||||
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||||
if (ctx->device.maxTransferRate != 0) {
|
if (ctx->device.maxTransferRate != 0) {
|
||||||
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
|
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
|
||||||
@ -347,34 +354,38 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
|||||||
GGML_METAL_DEL_KERNEL(get_rows_q6_K);
|
GGML_METAL_DEL_KERNEL(get_rows_q6_K);
|
||||||
GGML_METAL_DEL_KERNEL(rms_norm);
|
GGML_METAL_DEL_KERNEL(rms_norm);
|
||||||
GGML_METAL_DEL_KERNEL(norm);
|
GGML_METAL_DEL_KERNEL(norm);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mat_f32_f32);
|
GGML_METAL_DEL_KERNEL(mul_mv_f32_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32);
|
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_1row);
|
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_1row);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_l4);
|
GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_l4);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mat_q4_0_f32);
|
GGML_METAL_DEL_KERNEL(mul_mv_q4_0_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mat_q4_1_f32);
|
GGML_METAL_DEL_KERNEL(mul_mv_q4_1_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mat_q8_0_f32);
|
GGML_METAL_DEL_KERNEL(mul_mv_q8_0_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mat_q2_K_f32);
|
GGML_METAL_DEL_KERNEL(mul_mv_q2_K_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mat_q3_K_f32);
|
GGML_METAL_DEL_KERNEL(mul_mv_q3_K_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mat_q4_K_f32);
|
GGML_METAL_DEL_KERNEL(mul_mv_q4_K_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mat_q5_K_f32);
|
GGML_METAL_DEL_KERNEL(mul_mv_q5_K_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mat_q6_K_f32);
|
GGML_METAL_DEL_KERNEL(mul_mv_q6_K_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_f32_f32);
|
if ([ctx->device supportsFamily:MTLGPUFamilyApple7]) {
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_f16_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_f32_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_f16_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_q4_1_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_q2_K_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_q4_1_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_q3_K_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_q2_K_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_q3_K_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_q5_K_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32);
|
||||||
GGML_METAL_DEL_KERNEL(mul_mm_q6_K_f32);
|
GGML_METAL_DEL_KERNEL(mul_mm_q5_K_f32);
|
||||||
|
GGML_METAL_DEL_KERNEL(mul_mm_q6_K_f32);
|
||||||
|
}
|
||||||
GGML_METAL_DEL_KERNEL(rope_f32);
|
GGML_METAL_DEL_KERNEL(rope_f32);
|
||||||
GGML_METAL_DEL_KERNEL(rope_f16);
|
GGML_METAL_DEL_KERNEL(rope_f16);
|
||||||
GGML_METAL_DEL_KERNEL(alibi_f32);
|
GGML_METAL_DEL_KERNEL(alibi_f32);
|
||||||
GGML_METAL_DEL_KERNEL(cpy_f32_f16);
|
GGML_METAL_DEL_KERNEL(cpy_f32_f16);
|
||||||
GGML_METAL_DEL_KERNEL(cpy_f32_f32);
|
GGML_METAL_DEL_KERNEL(cpy_f32_f32);
|
||||||
GGML_METAL_DEL_KERNEL(cpy_f16_f16);
|
GGML_METAL_DEL_KERNEL(cpy_f16_f16);
|
||||||
|
GGML_METAL_DEL_KERNEL(concat);
|
||||||
|
GGML_METAL_DEL_KERNEL(sqr);
|
||||||
|
|
||||||
#undef GGML_METAL_DEL_KERNEL
|
#undef GGML_METAL_DEL_KERNEL
|
||||||
|
|
||||||
@ -431,7 +442,7 @@ static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, stru
|
|||||||
for (int i = 0; i < ctx->n_buffers; ++i) {
|
for (int i = 0; i < ctx->n_buffers; ++i) {
|
||||||
const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
|
const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
|
||||||
|
|
||||||
//metal_printf("ioffs = %10ld, tsize = %10ld, sum = %10ld, ctx->buffers[%d].size = %10ld, name = %s\n", ioffs, tsize, ioffs + tsize, i, ctx->buffers[i].size, ctx->buffers[i].name);
|
//GGML_METAL_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, ctx->buffers[%d].size = %10ld, name = %s\n", ioffs, tsize, ioffs + tsize, i, ctx->buffers[i].size, ctx->buffers[i].name);
|
||||||
if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) {
|
if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) {
|
||||||
*offs = (size_t) ioffs;
|
*offs = (size_t) ioffs;
|
||||||
|
|
||||||
@ -766,6 +777,44 @@ void ggml_metal_graph_compute(
|
|||||||
{
|
{
|
||||||
// noop
|
// noop
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_OP_CONCAT:
|
||||||
|
{
|
||||||
|
const int64_t nb = ne00;
|
||||||
|
|
||||||
|
[encoder setComputePipelineState:ctx->pipeline_concat];
|
||||||
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||||
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||||
|
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
||||||
|
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
|
||||||
|
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
|
||||||
|
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
|
||||||
|
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
|
||||||
|
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8];
|
||||||
|
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9];
|
||||||
|
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10];
|
||||||
|
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
|
||||||
|
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
|
||||||
|
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
|
||||||
|
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
|
||||||
|
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
|
||||||
|
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
|
||||||
|
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
|
||||||
|
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
|
||||||
|
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19];
|
||||||
|
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20];
|
||||||
|
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21];
|
||||||
|
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22];
|
||||||
|
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23];
|
||||||
|
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24];
|
||||||
|
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25];
|
||||||
|
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26];
|
||||||
|
[encoder setBytes:&nb length:sizeof(nb) atIndex:27];
|
||||||
|
|
||||||
|
const int nth = MIN(1024, ne0);
|
||||||
|
|
||||||
|
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||||
|
} break;
|
||||||
case GGML_OP_ADD:
|
case GGML_OP_ADD:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||||
@ -861,9 +910,10 @@ void ggml_metal_graph_compute(
|
|||||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||||
[encoder setBytes:&scale length:sizeof(scale) atIndex:2];
|
[encoder setBytes:&scale length:sizeof(scale) atIndex:2];
|
||||||
|
|
||||||
const int64_t n = ggml_nelements(dst)/4;
|
const int64_t n = ggml_nelements(dst);
|
||||||
|
GGML_ASSERT(n % 4 == 0);
|
||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_UNARY:
|
case GGML_OP_UNARY:
|
||||||
switch (ggml_get_unary_op(gf->nodes[i])) {
|
switch (ggml_get_unary_op(gf->nodes[i])) {
|
||||||
@ -873,9 +923,10 @@ void ggml_metal_graph_compute(
|
|||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||||
|
|
||||||
const int64_t n = ggml_nelements(dst)/4;
|
const int64_t n = ggml_nelements(dst);
|
||||||
|
GGML_ASSERT(n % 4 == 0);
|
||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
case GGML_UNARY_OP_RELU:
|
case GGML_UNARY_OP_RELU:
|
||||||
{
|
{
|
||||||
@ -893,9 +944,10 @@ void ggml_metal_graph_compute(
|
|||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||||
|
|
||||||
const int64_t n = ggml_nelements(dst)/4;
|
const int64_t n = ggml_nelements(dst);
|
||||||
|
GGML_ASSERT(n % 4 == 0);
|
||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
default:
|
default:
|
||||||
{
|
{
|
||||||
@ -903,6 +955,17 @@ void ggml_metal_graph_compute(
|
|||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_OP_SQR:
|
||||||
|
{
|
||||||
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||||
|
|
||||||
|
[encoder setComputePipelineState:ctx->pipeline_sqr];
|
||||||
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||||
|
|
||||||
|
const int64_t n = ggml_nelements(dst);
|
||||||
|
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
|
} break;
|
||||||
case GGML_OP_SOFT_MAX:
|
case GGML_OP_SOFT_MAX:
|
||||||
{
|
{
|
||||||
const int nth = MIN(32, ne00);
|
const int nth = MIN(32, ne00);
|
||||||
@ -944,21 +1007,46 @@ void ggml_metal_graph_compute(
|
|||||||
} break;
|
} break;
|
||||||
case GGML_OP_MUL_MAT:
|
case GGML_OP_MUL_MAT:
|
||||||
{
|
{
|
||||||
// TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224
|
|
||||||
|
|
||||||
GGML_ASSERT(ne00 == ne10);
|
GGML_ASSERT(ne00 == ne10);
|
||||||
// GGML_ASSERT(ne02 == ne12); // Should be checked on individual data types until broadcast is implemented everywhere
|
|
||||||
uint gqa = ne12/ne02;
|
|
||||||
GGML_ASSERT(ne03 == ne13);
|
GGML_ASSERT(ne03 == ne13);
|
||||||
|
|
||||||
|
const uint gqa = ne12/ne02;
|
||||||
|
|
||||||
|
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
|
||||||
|
// to the matrix-vector kernel
|
||||||
|
int ne11_mm_min = 1;
|
||||||
|
|
||||||
|
#if 0
|
||||||
|
// the numbers below are measured on M2 Ultra for 7B and 13B models
|
||||||
|
// these numbers do not translate to other devices or model sizes
|
||||||
|
// TODO: need to find a better approach
|
||||||
|
if ([ctx->device.name isEqualToString:@"Apple M2 Ultra"]) {
|
||||||
|
switch (src0t) {
|
||||||
|
case GGML_TYPE_F16: ne11_mm_min = 2; break;
|
||||||
|
case GGML_TYPE_Q8_0: ne11_mm_min = 7; break;
|
||||||
|
case GGML_TYPE_Q2_K: ne11_mm_min = 15; break;
|
||||||
|
case GGML_TYPE_Q3_K: ne11_mm_min = 7; break;
|
||||||
|
case GGML_TYPE_Q4_0:
|
||||||
|
case GGML_TYPE_Q4_1: ne11_mm_min = 15; break;
|
||||||
|
case GGML_TYPE_Q4_K: ne11_mm_min = 11; break;
|
||||||
|
case GGML_TYPE_Q5_0: // not tested yet
|
||||||
|
case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet
|
||||||
|
case GGML_TYPE_Q5_K: ne11_mm_min = 7; break;
|
||||||
|
case GGML_TYPE_Q6_K: ne11_mm_min = 7; break;
|
||||||
|
default: ne11_mm_min = 1; break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
|
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
|
||||||
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
|
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
|
||||||
if (!ggml_is_transposed(src0) &&
|
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
|
||||||
|
!ggml_is_transposed(src0) &&
|
||||||
!ggml_is_transposed(src1) &&
|
!ggml_is_transposed(src1) &&
|
||||||
src1t == GGML_TYPE_F32 &&
|
src1t == GGML_TYPE_F32 &&
|
||||||
[ctx->device supportsFamily:MTLGPUFamilyApple7] &&
|
ne00 % 32 == 0 && ne00 >= 64 &&
|
||||||
ne00%32 == 0 &&
|
ne11 > ne11_mm_min) {
|
||||||
ne11 > 2) {
|
//printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
|
||||||
switch (src0->type) {
|
switch (src0->type) {
|
||||||
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f32_f32]; break;
|
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f32_f32]; break;
|
||||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
|
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
|
||||||
@ -987,17 +1075,18 @@ void ggml_metal_graph_compute(
|
|||||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12];
|
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12];
|
||||||
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:13];
|
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:13];
|
||||||
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
|
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake( (ne11+31)/32, (ne01+63) / 64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||||
} else {
|
} else {
|
||||||
int nth0 = 32;
|
int nth0 = 32;
|
||||||
int nth1 = 1;
|
int nth1 = 1;
|
||||||
int nrows = 1;
|
int nrows = 1;
|
||||||
|
//printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
|
||||||
|
|
||||||
// use custom matrix x vector kernel
|
// use custom matrix x vector kernel
|
||||||
switch (src0t) {
|
switch (src0t) {
|
||||||
case GGML_TYPE_F32:
|
case GGML_TYPE_F32:
|
||||||
{
|
{
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f32_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f32_f32];
|
||||||
nrows = 4;
|
nrows = 4;
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_F16:
|
case GGML_TYPE_F16:
|
||||||
@ -1005,12 +1094,12 @@ void ggml_metal_graph_compute(
|
|||||||
nth0 = 32;
|
nth0 = 32;
|
||||||
nth1 = 1;
|
nth1 = 1;
|
||||||
if (ne11 * ne12 < 4) {
|
if (ne11 * ne12 < 4) {
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_1row];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_1row];
|
||||||
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
|
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_l4];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_l4];
|
||||||
nrows = ne11;
|
nrows = ne11;
|
||||||
} else {
|
} else {
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32];
|
||||||
nrows = 4;
|
nrows = 4;
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
@ -1021,7 +1110,7 @@ void ggml_metal_graph_compute(
|
|||||||
|
|
||||||
nth0 = 8;
|
nth0 = 8;
|
||||||
nth1 = 8;
|
nth1 = 8;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_0_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q4_1:
|
case GGML_TYPE_Q4_1:
|
||||||
{
|
{
|
||||||
@ -1030,7 +1119,7 @@ void ggml_metal_graph_compute(
|
|||||||
|
|
||||||
nth0 = 8;
|
nth0 = 8;
|
||||||
nth1 = 8;
|
nth1 = 8;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_1_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q8_0:
|
case GGML_TYPE_Q8_0:
|
||||||
{
|
{
|
||||||
@ -1039,7 +1128,7 @@ void ggml_metal_graph_compute(
|
|||||||
|
|
||||||
nth0 = 8;
|
nth0 = 8;
|
||||||
nth1 = 8;
|
nth1 = 8;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q8_0_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q8_0_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q2_K:
|
case GGML_TYPE_Q2_K:
|
||||||
{
|
{
|
||||||
@ -1048,7 +1137,7 @@ void ggml_metal_graph_compute(
|
|||||||
|
|
||||||
nth0 = 2;
|
nth0 = 2;
|
||||||
nth1 = 32;
|
nth1 = 32;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_K_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q2_K_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q3_K:
|
case GGML_TYPE_Q3_K:
|
||||||
{
|
{
|
||||||
@ -1057,7 +1146,7 @@ void ggml_metal_graph_compute(
|
|||||||
|
|
||||||
nth0 = 2;
|
nth0 = 2;
|
||||||
nth1 = 32;
|
nth1 = 32;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q3_K_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q4_K:
|
case GGML_TYPE_Q4_K:
|
||||||
{
|
{
|
||||||
@ -1066,7 +1155,7 @@ void ggml_metal_graph_compute(
|
|||||||
|
|
||||||
nth0 = 4; //1;
|
nth0 = 4; //1;
|
||||||
nth1 = 8; //32;
|
nth1 = 8; //32;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_K_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_K_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q5_K:
|
case GGML_TYPE_Q5_K:
|
||||||
{
|
{
|
||||||
@ -1075,7 +1164,7 @@ void ggml_metal_graph_compute(
|
|||||||
|
|
||||||
nth0 = 2;
|
nth0 = 2;
|
||||||
nth1 = 32;
|
nth1 = 32;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_K_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_K_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q6_K:
|
case GGML_TYPE_Q6_K:
|
||||||
{
|
{
|
||||||
@ -1084,7 +1173,7 @@ void ggml_metal_graph_compute(
|
|||||||
|
|
||||||
nth0 = 2;
|
nth0 = 2;
|
||||||
nth1 = 32;
|
nth1 = 32;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_K_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mv_q6_K_f32];
|
||||||
} break;
|
} break;
|
||||||
default:
|
default:
|
||||||
{
|
{
|
||||||
@ -1113,7 +1202,7 @@ void ggml_metal_graph_compute(
|
|||||||
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
|
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
|
||||||
|
|
||||||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q8_0 ||
|
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q8_0 ||
|
||||||
src0t == GGML_TYPE_Q2_K) {// || src0t == GGML_TYPE_Q4_K) {
|
src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
}
|
||||||
else if (src0t == GGML_TYPE_Q4_K) {
|
else if (src0t == GGML_TYPE_Q4_K) {
|
||||||
@ -1166,6 +1255,8 @@ void ggml_metal_graph_compute(
|
|||||||
} break;
|
} break;
|
||||||
case GGML_OP_RMS_NORM:
|
case GGML_OP_RMS_NORM:
|
||||||
{
|
{
|
||||||
|
GGML_ASSERT(ne00 % 4 == 0);
|
||||||
|
|
||||||
float eps;
|
float eps;
|
||||||
memcpy(&eps, dst->op_params, sizeof(float));
|
memcpy(&eps, dst->op_params, sizeof(float));
|
||||||
|
|
||||||
@ -1213,12 +1304,9 @@ void ggml_metal_graph_compute(
|
|||||||
float max_bias;
|
float max_bias;
|
||||||
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
|
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
|
||||||
|
|
||||||
if (__builtin_popcount(n_head) != 1) {
|
|
||||||
GGML_ASSERT(false && "only power-of-two n_head implemented");
|
|
||||||
}
|
|
||||||
|
|
||||||
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
|
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
|
||||||
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
|
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
|
||||||
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
|
||||||
|
|
||||||
[encoder setComputePipelineState:ctx->pipeline_alibi_f32];
|
[encoder setComputePipelineState:ctx->pipeline_alibi_f32];
|
||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
@ -1239,7 +1327,9 @@ void ggml_metal_graph_compute(
|
|||||||
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
|
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
|
||||||
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
|
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
|
||||||
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
|
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
|
||||||
[encoder setBytes:&m0 length:sizeof( float) atIndex:18];
|
[encoder setBytes:&m0 length:sizeof( float) atIndex:18];
|
||||||
|
[encoder setBytes:&m1 length:sizeof( float) atIndex:19];
|
||||||
|
[encoder setBytes:&n_heads_log2_floor length:sizeof(int) atIndex:20];
|
||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
@ -1372,3 +1462,140 @@ void ggml_metal_graph_compute(
|
|||||||
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
// backend interface
|
||||||
|
|
||||||
|
static const char * ggml_backend_metal_name(ggml_backend_t backend) {
|
||||||
|
return "Metal";
|
||||||
|
|
||||||
|
UNUSED(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_metal_free(ggml_backend_t backend) {
|
||||||
|
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
|
||||||
|
ggml_metal_free(ctx);
|
||||||
|
free(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||||
|
return (void *)buffer->context;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||||
|
free(buffer->context);
|
||||||
|
UNUSED(buffer);
|
||||||
|
}
|
||||||
|
|
||||||
|
static struct ggml_backend_buffer_i metal_backend_buffer_i = {
|
||||||
|
/* .free_buffer = */ ggml_backend_metal_buffer_free_buffer,
|
||||||
|
/* .get_base = */ ggml_backend_metal_buffer_get_base,
|
||||||
|
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||||
|
/* .init_tensor = */ NULL, // no initialization required
|
||||||
|
/* .free_tensor = */ NULL, // no cleanup required
|
||||||
|
};
|
||||||
|
|
||||||
|
static ggml_backend_buffer_t ggml_backend_metal_alloc_buffer(ggml_backend_t backend, size_t size) {
|
||||||
|
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
|
||||||
|
|
||||||
|
void * data = ggml_metal_host_malloc(size);
|
||||||
|
|
||||||
|
// TODO: set proper name of the buffers
|
||||||
|
ggml_metal_add_buffer(ctx, "backend", data, size, 0);
|
||||||
|
|
||||||
|
return ggml_backend_buffer_init(backend, metal_backend_buffer_i, data, size);
|
||||||
|
}
|
||||||
|
|
||||||
|
static size_t ggml_backend_metal_get_alignment(ggml_backend_t backend) {
|
||||||
|
return 32;
|
||||||
|
UNUSED(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_metal_set_tensor_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||||
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||||
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||||
|
|
||||||
|
memcpy((char *)tensor->data + offset, data, size);
|
||||||
|
|
||||||
|
UNUSED(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_metal_get_tensor_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||||
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
||||||
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||||
|
|
||||||
|
memcpy(data, (const char *)tensor->data + offset, size);
|
||||||
|
|
||||||
|
UNUSED(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_metal_synchronize(ggml_backend_t backend) {
|
||||||
|
UNUSED(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_metal_cpy_tensor_from(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||||
|
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
|
||||||
|
|
||||||
|
UNUSED(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_metal_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||||
|
ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src));
|
||||||
|
|
||||||
|
UNUSED(backend);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||||
|
struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context;
|
||||||
|
|
||||||
|
ggml_metal_graph_compute(metal_ctx, cgraph);
|
||||||
|
}
|
||||||
|
|
||||||
|
static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||||
|
return true;
|
||||||
|
UNUSED(backend);
|
||||||
|
UNUSED(op);
|
||||||
|
}
|
||||||
|
|
||||||
|
static struct ggml_backend_i metal_backend_i = {
|
||||||
|
/* .get_name = */ ggml_backend_metal_name,
|
||||||
|
/* .free = */ ggml_backend_metal_free,
|
||||||
|
/* .alloc_buffer = */ ggml_backend_metal_alloc_buffer,
|
||||||
|
/* .get_alignment = */ ggml_backend_metal_get_alignment,
|
||||||
|
/* .set_tensor_async = */ ggml_backend_metal_set_tensor_async,
|
||||||
|
/* .get_tensor_async = */ ggml_backend_metal_get_tensor_async,
|
||||||
|
/* .synchronize = */ ggml_backend_metal_synchronize,
|
||||||
|
/* .cpy_tensor_from = */ ggml_backend_metal_cpy_tensor_from,
|
||||||
|
/* .cpy_tensor_to = */ ggml_backend_metal_cpy_tensor_to,
|
||||||
|
/* .graph_plan_create = */ NULL, // the metal implementation does not require creating graph plans atm
|
||||||
|
/* .graph_plan_free = */ NULL,
|
||||||
|
/* .graph_plan_compute = */ NULL,
|
||||||
|
/* .graph_compute = */ ggml_backend_metal_graph_compute,
|
||||||
|
/* .supports_op = */ ggml_backend_metal_supports_op,
|
||||||
|
};
|
||||||
|
|
||||||
|
ggml_backend_t ggml_backend_metal_init(void) {
|
||||||
|
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
|
||||||
|
|
||||||
|
ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS);
|
||||||
|
|
||||||
|
ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend));
|
||||||
|
|
||||||
|
*metal_backend = (struct ggml_backend) {
|
||||||
|
/* .interface = */ metal_backend_i,
|
||||||
|
/* .context = */ ctx,
|
||||||
|
};
|
||||||
|
|
||||||
|
return metal_backend;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool ggml_backend_is_metal(ggml_backend_t backend) {
|
||||||
|
return backend->iface.get_name == ggml_backend_metal_name;
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
|
||||||
|
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
|
||||||
|
|
||||||
|
ggml_metal_set_n_cb(ctx, n_cb);
|
||||||
|
}
|
||||||
|
184
ggml-metal.metal
184
ggml-metal.metal
@ -13,8 +13,8 @@ typedef struct {
|
|||||||
|
|
||||||
#define QK4_1 32
|
#define QK4_1 32
|
||||||
typedef struct {
|
typedef struct {
|
||||||
half d; // delta
|
half d; // delta
|
||||||
half m; // min
|
half m; // min
|
||||||
uint8_t qs[QK4_1 / 2]; // nibbles / quants
|
uint8_t qs[QK4_1 / 2]; // nibbles / quants
|
||||||
} block_q4_1;
|
} block_q4_1;
|
||||||
|
|
||||||
@ -132,6 +132,13 @@ kernel void kernel_relu(
|
|||||||
dst[tpig] = max(0.0f, src0[tpig]);
|
dst[tpig] = max(0.0f, src0[tpig]);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
kernel void kernel_sqr(
|
||||||
|
device const float * src0,
|
||||||
|
device float * dst,
|
||||||
|
uint tpig[[thread_position_in_grid]]) {
|
||||||
|
dst[tpig] = src0[tpig] * src0[tpig];
|
||||||
|
}
|
||||||
|
|
||||||
constant float GELU_COEF_A = 0.044715f;
|
constant float GELU_COEF_A = 0.044715f;
|
||||||
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||||||
|
|
||||||
@ -338,10 +345,11 @@ kernel void kernel_rms_norm(
|
|||||||
uint sgitg[[simdgroup_index_in_threadgroup]],
|
uint sgitg[[simdgroup_index_in_threadgroup]],
|
||||||
uint tiisg[[thread_index_in_simdgroup]],
|
uint tiisg[[thread_index_in_simdgroup]],
|
||||||
uint ntg[[threads_per_threadgroup]]) {
|
uint ntg[[threads_per_threadgroup]]) {
|
||||||
device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
|
device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
|
||||||
device const float * x_scalar = (device const float *) x;
|
device const float * x_scalar = (device const float *) x;
|
||||||
float4 sumf=0;
|
|
||||||
float all_sum=0;
|
float4 sumf = 0;
|
||||||
|
float all_sum = 0;
|
||||||
|
|
||||||
// parallel sum
|
// parallel sum
|
||||||
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
|
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
|
||||||
@ -354,6 +362,7 @@ kernel void kernel_rms_norm(
|
|||||||
}
|
}
|
||||||
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
|
|
||||||
// broadcast, simd group number is ntg / 32
|
// broadcast, simd group number is ntg / 32
|
||||||
for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
|
for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
|
||||||
if (tpitg < i) {
|
if (tpitg < i) {
|
||||||
@ -361,7 +370,9 @@ kernel void kernel_rms_norm(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (tpitg == 0) {
|
if (tpitg == 0) {
|
||||||
for (int i = 4 * (ne00 / 4); i < ne00; i++) {sum[0] += x_scalar[i];}
|
for (int i = 4 * (ne00 / 4); i < ne00; i++) {
|
||||||
|
sum[0] += x_scalar[i];
|
||||||
|
}
|
||||||
sum[0] /= ne00;
|
sum[0] /= ne00;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -376,7 +387,9 @@ kernel void kernel_rms_norm(
|
|||||||
y[i00] = x[i00] * scale;
|
y[i00] = x[i00] * scale;
|
||||||
}
|
}
|
||||||
if (tpitg == 0) {
|
if (tpitg == 0) {
|
||||||
for (int i00 = 4 * (ne00 / 4); i00 < ne00; i00++) {y_scalar[i00] = x_scalar[i00] * scale;}
|
for (int i00 = 4 * (ne00 / 4); i00 < ne00; i00++) {
|
||||||
|
y_scalar[i00] = x_scalar[i00] * scale;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -416,8 +429,8 @@ inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thre
|
|||||||
}
|
}
|
||||||
|
|
||||||
// putting them in the kernel cause a significant performance penalty
|
// putting them in the kernel cause a significant performance penalty
|
||||||
#define N_DST 4 // each SIMD group works on 4 rows
|
#define N_DST 4 // each SIMD group works on 4 rows
|
||||||
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
|
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
|
||||||
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
|
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
|
||||||
//Note: This is a template, but strictly speaking it only applies to
|
//Note: This is a template, but strictly speaking it only applies to
|
||||||
// quantizations where the block size is 32. It also does not
|
// quantizations where the block size is 32. It also does not
|
||||||
@ -428,18 +441,23 @@ void mul_vec_q_n_f32(device const void * src0, device const float * src1, device
|
|||||||
int64_t ne00, int64_t ne01, int64_t ne02, int64_t ne10, int64_t ne12, int64_t ne0, int64_t ne1, uint gqa,
|
int64_t ne00, int64_t ne01, int64_t ne02, int64_t ne10, int64_t ne12, int64_t ne0, int64_t ne1, uint gqa,
|
||||||
uint3 tgpig, uint tiisg, uint sgitg) {
|
uint3 tgpig, uint tiisg, uint sgitg) {
|
||||||
const int nb = ne00/QK4_0;
|
const int nb = ne00/QK4_0;
|
||||||
|
|
||||||
const int r0 = tgpig.x;
|
const int r0 = tgpig.x;
|
||||||
const int r1 = tgpig.y;
|
const int r1 = tgpig.y;
|
||||||
const int im = tgpig.z;
|
const int im = tgpig.z;
|
||||||
|
|
||||||
const int first_row = (r0 * nsg + sgitg) * nr;
|
const int first_row = (r0 * nsg + sgitg) * nr;
|
||||||
|
|
||||||
const uint offset0 = first_row * nb + im/gqa*(nb*ne0);
|
const uint offset0 = first_row * nb + im/gqa*(nb*ne0);
|
||||||
|
|
||||||
device const block_q_type * x = (device const block_q_type *) src0 + offset0;
|
device const block_q_type * x = (device const block_q_type *) src0 + offset0;
|
||||||
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||||
float yl[16]; // src1 vector cache
|
|
||||||
float sumf[nr]={0.f};
|
|
||||||
|
|
||||||
const int ix = tiisg/2;
|
float yl[16]; // src1 vector cache
|
||||||
const int il = 8*(tiisg%2);
|
float sumf[nr] = {0.f};
|
||||||
|
|
||||||
|
const int ix = (tiisg/2);
|
||||||
|
const int il = (tiisg%2)*8;
|
||||||
|
|
||||||
device const float * yb = y + ix * QK4_0 + il;
|
device const float * yb = y + ix * QK4_0 + il;
|
||||||
|
|
||||||
@ -450,6 +468,7 @@ void mul_vec_q_n_f32(device const void * src0, device const float * src1, device
|
|||||||
sumy += yb[i] + yb[i+1];
|
sumy += yb[i] + yb[i+1];
|
||||||
yl[i+0] = yb[i+ 0];
|
yl[i+0] = yb[i+ 0];
|
||||||
yl[i+1] = yb[i+ 1]/256.f;
|
yl[i+1] = yb[i+ 1]/256.f;
|
||||||
|
|
||||||
sumy += yb[i+16] + yb[i+17];
|
sumy += yb[i+16] + yb[i+17];
|
||||||
yl[i+8] = yb[i+16]/16.f;
|
yl[i+8] = yb[i+16]/16.f;
|
||||||
yl[i+9] = yb[i+17]/4096.f;
|
yl[i+9] = yb[i+17]/4096.f;
|
||||||
@ -465,12 +484,12 @@ void mul_vec_q_n_f32(device const void * src0, device const float * src1, device
|
|||||||
for (int row = 0; row < nr; ++row) {
|
for (int row = 0; row < nr; ++row) {
|
||||||
const float tot = simd_sum(sumf[row]);
|
const float tot = simd_sum(sumf[row]);
|
||||||
if (tiisg == 0 && first_row + row < ne01) {
|
if (tiisg == 0 && first_row + row < ne01) {
|
||||||
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
|
dst[im*ne0*ne1 + r1*ne0 + first_row + row] = tot;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel void kernel_mul_mat_q4_0_f32(
|
kernel void kernel_mul_mv_q4_0_f32(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
@ -483,12 +502,12 @@ kernel void kernel_mul_mat_q4_0_f32(
|
|||||||
constant int64_t & ne1[[buffer(16)]],
|
constant int64_t & ne1[[buffer(16)]],
|
||||||
constant uint & gqa[[buffer(17)]],
|
constant uint & gqa[[buffer(17)]],
|
||||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||||
uint tiisg[[thread_index_in_simdgroup]],
|
uint tiisg[[thread_index_in_simdgroup]],
|
||||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||||
mul_vec_q_n_f32<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
|
mul_vec_q_n_f32<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel void kernel_mul_mat_q4_1_f32(
|
kernel void kernel_mul_mv_q4_1_f32(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
@ -508,7 +527,7 @@ kernel void kernel_mul_mat_q4_1_f32(
|
|||||||
|
|
||||||
#define NB_Q8_0 8
|
#define NB_Q8_0 8
|
||||||
|
|
||||||
kernel void kernel_mul_mat_q8_0_f32(
|
kernel void kernel_mul_mv_q8_0_f32(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
@ -572,7 +591,7 @@ kernel void kernel_mul_mat_q8_0_f32(
|
|||||||
|
|
||||||
#define N_F32_F32 4
|
#define N_F32_F32 4
|
||||||
|
|
||||||
kernel void kernel_mul_mat_f32_f32(
|
kernel void kernel_mul_mv_f32_f32(
|
||||||
device const char * src0,
|
device const char * src0,
|
||||||
device const char * src1,
|
device const char * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
@ -643,7 +662,7 @@ kernel void kernel_mul_mat_f32_f32(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel void kernel_mul_mat_f16_f32_1row(
|
kernel void kernel_mul_mv_f16_f32_1row(
|
||||||
device const char * src0,
|
device const char * src0,
|
||||||
device const char * src1,
|
device const char * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
@ -662,7 +681,7 @@ kernel void kernel_mul_mat_f16_f32_1row(
|
|||||||
constant int64_t & ne0,
|
constant int64_t & ne0,
|
||||||
constant int64_t & ne1,
|
constant int64_t & ne1,
|
||||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||||
uint tiisg[[thread_index_in_simdgroup]]) {
|
uint tiisg[[thread_index_in_simdgroup]]) {
|
||||||
|
|
||||||
const int64_t r0 = tgpig.x;
|
const int64_t r0 = tgpig.x;
|
||||||
const int64_t r1 = tgpig.y;
|
const int64_t r1 = tgpig.y;
|
||||||
@ -697,7 +716,7 @@ kernel void kernel_mul_mat_f16_f32_1row(
|
|||||||
|
|
||||||
#define N_F16_F32 4
|
#define N_F16_F32 4
|
||||||
|
|
||||||
kernel void kernel_mul_mat_f16_f32(
|
kernel void kernel_mul_mv_f16_f32(
|
||||||
device const char * src0,
|
device const char * src0,
|
||||||
device const char * src1,
|
device const char * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
@ -769,7 +788,7 @@ kernel void kernel_mul_mat_f16_f32(
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Assumes row size (ne00) is a multiple of 4
|
// Assumes row size (ne00) is a multiple of 4
|
||||||
kernel void kernel_mul_mat_f16_f32_l4(
|
kernel void kernel_mul_mv_f16_f32_l4(
|
||||||
device const char * src0,
|
device const char * src0,
|
||||||
device const char * src1,
|
device const char * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
@ -830,7 +849,9 @@ kernel void kernel_alibi_f32(
|
|||||||
constant uint64_t & nb1,
|
constant uint64_t & nb1,
|
||||||
constant uint64_t & nb2,
|
constant uint64_t & nb2,
|
||||||
constant uint64_t & nb3,
|
constant uint64_t & nb3,
|
||||||
constant float & m0,
|
constant float & m0,
|
||||||
|
constant float & m1,
|
||||||
|
constant int & n_heads_log2_floor,
|
||||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||||
uint3 ntg[[threads_per_threadgroup]]) {
|
uint3 ntg[[threads_per_threadgroup]]) {
|
||||||
@ -846,7 +867,12 @@ kernel void kernel_alibi_f32(
|
|||||||
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
|
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
|
||||||
|
|
||||||
device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||||
float m_k = pow(m0, i2 + 1);
|
float m_k;
|
||||||
|
if (i2 < n_heads_log2_floor) {
|
||||||
|
m_k = pow(m0, i2 + 1);
|
||||||
|
} else {
|
||||||
|
m_k = pow(m1, 2 * (i2 - n_heads_log2_floor) + 1);
|
||||||
|
}
|
||||||
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
|
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
|
||||||
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
||||||
dst_data[i00] = src[0] + m_k * (i00 - ne00 + 1);
|
dst_data[i00] = src[0] + m_k * (i00 - ne00 + 1);
|
||||||
@ -1091,6 +1117,62 @@ kernel void kernel_cpy_f32_f32(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
kernel void kernel_concat(
|
||||||
|
device const char * src0,
|
||||||
|
device const char * src1,
|
||||||
|
device char * dst,
|
||||||
|
constant int64_t & ne00,
|
||||||
|
constant int64_t & ne01,
|
||||||
|
constant int64_t & ne02,
|
||||||
|
constant int64_t & ne03,
|
||||||
|
constant uint64_t & nb00,
|
||||||
|
constant uint64_t & nb01,
|
||||||
|
constant uint64_t & nb02,
|
||||||
|
constant uint64_t & nb03,
|
||||||
|
constant int64_t & ne10,
|
||||||
|
constant int64_t & ne11,
|
||||||
|
constant int64_t & ne12,
|
||||||
|
constant int64_t & ne13,
|
||||||
|
constant uint64_t & nb10,
|
||||||
|
constant uint64_t & nb11,
|
||||||
|
constant uint64_t & nb12,
|
||||||
|
constant uint64_t & nb13,
|
||||||
|
constant int64_t & ne0,
|
||||||
|
constant int64_t & ne1,
|
||||||
|
constant int64_t & ne2,
|
||||||
|
constant int64_t & ne3,
|
||||||
|
constant uint64_t & nb0,
|
||||||
|
constant uint64_t & nb1,
|
||||||
|
constant uint64_t & nb2,
|
||||||
|
constant uint64_t & nb3,
|
||||||
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||||
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||||
|
uint3 ntg[[threads_per_threadgroup]]) {
|
||||||
|
|
||||||
|
const int64_t i03 = tgpig.z;
|
||||||
|
const int64_t i02 = tgpig.y;
|
||||||
|
const int64_t i01 = tgpig.x;
|
||||||
|
|
||||||
|
const int64_t i13 = i03 % ne13;
|
||||||
|
const int64_t i12 = i02 % ne12;
|
||||||
|
const int64_t i11 = i01 % ne11;
|
||||||
|
|
||||||
|
device const char * src0_ptr = src0 + i03 * nb03 + i02 * nb02 + i01 * nb01 + tpitg.x*nb00;
|
||||||
|
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10;
|
||||||
|
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0;
|
||||||
|
|
||||||
|
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
||||||
|
if (i02 < ne02) {
|
||||||
|
((device float *)dst_ptr)[0] = ((device float *)src0_ptr)[0];
|
||||||
|
src0_ptr += ntg.x*nb00;
|
||||||
|
} else {
|
||||||
|
((device float *)dst_ptr)[0] = ((device float *)src1_ptr)[0];
|
||||||
|
src1_ptr += ntg.x*nb10;
|
||||||
|
}
|
||||||
|
dst_ptr += ntg.x*nb0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
//============================================ k-quants ======================================================
|
//============================================ k-quants ======================================================
|
||||||
|
|
||||||
#ifndef QK_K
|
#ifndef QK_K
|
||||||
@ -1183,7 +1265,7 @@ static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) {
|
|||||||
|
|
||||||
//====================================== dot products =========================
|
//====================================== dot products =========================
|
||||||
|
|
||||||
kernel void kernel_mul_mat_q2_K_f32(
|
kernel void kernel_mul_mv_q2_K_f32(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
@ -1327,7 +1409,7 @@ kernel void kernel_mul_mat_q2_K_f32(
|
|||||||
}
|
}
|
||||||
|
|
||||||
#if QK_K == 256
|
#if QK_K == 256
|
||||||
kernel void kernel_mul_mat_q3_K_f32(
|
kernel void kernel_mul_mv_q3_K_f32(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
@ -1479,7 +1561,7 @@ kernel void kernel_mul_mat_q3_K_f32(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
kernel void kernel_mul_mat_q3_K_f32(
|
kernel void kernel_mul_mv_q3_K_f32(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
@ -1550,7 +1632,7 @@ kernel void kernel_mul_mat_q3_K_f32(
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if QK_K == 256
|
#if QK_K == 256
|
||||||
kernel void kernel_mul_mat_q4_K_f32(
|
kernel void kernel_mul_mv_q4_K_f32(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
@ -1656,7 +1738,7 @@ kernel void kernel_mul_mat_q4_K_f32(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
kernel void kernel_mul_mat_q4_K_f32(
|
kernel void kernel_mul_mv_q4_K_f32(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
@ -1745,7 +1827,7 @@ kernel void kernel_mul_mat_q4_K_f32(
|
|||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
kernel void kernel_mul_mat_q5_K_f32(
|
kernel void kernel_mul_mv_q5_K_f32(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
@ -1918,7 +2000,7 @@ kernel void kernel_mul_mat_q5_K_f32(
|
|||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel void kernel_mul_mat_q6_K_f32(
|
kernel void kernel_mul_mv_q6_K_f32(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
@ -2256,7 +2338,7 @@ kernel void kernel_get_rows(
|
|||||||
}
|
}
|
||||||
|
|
||||||
#define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A
|
#define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A
|
||||||
#define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix A
|
#define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B
|
||||||
#define BLOCK_SIZE_K 32
|
#define BLOCK_SIZE_K 32
|
||||||
#define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A
|
#define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A
|
||||||
#define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B
|
#define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B
|
||||||
@ -2293,9 +2375,11 @@ kernel void kernel_mul_mm(device const uchar * src0,
|
|||||||
const uint r0 = tgpig.y;
|
const uint r0 = tgpig.y;
|
||||||
const uint r1 = tgpig.x;
|
const uint r1 = tgpig.x;
|
||||||
const uint im = tgpig.z;
|
const uint im = tgpig.z;
|
||||||
|
|
||||||
// if this block is of 64x32 shape or smaller
|
// if this block is of 64x32 shape or smaller
|
||||||
short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
|
short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
|
||||||
short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
|
short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
|
||||||
|
|
||||||
// a thread shouldn't load data outside of the matrix
|
// a thread shouldn't load data outside of the matrix
|
||||||
short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
|
short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
|
||||||
short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
|
short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
|
||||||
@ -2319,26 +2403,30 @@ kernel void kernel_mul_mm(device const uchar * src0,
|
|||||||
+ nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
|
+ nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
|
||||||
|
|
||||||
for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
|
for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
|
||||||
//load data and store to threadgroup memory
|
// load data and store to threadgroup memory
|
||||||
half4x4 temp_a;
|
half4x4 temp_a;
|
||||||
dequantize_func(x, il, temp_a);
|
dequantize_func(x, il, temp_a);
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
|
|
||||||
#pragma unroll(16)
|
#pragma unroll(16)
|
||||||
for (int i = 0; i < 16; i++) {
|
for (int i = 0; i < 16; i++) {
|
||||||
*(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
|
*(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
|
||||||
+ 16 * (tiitg % THREAD_PER_ROW) + 8 * (i / 8)) \
|
+ (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \
|
||||||
+ (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
|
+ (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
|
||||||
}
|
}
|
||||||
*(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) \
|
|
||||||
= *((device float2x4 *)y);
|
*(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y);
|
||||||
|
|
||||||
il = (il + 2 < nl) ? il + 2 : il % 2;
|
il = (il + 2 < nl) ? il + 2 : il % 2;
|
||||||
x = (il < 2) ? x + (2+nl-1)/nl : x;
|
x = (il < 2) ? x + (2+nl-1)/nl : x;
|
||||||
y += BLOCK_SIZE_K;
|
y += BLOCK_SIZE_K;
|
||||||
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
//load matrices from threadgroup memory and conduct outer products
|
|
||||||
|
// load matrices from threadgroup memory and conduct outer products
|
||||||
threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
|
threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
|
||||||
threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
|
threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
|
||||||
|
|
||||||
#pragma unroll(4)
|
#pragma unroll(4)
|
||||||
for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
|
for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
|
||||||
#pragma unroll(4)
|
#pragma unroll(4)
|
||||||
@ -2353,6 +2441,7 @@ kernel void kernel_mul_mm(device const uchar * src0,
|
|||||||
|
|
||||||
lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
|
lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
|
||||||
lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
|
lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
|
||||||
|
|
||||||
#pragma unroll(8)
|
#pragma unroll(8)
|
||||||
for (int i = 0; i < 8; i++){
|
for (int i = 0; i < 8; i++){
|
||||||
simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
|
simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
|
||||||
@ -2361,25 +2450,26 @@ kernel void kernel_mul_mm(device const uchar * src0,
|
|||||||
}
|
}
|
||||||
|
|
||||||
if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) {
|
if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) {
|
||||||
device float *C = dst + BLOCK_SIZE_M * r0 + 32 * (sgitg&1) \
|
device float * C = dst + (BLOCK_SIZE_M * r0 + 32 * (sgitg & 1)) \
|
||||||
+ (BLOCK_SIZE_N * r1 + 16 * (sgitg>>1)) * ne0 + im*ne1*ne0;
|
+ (BLOCK_SIZE_N * r1 + 16 * (sgitg >> 1)) * ne0 + im*ne1*ne0;
|
||||||
for (int i = 0; i < 8; i++) {
|
for (int i = 0; i < 8; i++) {
|
||||||
simdgroup_store(c_res[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0);
|
simdgroup_store(c_res[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
// block is smaller than 64x32, we should avoid writing data outside of the matrix
|
// block is smaller than 64x32, we should avoid writing data outside of the matrix
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
threadgroup float *temp_str = ((threadgroup float *)shared_memory) \
|
threadgroup float * temp_str = ((threadgroup float *)shared_memory) \
|
||||||
+ 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
|
+ 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
|
||||||
for (int i = 0; i < 8; i++) {
|
for (int i = 0; i < 8; i++) {
|
||||||
simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
|
simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
|
||||||
}
|
}
|
||||||
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
device float *C = dst + BLOCK_SIZE_M * r0 + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0;
|
|
||||||
if (sgitg==0) {
|
device float * C = dst + (BLOCK_SIZE_M * r0) + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0;
|
||||||
|
if (sgitg == 0) {
|
||||||
for (int i = 0; i < n_rows; i++) {
|
for (int i = 0; i < n_rows; i++) {
|
||||||
for (int j = tiitg; j< n_cols; j += BLOCK_SIZE_N) {
|
for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
|
||||||
*(C + i + j * ne0) = *(temp_str + i + j * BLOCK_SIZE_M);
|
*(C + i + j * ne0) = *(temp_str + i + j * BLOCK_SIZE_M);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
172
ggml-opencl.cpp
172
ggml-opencl.cpp
@ -202,14 +202,14 @@ inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8
|
|||||||
|
|
||||||
__kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy)
|
__kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy)
|
||||||
{
|
{
|
||||||
const int i = get_group_id(0);
|
const int i = get_group_id(0) + get_global_offset(0);
|
||||||
const int tid = get_local_id(0);
|
const int tid = get_local_id(0);
|
||||||
const int n = tid / 32;
|
const int n = tid / 32;
|
||||||
const int l = tid - 32 * n;
|
const int l = tid - 32 * n;
|
||||||
const int is = 8 * n + l / 16;
|
const int is = 8 * n + l / 16;
|
||||||
|
|
||||||
const uint8_t q = x[i].qs[32 * n + l];
|
const uint8_t q = x[i].qs[32 * n + l];
|
||||||
__global float *y = yy + i * QK_K + 128 * n;
|
__global float *y = yy + get_group_id(0) * QK_K + 128 * n;
|
||||||
|
|
||||||
const float dall = vload_half(0, &x[i].d);
|
const float dall = vload_half(0, &x[i].d);
|
||||||
const float dmin = vload_half(0, &x[i].dmin);
|
const float dmin = vload_half(0, &x[i].dmin);
|
||||||
@ -223,7 +223,7 @@ __kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __globa
|
|||||||
__kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy)
|
__kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy)
|
||||||
{
|
{
|
||||||
int r = get_local_id(0) / 4;
|
int r = get_local_id(0) / 4;
|
||||||
int i = get_group_id(0);
|
int i = get_group_id(0) + get_global_offset(0);
|
||||||
int tid = r / 2;
|
int tid = r / 2;
|
||||||
int is0 = r % 2;
|
int is0 = r % 2;
|
||||||
int l0 = 16 * is0 + 4 * (get_local_id(0) % 4);
|
int l0 = 16 * is0 + 4 * (get_local_id(0) % 4);
|
||||||
@ -241,7 +241,7 @@ __kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __globa
|
|||||||
float d_all = vload_half(0, &x[i].d);
|
float d_all = vload_half(0, &x[i].d);
|
||||||
float dl = d_all * (us - 32);
|
float dl = d_all * (us - 32);
|
||||||
|
|
||||||
__global float *y = yy + i * QK_K + 128 * n + 32 * j;
|
__global float *y = yy + get_group_id(0) * QK_K + 128 * n + 32 * j;
|
||||||
const __global uint8_t *q = x[i].qs + 32 * n;
|
const __global uint8_t *q = x[i].qs + 32 * n;
|
||||||
const __global uint8_t *hm = x[i].hmask;
|
const __global uint8_t *hm = x[i].hmask;
|
||||||
|
|
||||||
@ -251,14 +251,14 @@ __kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __globa
|
|||||||
|
|
||||||
__kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy)
|
__kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy)
|
||||||
{
|
{
|
||||||
const int i = get_group_id(0);
|
const int i = get_group_id(0) + get_global_offset(0);
|
||||||
const int tid = get_local_id(0);
|
const int tid = get_local_id(0);
|
||||||
const int il = tid / 8;
|
const int il = tid / 8;
|
||||||
const int ir = tid % 8;
|
const int ir = tid % 8;
|
||||||
const int is = 2 * il;
|
const int is = 2 * il;
|
||||||
const int n = 4;
|
const int n = 4;
|
||||||
|
|
||||||
__global float *y = yy + i * QK_K + 64 * il + n * ir;
|
__global float *y = yy + get_group_id(0) * QK_K + 64 * il + n * ir;
|
||||||
|
|
||||||
const float dall = vload_half(0, &x[i].d);
|
const float dall = vload_half(0, &x[i].d);
|
||||||
const float dmin = vload_half(0, &x[i].dmin);
|
const float dmin = vload_half(0, &x[i].dmin);
|
||||||
@ -281,13 +281,13 @@ __kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __globa
|
|||||||
|
|
||||||
__kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy)
|
__kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy)
|
||||||
{
|
{
|
||||||
const int i = get_group_id(0);
|
const int i = get_group_id(0) + get_global_offset(0);
|
||||||
const int tid = get_local_id(0);
|
const int tid = get_local_id(0);
|
||||||
const int il = tid / 16;
|
const int il = tid / 16;
|
||||||
const int ir = tid % 16;
|
const int ir = tid % 16;
|
||||||
const int is = 2 * il;
|
const int is = 2 * il;
|
||||||
|
|
||||||
__global float *y = yy + i * QK_K + 64 * il + 2 * ir;
|
__global float *y = yy + get_group_id(0) * QK_K + 64 * il + 2 * ir;
|
||||||
|
|
||||||
const float dall = vload_half(0, &x[i].d);
|
const float dall = vload_half(0, &x[i].d);
|
||||||
const float dmin = vload_half(0, &x[i].dmin);
|
const float dmin = vload_half(0, &x[i].dmin);
|
||||||
@ -313,13 +313,13 @@ __kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __globa
|
|||||||
|
|
||||||
__kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy)
|
__kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy)
|
||||||
{
|
{
|
||||||
const int i = get_group_id(0);
|
const int i = get_group_id(0) + get_global_offset(0);
|
||||||
const int tid = get_local_id(0);
|
const int tid = get_local_id(0);
|
||||||
const int ip = tid / 32;
|
const int ip = tid / 32;
|
||||||
const int il = tid - 32 * ip;
|
const int il = tid - 32 * ip;
|
||||||
const int is = 8 * ip + il / 16;
|
const int is = 8 * ip + il / 16;
|
||||||
|
|
||||||
__global float *y = yy + i * QK_K + 128 * ip + il;
|
__global float *y = yy + get_group_id(0) * QK_K + 128 * ip + il;
|
||||||
|
|
||||||
const float d = vload_half(0, &x[i].d);
|
const float d = vload_half(0, &x[i].d);
|
||||||
|
|
||||||
@ -730,7 +730,7 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
|
|||||||
const uint qk = QUANT_K;
|
const uint qk = QUANT_K;
|
||||||
const uint qr = QUANT_R;
|
const uint qr = QUANT_R;
|
||||||
|
|
||||||
const int ib = i/qk; // block index
|
const int ib = i/qk + get_global_offset(0); // block index
|
||||||
const int iqs = (i%qk)/qr; // quant index
|
const int iqs = (i%qk)/qr; // quant index
|
||||||
const int iybs = i - i%qk; // y block start index
|
const int iybs = i - i%qk; // y block start index
|
||||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||||
@ -1349,30 +1349,42 @@ static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t o
|
|||||||
const enum ggml_type type = src->type;
|
const enum ggml_type type = src->type;
|
||||||
const size_t ts = ggml_type_size(type);
|
const size_t ts = ggml_type_size(type);
|
||||||
const size_t bs = ggml_blck_size(type);
|
const size_t bs = ggml_blck_size(type);
|
||||||
|
const uint64_t row_size = ts*ne0/bs;
|
||||||
|
|
||||||
const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
|
const char * x = (const char *) src->data + i2*nb2 + i3*nb3;
|
||||||
if (nb0 == ts && nb1 == ts*ne0/bs) {
|
if (nb0 == ts && nb1 == row_size) {
|
||||||
err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev);
|
return clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*row_size, x, 0, NULL, ev);
|
||||||
return err;
|
|
||||||
}
|
}
|
||||||
if (nb0 == ts) {
|
if (nb0 == ts) {
|
||||||
const size_t buffer_origin[3] = { offset, 0, 0 };
|
const size_t buffer_origin[3] = { offset, 0, 0 };
|
||||||
const size_t host_origin[3] = { 0, 0, 0 };
|
const size_t host_origin[3] = { 0, 0, 0 };
|
||||||
const size_t region[3] = { ts*ne0/bs, ne1, 1 };
|
const size_t region[3] = { row_size, ne1, 1 };
|
||||||
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev);
|
return clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, row_size, 0, nb1, 0, x, 0, NULL, ev);
|
||||||
return err;
|
|
||||||
}
|
}
|
||||||
|
std::vector<cl_event> events;
|
||||||
|
if (ev && ne1>1) events.reserve(ne1-1);
|
||||||
for (uint64_t i1 = 0; i1 < ne1; i1++) {
|
for (uint64_t i1 = 0; i1 < ne1; i1++) {
|
||||||
// pretend the row is a matrix with cols=1
|
// pretend the row is a matrix with cols=1
|
||||||
const size_t buffer_origin[3] = { offset, i1, 0 };
|
const size_t buffer_origin[3] = { offset + i1*row_size, 0, 0 };
|
||||||
const size_t host_origin[3] = { 0, 0, 0 };
|
const size_t host_origin[3] = { 0, 0, 0 };
|
||||||
const size_t region[3] = { ts/bs, ne0, 1 };
|
const size_t region[3] = { ts, ne0/bs, 1 };
|
||||||
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev);
|
// if an event is requested, make the last write wait for all previous writes to complete
|
||||||
|
if (ev && i1) {
|
||||||
|
events.push_back(*ev);
|
||||||
|
}
|
||||||
|
cl_uint nevents = i1 == ne1-1 ? events.size() : 0U;
|
||||||
|
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts, 0, nb0, 0, x + i1*nb1, nevents, nevents ? events.data() : nullptr, ev);
|
||||||
if (err != CL_SUCCESS) {
|
if (err != CL_SUCCESS) {
|
||||||
break;
|
for (auto event : events) {
|
||||||
|
clReleaseEvent(event);
|
||||||
|
}
|
||||||
|
return err;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return err;
|
for (auto event : events) {
|
||||||
|
CL_CHECK(clReleaseEvent(event));
|
||||||
|
}
|
||||||
|
return CL_SUCCESS;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
@ -1476,10 +1488,15 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
|
|
||||||
const int64_t ne10 = src1->ne[0];
|
const int64_t ne10 = src1->ne[0];
|
||||||
const int64_t ne11 = src1->ne[1];
|
const int64_t ne11 = src1->ne[1];
|
||||||
|
const int64_t ne12 = src1->ne[2];
|
||||||
|
const int64_t ne13 = src1->ne[3];
|
||||||
|
|
||||||
const int nb2 = dst->nb[2];
|
const int nb2 = dst->nb[2];
|
||||||
const int nb3 = dst->nb[3];
|
const int nb3 = dst->nb[3];
|
||||||
|
|
||||||
|
const int64_t r2 = ne12 / ne02;
|
||||||
|
const int64_t r3 = ne13 / ne03;
|
||||||
|
|
||||||
const float alpha = 1.0f;
|
const float alpha = 1.0f;
|
||||||
const float beta = 0.0f;
|
const float beta = 0.0f;
|
||||||
const int x_ne = ne01 * ne00;
|
const int x_ne = ne01 * ne00;
|
||||||
@ -1498,13 +1515,25 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||||
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||||
|
|
||||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
size_t x_offset = 0;
|
||||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
int64_t pi02 = -1;
|
||||||
|
int64_t pi03 = -1;
|
||||||
|
|
||||||
|
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||||
|
int64_t i03 = i13 / r3;
|
||||||
|
|
||||||
|
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||||
|
int64_t i02 = i12 / r2;
|
||||||
|
|
||||||
// copy data to device
|
// copy data to device
|
||||||
if (src0->backend != GGML_BACKEND_GPU) {
|
if (src0->backend == GGML_BACKEND_GPU) {
|
||||||
|
x_offset = (i03 * ne02 + i02) * x_ne;
|
||||||
|
} else if (i02 != pi02 || i03 != pi03) {
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
||||||
|
pi02 = i02;
|
||||||
|
pi03 = i03;
|
||||||
}
|
}
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
||||||
|
|
||||||
CL_CHECK(clFinish(queue));
|
CL_CHECK(clFinish(queue));
|
||||||
|
|
||||||
@ -1514,7 +1543,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
||||||
ne01, ne11, ne10,
|
ne01, ne11, ne10,
|
||||||
alpha,
|
alpha,
|
||||||
d_X, 0, ne00,
|
d_X, x_offset, ne00,
|
||||||
d_Y, 0, ne10,
|
d_Y, 0, ne10,
|
||||||
beta,
|
beta,
|
||||||
d_D, 0, ne01,
|
d_D, 0, ne01,
|
||||||
@ -1525,7 +1554,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
}
|
}
|
||||||
|
|
||||||
// copy dst to host
|
// copy dst to host
|
||||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -1547,6 +1576,8 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
|
|
||||||
const int64_t ne10 = src1->ne[0];
|
const int64_t ne10 = src1->ne[0];
|
||||||
const int64_t ne11 = src1->ne[1];
|
const int64_t ne11 = src1->ne[1];
|
||||||
|
const int64_t ne12 = src1->ne[2];
|
||||||
|
const int64_t ne13 = src1->ne[3];
|
||||||
|
|
||||||
const int nb10 = src1->nb[0];
|
const int nb10 = src1->nb[0];
|
||||||
const int nb11 = src1->nb[1];
|
const int nb11 = src1->nb[1];
|
||||||
@ -1556,6 +1587,9 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
const int nb2 = dst->nb[2];
|
const int nb2 = dst->nb[2];
|
||||||
const int nb3 = dst->nb[3];
|
const int nb3 = dst->nb[3];
|
||||||
|
|
||||||
|
const int64_t r2 = ne12 / ne02;
|
||||||
|
const int64_t r3 = ne13 / ne03;
|
||||||
|
|
||||||
const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
|
const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
|
||||||
const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
|
const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
|
||||||
const int x_ne = ne01 * ne00;
|
const int x_ne = ne01 * ne00;
|
||||||
@ -1577,32 +1611,44 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
bool src1_cont_rows = nb10 == sizeof(float);
|
bool src1_cont_rows = nb10 == sizeof(float);
|
||||||
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
|
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
|
||||||
|
|
||||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
size_t x_offset = 0;
|
||||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
int64_t pi02 = -1;
|
||||||
|
int64_t pi03 = -1;
|
||||||
|
|
||||||
|
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||||
|
int64_t i03 = i13 / r3;
|
||||||
|
|
||||||
|
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||||
|
int64_t i02 = i12 / r2;
|
||||||
|
|
||||||
// copy src0 to device
|
// copy src0 to device
|
||||||
if (src0->backend != GGML_BACKEND_GPU) {
|
if (src0->backend == GGML_BACKEND_GPU) {
|
||||||
|
x_offset = (i03 * ne02 + i02) * x_ne;
|
||||||
|
} else if (i02 != pi02 || i03 != pi03) {
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
||||||
|
pi02 = i02;
|
||||||
|
pi03 = i03;
|
||||||
}
|
}
|
||||||
|
|
||||||
// convert src1 to fp16
|
// convert src1 to fp16
|
||||||
// TODO: use multiple threads
|
// TODO: use multiple threads
|
||||||
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
|
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i13 * ne12 + i12);
|
||||||
char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
|
char * src1i = (char *) src1->data + i13*nb13 + i12*nb12;
|
||||||
if (src1_cont_rows) {
|
if (src1_cont_rows) {
|
||||||
if (src1_cont_cols) {
|
if (src1_cont_cols) {
|
||||||
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
|
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
for (int64_t i01 = 0; i01 < ne11; i01++) {
|
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
||||||
ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
|
ggml_fp32_to_fp16_row((float *) (src1i + i11*nb11), tmp + i11*ne10, ne10);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
for (int64_t i01 = 0; i01 < ne11; i01++) {
|
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
||||||
for (int64_t i00 = 0; i00 < ne10; i00++) {
|
for (int64_t i10 = 0; i10 < ne10; i10++) {
|
||||||
// very slow due to no inlining
|
// very slow due to no inlining
|
||||||
tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
|
tmp[i11*ne10 + i10] = ggml_fp32_to_fp16(*(float *) (src1i + i11*nb11 + i10*nb10));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -1618,7 +1664,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
||||||
ne01, ne11, ne10,
|
ne01, ne11, ne10,
|
||||||
alpha,
|
alpha,
|
||||||
d_X, 0, ne00,
|
d_X, x_offset, ne00,
|
||||||
d_Y, 0, ne10,
|
d_Y, 0, ne10,
|
||||||
beta,
|
beta,
|
||||||
d_D, 0, ne01,
|
d_D, 0, ne01,
|
||||||
@ -1631,7 +1677,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
|||||||
// copy dst to host, then convert to float
|
// copy dst to host, then convert to float
|
||||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
|
||||||
|
|
||||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||||
|
|
||||||
ggml_fp16_to_fp32_row(tmp, d, d_ne);
|
ggml_fp16_to_fp32_row(tmp, d, d_ne);
|
||||||
}
|
}
|
||||||
@ -1652,18 +1698,24 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
|||||||
|
|
||||||
const int64_t ne10 = src1->ne[0];
|
const int64_t ne10 = src1->ne[0];
|
||||||
const int64_t ne11 = src1->ne[1];
|
const int64_t ne11 = src1->ne[1];
|
||||||
|
const int64_t ne12 = src1->ne[2];
|
||||||
|
const int64_t ne13 = src1->ne[3];
|
||||||
|
|
||||||
const int nb2 = dst->nb[2];
|
const int nb2 = dst->nb[2];
|
||||||
const int nb3 = dst->nb[3];
|
const int nb3 = dst->nb[3];
|
||||||
const ggml_type type = src0->type;
|
const ggml_type type = src0->type;
|
||||||
const bool mul_mat_vec = ne11 == 1;
|
const bool mul_mat_vec = ne11 == 1;
|
||||||
|
|
||||||
|
const int64_t r2 = ne12 / ne02;
|
||||||
|
const int64_t r3 = ne13 / ne03;
|
||||||
|
|
||||||
const float alpha = 1.0f;
|
const float alpha = 1.0f;
|
||||||
const float beta = 0.0f;
|
const float beta = 0.0f;
|
||||||
const int x_ne = ne01 * ne00;
|
const int x_ne = ne01 * ne00;
|
||||||
const int y_ne = ne11 * ne10;
|
const int y_ne = ne11 * ne10;
|
||||||
const int d_ne = ne11 * ne01;
|
const int d_ne = ne11 * ne01;
|
||||||
const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
|
const int x_bps = x_ne / ggml_blck_size(type); // blocks per 2D slice
|
||||||
|
const size_t q_sz = ggml_type_size(type) * x_bps;
|
||||||
|
|
||||||
size_t x_size;
|
size_t x_size;
|
||||||
size_t y_size;
|
size_t y_size;
|
||||||
@ -1690,12 +1742,23 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
|||||||
size_t ev_idx = 0;
|
size_t ev_idx = 0;
|
||||||
std::vector<cl_event> events;
|
std::vector<cl_event> events;
|
||||||
|
|
||||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
int64_t pi02 = -1;
|
||||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
int64_t pi03 = -1;
|
||||||
|
|
||||||
|
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||||
|
int64_t i03 = i13 / r3;
|
||||||
|
|
||||||
|
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||||
|
int64_t i02 = i12 / r2;
|
||||||
|
|
||||||
// copy src0 to device if necessary
|
// copy src0 to device if necessary
|
||||||
if (src0->backend == GGML_BACKEND_CPU) {
|
if (src0->backend == GGML_BACKEND_CPU) {
|
||||||
events.emplace_back();
|
if (i02 != pi02 || i03 != pi03) {
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
|
events.emplace_back();
|
||||||
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
|
||||||
|
pi02 = i02;
|
||||||
|
pi03 = i03;
|
||||||
|
}
|
||||||
} else if (src0->backend == GGML_BACKEND_GPU) {
|
} else if (src0->backend == GGML_BACKEND_GPU) {
|
||||||
d_Q = (cl_mem) src0->extra;
|
d_Q = (cl_mem) src0->extra;
|
||||||
} else {
|
} else {
|
||||||
@ -1704,7 +1767,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
|||||||
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
|
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
|
||||||
// copy src1 to device
|
// copy src1 to device
|
||||||
events.emplace_back();
|
events.emplace_back();
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, events.data() + ev_idx++));
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, events.data() + ev_idx++));
|
||||||
|
|
||||||
// compute
|
// compute
|
||||||
const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
|
const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
|
||||||
@ -1720,12 +1783,13 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
|||||||
} else { // general dequantization kernel + CLBlast matrix matrix multiplication
|
} else { // general dequantization kernel + CLBlast matrix matrix multiplication
|
||||||
// convert src0 to fp32 on device
|
// convert src0 to fp32 on device
|
||||||
const size_t global = x_ne / global_denom;
|
const size_t global = x_ne / global_denom;
|
||||||
|
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
||||||
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
|
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
|
||||||
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
|
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
|
||||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
|
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, offset > 0 ? &offset : NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
|
||||||
|
|
||||||
// copy src1 to device
|
// copy src1 to device
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
||||||
|
|
||||||
events.emplace_back();
|
events.emplace_back();
|
||||||
|
|
||||||
@ -1749,7 +1813,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
|||||||
}
|
}
|
||||||
|
|
||||||
// copy dst to host
|
// copy dst to host
|
||||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
|
||||||
for (auto *event : events) {
|
for (auto *event : events) {
|
||||||
clReleaseEvent(event);
|
clReleaseEvent(event);
|
||||||
@ -1844,17 +1908,19 @@ void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
|
|||||||
const int64_t ne3 = tensor->ne[3];
|
const int64_t ne3 = tensor->ne[3];
|
||||||
|
|
||||||
const ggml_type type = tensor->type;
|
const ggml_type type = tensor->type;
|
||||||
const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
|
const size_t s_sz = ggml_type_size(type) * (size_t) (ne0 * ne1 / ggml_blck_size(type));
|
||||||
|
const size_t q_sz = s_sz * (size_t) (ne2 * ne3);
|
||||||
|
|
||||||
size_t q_size;
|
size_t q_size;
|
||||||
cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size);
|
cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size);
|
||||||
|
|
||||||
tensor->data = data;
|
tensor->data = data;
|
||||||
// copy tensor to device
|
// copy tensor to device
|
||||||
|
size_t offset = 0;
|
||||||
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
||||||
for (int64_t i2 = 0; i2 < ne2; i2++) {
|
for (int64_t i2 = 0; i2 < ne2; i2++) {
|
||||||
int i = i3*ne2 + i2;
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, offset, tensor, i3, i2, NULL));
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, i*ne0*ne1, tensor, i3, i2, NULL));
|
offset += s_sz;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
124
ggml.h
124
ggml.h
@ -214,8 +214,8 @@
|
|||||||
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
|
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
|
||||||
|
|
||||||
#define GGML_MAX_DIMS 4
|
#define GGML_MAX_DIMS 4
|
||||||
#define GGML_MAX_NODES 4096
|
#define GGML_MAX_NODES 16384
|
||||||
#define GGML_MAX_PARAMS 256
|
#define GGML_MAX_PARAMS 1024
|
||||||
#define GGML_MAX_CONTEXTS 64
|
#define GGML_MAX_CONTEXTS 64
|
||||||
#define GGML_MAX_SRC 6
|
#define GGML_MAX_SRC 6
|
||||||
#define GGML_MAX_NAME 64
|
#define GGML_MAX_NAME 64
|
||||||
@ -248,6 +248,14 @@
|
|||||||
} \
|
} \
|
||||||
} while (0)
|
} while (0)
|
||||||
|
|
||||||
|
#ifndef NDEBUG
|
||||||
|
#define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
|
||||||
|
#elif defined(__GNUC__)
|
||||||
|
#define GGML_UNREACHABLE() __builtin_unreachable()
|
||||||
|
#else
|
||||||
|
#define GGML_UNREACHABLE() ((void) 0)
|
||||||
|
#endif
|
||||||
|
|
||||||
// used to copy the number of elements and stride in bytes of tensors into local variables.
|
// used to copy the number of elements and stride in bytes of tensors into local variables.
|
||||||
// main purpose is to reduce code duplication and improve readability.
|
// main purpose is to reduce code duplication and improve readability.
|
||||||
//
|
//
|
||||||
@ -318,7 +326,7 @@ extern "C" {
|
|||||||
GGML_TYPE_COUNT,
|
GGML_TYPE_COUNT,
|
||||||
};
|
};
|
||||||
|
|
||||||
enum ggml_backend {
|
enum ggml_backend_type {
|
||||||
GGML_BACKEND_CPU = 0,
|
GGML_BACKEND_CPU = 0,
|
||||||
GGML_BACKEND_GPU = 10,
|
GGML_BACKEND_GPU = 10,
|
||||||
GGML_BACKEND_GPU_SPLIT = 20,
|
GGML_BACKEND_GPU_SPLIT = 20,
|
||||||
@ -393,10 +401,14 @@ extern "C" {
|
|||||||
GGML_OP_CLAMP,
|
GGML_OP_CLAMP,
|
||||||
GGML_OP_CONV_1D,
|
GGML_OP_CONV_1D,
|
||||||
GGML_OP_CONV_2D,
|
GGML_OP_CONV_2D,
|
||||||
|
GGML_OP_CONV_TRANSPOSE_1D,
|
||||||
GGML_OP_CONV_TRANSPOSE_2D,
|
GGML_OP_CONV_TRANSPOSE_2D,
|
||||||
GGML_OP_POOL_1D,
|
GGML_OP_POOL_1D,
|
||||||
GGML_OP_POOL_2D,
|
GGML_OP_POOL_2D,
|
||||||
|
|
||||||
|
GGML_OP_CONV_1D_STAGE_0, // internal
|
||||||
|
GGML_OP_CONV_1D_STAGE_1, // internal
|
||||||
|
|
||||||
GGML_OP_UPSCALE, // nearest interpolate
|
GGML_OP_UPSCALE, // nearest interpolate
|
||||||
|
|
||||||
GGML_OP_FLASH_ATTN,
|
GGML_OP_FLASH_ATTN,
|
||||||
@ -467,14 +479,16 @@ extern "C" {
|
|||||||
|
|
||||||
// n-dimensional tensor
|
// n-dimensional tensor
|
||||||
struct ggml_tensor {
|
struct ggml_tensor {
|
||||||
enum ggml_type type;
|
enum ggml_type type;
|
||||||
enum ggml_backend backend;
|
enum ggml_backend_type backend;
|
||||||
|
|
||||||
|
struct ggml_backend_buffer * buffer;
|
||||||
|
|
||||||
int n_dims;
|
int n_dims;
|
||||||
int64_t ne[GGML_MAX_DIMS]; // number of elements
|
int64_t ne[GGML_MAX_DIMS]; // number of elements
|
||||||
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
||||||
// nb[0] = sizeof(type)
|
// nb[0] = ggml_type_size(type)
|
||||||
// nb[1] = nb[0] * ne[0] + padding
|
// nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
|
||||||
// nb[i] = nb[i-1] * ne[i-1]
|
// nb[i] = nb[i-1] * ne[i-1]
|
||||||
|
|
||||||
// compute data
|
// compute data
|
||||||
@ -502,7 +516,7 @@ extern "C" {
|
|||||||
|
|
||||||
void * extra; // extra things e.g. for ggml-cuda.cu
|
void * extra; // extra things e.g. for ggml-cuda.cu
|
||||||
|
|
||||||
char padding[4];
|
char padding[12];
|
||||||
};
|
};
|
||||||
|
|
||||||
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
|
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
|
||||||
@ -526,7 +540,15 @@ extern "C" {
|
|||||||
// next prime after GGML_MAX_NODES
|
// next prime after GGML_MAX_NODES
|
||||||
// #define GGML_GRAPH_HASHTABLE_SIZE 4099
|
// #define GGML_GRAPH_HASHTABLE_SIZE 4099
|
||||||
// next prime after GGML_MAX_NODES * 2 (nodes + leafs)
|
// next prime after GGML_MAX_NODES * 2 (nodes + leafs)
|
||||||
#define GGML_GRAPH_HASHTABLE_SIZE 8273
|
// #define GGML_GRAPH_HASHTABLE_SIZE 8273
|
||||||
|
// #define GGML_GRAPH_HASHTABLE_SIZE 16411
|
||||||
|
#define GGML_GRAPH_HASHTABLE_SIZE 32771
|
||||||
|
|
||||||
|
enum ggml_cgraph_eval_order {
|
||||||
|
GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
|
||||||
|
GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
|
||||||
|
GGML_CGRAPH_EVAL_ORDER_COUNT
|
||||||
|
};
|
||||||
|
|
||||||
// computation graph
|
// computation graph
|
||||||
struct ggml_cgraph {
|
struct ggml_cgraph {
|
||||||
@ -539,6 +561,8 @@ extern "C" {
|
|||||||
|
|
||||||
void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];
|
void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];
|
||||||
|
|
||||||
|
enum ggml_cgraph_eval_order order;
|
||||||
|
|
||||||
// performance
|
// performance
|
||||||
int perf_runs;
|
int perf_runs;
|
||||||
int64_t perf_cycles;
|
int64_t perf_cycles;
|
||||||
@ -686,12 +710,21 @@ extern "C" {
|
|||||||
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
||||||
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
||||||
|
|
||||||
|
// Converts a flat index into coordinates
|
||||||
|
GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
|
||||||
|
|
||||||
GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
||||||
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
||||||
|
|
||||||
|
GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
||||||
|
GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
|
||||||
|
|
||||||
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
||||||
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
||||||
|
|
||||||
|
GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
||||||
|
GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
|
||||||
|
|
||||||
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
|
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
|
||||||
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
||||||
|
|
||||||
@ -725,6 +758,12 @@ extern "C" {
|
|||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b);
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
|
GGML_API struct ggml_tensor * ggml_add_cast(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b,
|
||||||
|
enum ggml_type type);
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_add1(
|
GGML_API struct ggml_tensor * ggml_add1(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
@ -834,6 +873,7 @@ extern "C" {
|
|||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b);
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
|
// sums repetitions in a into shape of b
|
||||||
GGML_API struct ggml_tensor * ggml_repeat_back(
|
GGML_API struct ggml_tensor * ggml_repeat_back(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
@ -1320,7 +1360,7 @@ extern "C" {
|
|||||||
|
|
||||||
// alibi position embedding
|
// alibi position embedding
|
||||||
// in-place, returns view(a)
|
// in-place, returns view(a)
|
||||||
struct ggml_tensor * ggml_alibi(
|
GGML_API struct ggml_tensor * ggml_alibi(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
int n_past,
|
int n_past,
|
||||||
@ -1329,7 +1369,7 @@ extern "C" {
|
|||||||
|
|
||||||
// clamp
|
// clamp
|
||||||
// in-place, returns view(a)
|
// in-place, returns view(a)
|
||||||
struct ggml_tensor * ggml_clamp(
|
GGML_API struct ggml_tensor * ggml_clamp(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
float min,
|
float min,
|
||||||
@ -1352,6 +1392,14 @@ extern "C" {
|
|||||||
int s,
|
int s,
|
||||||
int d);
|
int d);
|
||||||
|
|
||||||
|
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b,
|
||||||
|
int s0,
|
||||||
|
int p0,
|
||||||
|
int d0);
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_conv_2d(
|
GGML_API struct ggml_tensor * ggml_conv_2d(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
@ -1689,6 +1737,16 @@ extern "C" {
|
|||||||
// dump the graph into a file using the dot format
|
// dump the graph into a file using the dot format
|
||||||
GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
|
GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
|
||||||
|
|
||||||
|
// build gradient checkpointing backward graph gb for gf using provided checkpoints
|
||||||
|
// gb_tmp will contain original backward graph with rewritten backward process nodes,
|
||||||
|
// but without the second forward pass nodes.
|
||||||
|
GGML_API void ggml_build_backward_gradient_checkpointing(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_cgraph * gf,
|
||||||
|
struct ggml_cgraph * gb,
|
||||||
|
struct ggml_cgraph * gb_tmp,
|
||||||
|
struct ggml_tensor * * checkpoints,
|
||||||
|
int n_checkpoints);
|
||||||
//
|
//
|
||||||
// optimization
|
// optimization
|
||||||
//
|
//
|
||||||
@ -1715,6 +1773,7 @@ extern "C" {
|
|||||||
GGML_OPT_NO_CONTEXT,
|
GGML_OPT_NO_CONTEXT,
|
||||||
GGML_OPT_INVALID_WOLFE,
|
GGML_OPT_INVALID_WOLFE,
|
||||||
GGML_OPT_FAIL,
|
GGML_OPT_FAIL,
|
||||||
|
GGML_OPT_CANCEL,
|
||||||
|
|
||||||
GGML_LINESEARCH_FAIL = -128,
|
GGML_LINESEARCH_FAIL = -128,
|
||||||
GGML_LINESEARCH_MINIMUM_STEP,
|
GGML_LINESEARCH_MINIMUM_STEP,
|
||||||
@ -1723,7 +1782,7 @@ extern "C" {
|
|||||||
GGML_LINESEARCH_INVALID_PARAMETERS,
|
GGML_LINESEARCH_INVALID_PARAMETERS,
|
||||||
};
|
};
|
||||||
|
|
||||||
typedef void (*ggml_opt_callback)(void * data, float * sched);
|
typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
|
||||||
typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
|
typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
|
||||||
|
|
||||||
// optimization parameters
|
// optimization parameters
|
||||||
@ -1755,6 +1814,8 @@ extern "C" {
|
|||||||
bool print_forward_graph;
|
bool print_forward_graph;
|
||||||
bool print_backward_graph;
|
bool print_backward_graph;
|
||||||
|
|
||||||
|
int n_gradient_accumulation;
|
||||||
|
|
||||||
// ADAM parameters
|
// ADAM parameters
|
||||||
struct {
|
struct {
|
||||||
int n_iter;
|
int n_iter;
|
||||||
@ -1800,6 +1861,7 @@ extern "C" {
|
|||||||
float loss_after;
|
float loss_after;
|
||||||
|
|
||||||
struct {
|
struct {
|
||||||
|
struct ggml_tensor * g; // current gradient
|
||||||
struct ggml_tensor * m; // first moment
|
struct ggml_tensor * m; // first moment
|
||||||
struct ggml_tensor * v; // second moment
|
struct ggml_tensor * v; // second moment
|
||||||
struct ggml_tensor * pf; // past function values
|
struct ggml_tensor * pf; // past function values
|
||||||
@ -1916,26 +1978,26 @@ extern "C" {
|
|||||||
|
|
||||||
GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
|
GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
|
||||||
GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
|
GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
|
||||||
GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int i);
|
GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
|
||||||
|
|
||||||
GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int i);
|
GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
|
||||||
GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int i);
|
GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
|
||||||
|
|
||||||
// results are undefined if the wrong type is used for the key
|
// will abort if the wrong type is used for the key
|
||||||
GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int i);
|
GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
|
||||||
GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int i);
|
GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
|
||||||
GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int i);
|
GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
|
||||||
GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int i);
|
GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
|
||||||
GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int i);
|
GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
|
||||||
GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int i);
|
GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
|
||||||
GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int i);
|
GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
|
||||||
GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int i);
|
GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
|
||||||
GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int i);
|
GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
|
||||||
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int i);
|
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
|
||||||
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int i);
|
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
|
||||||
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int i);
|
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
|
||||||
GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int i);
|
GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
|
||||||
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int i);
|
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
|
||||||
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
|
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
|
||||||
|
|
||||||
GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
|
GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
|
||||||
@ -2042,7 +2104,7 @@ extern "C" {
|
|||||||
enum ggml_type vec_dot_type;
|
enum ggml_type vec_dot_type;
|
||||||
} ggml_type_traits_t;
|
} ggml_type_traits_t;
|
||||||
|
|
||||||
ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
|
GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
|
@ -69,4 +69,3 @@ python -m twine upload dist/*
|
|||||||
## TODO
|
## TODO
|
||||||
- [ ] Add tests
|
- [ ] Add tests
|
||||||
- [ ] Include conversion scripts as command line entry points in this package.
|
- [ ] Include conversion scripts as command line entry points in this package.
|
||||||
- Add CI workflow for releasing the package.
|
|
||||||
|
@ -85,10 +85,14 @@ class MODEL_ARCH(IntEnum):
|
|||||||
GPTNEOX : int = auto()
|
GPTNEOX : int = auto()
|
||||||
MPT : int = auto()
|
MPT : int = auto()
|
||||||
STARCODER : int = auto()
|
STARCODER : int = auto()
|
||||||
|
PERSIMMON : int = auto()
|
||||||
|
REFACT : int = auto()
|
||||||
|
BERT : int = auto()
|
||||||
|
|
||||||
|
|
||||||
class MODEL_TENSOR(IntEnum):
|
class MODEL_TENSOR(IntEnum):
|
||||||
TOKEN_EMBD : int = auto()
|
TOKEN_EMBD : int = auto()
|
||||||
|
TOKEN_TYPES : int = auto()
|
||||||
POS_EMBD : int = auto()
|
POS_EMBD : int = auto()
|
||||||
OUTPUT : int = auto()
|
OUTPUT : int = auto()
|
||||||
OUTPUT_NORM : int = auto()
|
OUTPUT_NORM : int = auto()
|
||||||
@ -105,6 +109,8 @@ class MODEL_TENSOR(IntEnum):
|
|||||||
FFN_DOWN : int = auto()
|
FFN_DOWN : int = auto()
|
||||||
FFN_UP : int = auto()
|
FFN_UP : int = auto()
|
||||||
FFN_NORM : int = auto()
|
FFN_NORM : int = auto()
|
||||||
|
ATTN_Q_NORM : int = auto()
|
||||||
|
ATTN_K_NORM : int = auto()
|
||||||
|
|
||||||
|
|
||||||
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||||
@ -116,78 +122,169 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||||||
MODEL_ARCH.GPTNEOX: "gptneox",
|
MODEL_ARCH.GPTNEOX: "gptneox",
|
||||||
MODEL_ARCH.MPT: "mpt",
|
MODEL_ARCH.MPT: "mpt",
|
||||||
MODEL_ARCH.STARCODER: "starcoder",
|
MODEL_ARCH.STARCODER: "starcoder",
|
||||||
|
MODEL_ARCH.PERSIMMON: "persimmon",
|
||||||
|
MODEL_ARCH.REFACT: "refact",
|
||||||
|
MODEL_ARCH.BERT: "bert",
|
||||||
}
|
}
|
||||||
|
|
||||||
MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = {
|
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||||
MODEL_ARCH.LLAMA: {
|
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
||||||
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
MODEL_TENSOR.TOKEN_TYPES: "token_types",
|
||||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
MODEL_TENSOR.POS_EMBD: "position_embd",
|
||||||
MODEL_TENSOR.OUTPUT: "output",
|
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
||||||
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
|
MODEL_TENSOR.OUTPUT: "output",
|
||||||
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
|
||||||
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
|
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
||||||
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
|
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
|
||||||
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
|
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
|
||||||
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
|
||||||
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
|
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
|
||||||
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
|
||||||
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
|
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
||||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
|
||||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
|
||||||
},
|
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
|
||||||
MODEL_ARCH.GPTNEOX: {
|
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
||||||
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
|
||||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
||||||
MODEL_TENSOR.OUTPUT: "output",
|
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
||||||
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
}
|
||||||
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
|
|
||||||
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||||
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
MODEL_ARCH.LLAMA: [
|
||||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
},
|
MODEL_TENSOR.OUTPUT,
|
||||||
MODEL_ARCH.FALCON: {
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
MODEL_TENSOR.ATTN_Q,
|
||||||
MODEL_TENSOR.OUTPUT: "output",
|
MODEL_TENSOR.ATTN_K,
|
||||||
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
MODEL_TENSOR.ATTN_V,
|
||||||
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
MODEL_TENSOR.FFN_NORM,
|
||||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
MODEL_TENSOR.FFN_GATE,
|
||||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
},
|
MODEL_TENSOR.FFN_UP,
|
||||||
MODEL_ARCH.BAICHUAN: {
|
],
|
||||||
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
MODEL_ARCH.GPTNEOX: [
|
||||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
MODEL_TENSOR.OUTPUT: "output",
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
|
MODEL_TENSOR.OUTPUT,
|
||||||
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
|
MODEL_TENSOR.FFN_NORM,
|
||||||
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
|
MODEL_TENSOR.FFN_UP,
|
||||||
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
],
|
||||||
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
|
MODEL_ARCH.FALCON: [
|
||||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
},
|
MODEL_TENSOR.OUTPUT,
|
||||||
MODEL_ARCH.STARCODER: {
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
MODEL_TENSOR.ATTN_NORM_2,
|
||||||
MODEL_TENSOR.POS_EMBD: "position_embd",
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
MODEL_TENSOR.OUTPUT: "output",
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
MODEL_TENSOR.FFN_UP,
|
||||||
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
|
],
|
||||||
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
MODEL_ARCH.BAICHUAN: [
|
||||||
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
MODEL_TENSOR.OUTPUT,
|
||||||
},
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
MODEL_ARCH.GPT2: {
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_GATE,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.STARCODER: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.POS_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.BERT: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.TOKEN_TYPES,
|
||||||
|
MODEL_TENSOR.POS_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.MPT: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.GPTJ: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.PERSIMMON: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
MODEL_TENSOR.ATTN_Q_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_K_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.REFACT: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_GATE,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.GPT2: [
|
||||||
# TODO
|
# TODO
|
||||||
},
|
],
|
||||||
# TODO
|
# TODO
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -201,6 +298,9 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||||||
MODEL_TENSOR.ROPE_FREQS,
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
],
|
],
|
||||||
|
MODEL_ARCH.PERSIMMON: [
|
||||||
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
|
]
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -208,31 +308,44 @@ class TensorNameMap:
|
|||||||
mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
||||||
# Token embeddings
|
# Token embeddings
|
||||||
MODEL_TENSOR.TOKEN_EMBD: (
|
MODEL_TENSOR.TOKEN_EMBD: (
|
||||||
"gpt_neox.embed_in", # gptneox
|
"gpt_neox.embed_in", # gptneox
|
||||||
"transformer.wte", # gpt2 mpt
|
"transformer.wte", # gpt2 gpt-j mpt refact
|
||||||
"transformer.word_embeddings", # falcon
|
"transformer.word_embeddings", # falcon
|
||||||
"model.embed_tokens", # llama-hf
|
"model.embed_tokens", # llama-hf
|
||||||
"tok_embeddings", # llama-pth
|
"tok_embeddings", # llama-pth
|
||||||
|
"embeddings.word_embeddings", # bert
|
||||||
|
"language_model.embedding.word_embeddings", # persimmon
|
||||||
|
),
|
||||||
|
|
||||||
|
# Token type embeddings
|
||||||
|
MODEL_TENSOR.TOKEN_TYPES: (
|
||||||
|
"embeddings.token_type_embeddings", # bert
|
||||||
),
|
),
|
||||||
|
|
||||||
# Position embeddings
|
# Position embeddings
|
||||||
MODEL_TENSOR.POS_EMBD: (
|
MODEL_TENSOR.POS_EMBD: (
|
||||||
"transformer.wpe", # gpt2
|
"transformer.wpe", # gpt2
|
||||||
|
"embeddings.position_embeddings", # bert
|
||||||
),
|
),
|
||||||
|
|
||||||
# Output
|
# Output
|
||||||
MODEL_TENSOR.OUTPUT: (
|
MODEL_TENSOR.OUTPUT: (
|
||||||
"embed_out", # gptneox
|
"embed_out", # gptneox
|
||||||
"lm_head", # gpt2 mpt falcon llama-hf baichuan
|
"lm_head", # gpt2 mpt falcon llama-hf baichuan
|
||||||
"output", # llama-pth
|
"output", # llama-pth
|
||||||
|
"word_embeddings_for_head", # persimmon
|
||||||
),
|
),
|
||||||
|
|
||||||
# Output norm
|
# Output norm
|
||||||
MODEL_TENSOR.OUTPUT_NORM: (
|
MODEL_TENSOR.OUTPUT_NORM: (
|
||||||
"gpt_neox.final_layer_norm", # gptneox
|
"gpt_neox.final_layer_norm", # gptneox
|
||||||
"transformer.ln_f", # gpt2 falcon
|
"transformer.ln_f", # gpt2 gpt-j falcon
|
||||||
"model.norm", # llama-hf baichuan
|
"model.norm", # llama-hf baichuan
|
||||||
"norm", # llama-pth
|
"norm", # llama-pth
|
||||||
|
"embeddings.LayerNorm", # bert
|
||||||
|
"transformer.norm_f", # mpt
|
||||||
|
"ln_f", # refact
|
||||||
|
"language_model.encoder.final_layernorm", # persimmon
|
||||||
),
|
),
|
||||||
|
|
||||||
# Rope frequencies
|
# Rope frequencies
|
||||||
@ -244,13 +357,15 @@ class TensorNameMap:
|
|||||||
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
||||||
# Attention norm
|
# Attention norm
|
||||||
MODEL_TENSOR.ATTN_NORM: (
|
MODEL_TENSOR.ATTN_NORM: (
|
||||||
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
|
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
|
||||||
"transformer.h.{bid}.ln_1", # gpt2
|
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact
|
||||||
"transformer.blocks.{bid}.norm_1", # mpt
|
"transformer.blocks.{bid}.norm_1", # mpt
|
||||||
"transformer.h.{bid}.input_layernorm", # falcon7b
|
"transformer.h.{bid}.input_layernorm", # falcon7b
|
||||||
"transformer.h.{bid}.ln_mlp", # falcon40b
|
"transformer.h.{bid}.ln_mlp", # falcon40b
|
||||||
"model.layers.{bid}.input_layernorm", # llama-hf
|
"model.layers.{bid}.input_layernorm", # llama-hf
|
||||||
"layers.{bid}.attention_norm", # llama-pth
|
"layers.{bid}.attention_norm", # llama-pth
|
||||||
|
"encoder.layer.{bid}.attention.output.LayerNorm", # bert
|
||||||
|
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
|
||||||
),
|
),
|
||||||
|
|
||||||
# Attention norm 2
|
# Attention norm 2
|
||||||
@ -260,38 +375,48 @@ class TensorNameMap:
|
|||||||
|
|
||||||
# Attention query-key-value
|
# Attention query-key-value
|
||||||
MODEL_TENSOR.ATTN_QKV: (
|
MODEL_TENSOR.ATTN_QKV: (
|
||||||
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
|
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
|
||||||
"transformer.h.{bid}.attn.c_attn", # gpt2
|
"transformer.h.{bid}.attn.c_attn", # gpt2
|
||||||
"transformer.blocks.{bid}.attn.Wqkv", # mpt
|
"transformer.blocks.{bid}.attn.Wqkv", # mpt
|
||||||
"transformer.h.{bid}.self_attention.query_key_value", # falcon
|
"transformer.h.{bid}.self_attention.query_key_value", # falcon
|
||||||
|
"language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
|
||||||
),
|
),
|
||||||
|
|
||||||
# Attention query
|
# Attention query
|
||||||
MODEL_TENSOR.ATTN_Q: (
|
MODEL_TENSOR.ATTN_Q: (
|
||||||
"model.layers.{bid}.self_attn.q_proj", # llama-hf
|
"model.layers.{bid}.self_attn.q_proj", # llama-hf
|
||||||
"layers.{bid}.attention.wq", # llama-pth
|
"layers.{bid}.attention.wq", # llama-pth
|
||||||
|
"encoder.layer.{bid}.attention.self.query", # bert
|
||||||
|
"transformer.h.{bid}.attn.q_proj", # gpt-j
|
||||||
),
|
),
|
||||||
|
|
||||||
# Attention key
|
# Attention key
|
||||||
MODEL_TENSOR.ATTN_K: (
|
MODEL_TENSOR.ATTN_K: (
|
||||||
"model.layers.{bid}.self_attn.k_proj", # llama-hf
|
"model.layers.{bid}.self_attn.k_proj", # llama-hf
|
||||||
"layers.{bid}.attention.wk", # llama-pth
|
"layers.{bid}.attention.wk", # llama-pth
|
||||||
|
"encoder.layer.{bid}.attention.self.key", # bert
|
||||||
|
"transformer.h.{bid}.attn.k_proj", # gpt-j
|
||||||
),
|
),
|
||||||
|
|
||||||
# Attention value
|
# Attention value
|
||||||
MODEL_TENSOR.ATTN_V: (
|
MODEL_TENSOR.ATTN_V: (
|
||||||
"model.layers.{bid}.self_attn.v_proj", # llama-hf
|
"model.layers.{bid}.self_attn.v_proj", # llama-hf
|
||||||
"layers.{bid}.attention.wv", # llama-pth
|
"layers.{bid}.attention.wv", # llama-pth
|
||||||
|
"encoder.layer.{bid}.attention.self.value", # bert
|
||||||
|
"transformer.h.{bid}.attn.v_proj", # gpt-j
|
||||||
),
|
),
|
||||||
|
|
||||||
# Attention output
|
# Attention output
|
||||||
MODEL_TENSOR.ATTN_OUT: (
|
MODEL_TENSOR.ATTN_OUT: (
|
||||||
"gpt_neox.layers.{bid}.attention.dense", # gptneox
|
"gpt_neox.layers.{bid}.attention.dense", # gptneox
|
||||||
"transformer.h.{bid}.attn.c_proj", # gpt2
|
"transformer.h.{bid}.attn.c_proj", # gpt2 refact
|
||||||
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
||||||
"transformer.h.{bid}.self_attention.dense", # falcon
|
"transformer.h.{bid}.self_attention.dense", # falcon
|
||||||
"model.layers.{bid}.self_attn.o_proj", # llama-hf
|
"model.layers.{bid}.self_attn.o_proj", # llama-hf
|
||||||
"layers.{bid}.attention.wo", # llama-pth
|
"layers.{bid}.attention.wo", # llama-pth
|
||||||
|
"encoder.layer.{bid}.attention.output.dense", # bert
|
||||||
|
"transformer.h.{bid}.attn.out_proj", # gpt-j
|
||||||
|
"language_model.encoder.layers.{bid}.self_attention.dense" # persimmon
|
||||||
),
|
),
|
||||||
|
|
||||||
# Rotary embeddings
|
# Rotary embeddings
|
||||||
@ -302,64 +427,80 @@ class TensorNameMap:
|
|||||||
|
|
||||||
# Feed-forward norm
|
# Feed-forward norm
|
||||||
MODEL_TENSOR.FFN_NORM: (
|
MODEL_TENSOR.FFN_NORM: (
|
||||||
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
|
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
|
||||||
"transformer.h.{bid}.ln_2", # gpt2
|
"transformer.h.{bid}.ln_2", # gpt2 refact
|
||||||
"transformer.blocks.{bid}.norm_2", # mpt
|
"transformer.blocks.{bid}.norm_2", # mpt
|
||||||
"model.layers.{bid}.post_attention_layernorm", # llama-hf
|
"model.layers.{bid}.post_attention_layernorm", # llama-hf
|
||||||
"layers.{bid}.ffn_norm", # llama-pth
|
"layers.{bid}.ffn_norm", # llama-pth
|
||||||
|
"encoder.layer.{bid}.output.LayerNorm", # bert
|
||||||
|
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
|
||||||
),
|
),
|
||||||
|
|
||||||
# Feed-forward up
|
# Feed-forward up
|
||||||
MODEL_TENSOR.FFN_UP: (
|
MODEL_TENSOR.FFN_UP: (
|
||||||
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
|
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
|
||||||
"transformer.h.{bid}.mlp.c_fc", # gpt2
|
"transformer.h.{bid}.mlp.c_fc", # gpt2
|
||||||
"transformer.blocks.{bid}.ffn.up_proj", # mpt
|
"transformer.blocks.{bid}.ffn.up_proj", # mpt
|
||||||
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
|
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
|
||||||
"model.layers.{bid}.mlp.up_proj", # llama-hf
|
"model.layers.{bid}.mlp.up_proj", # llama-hf refact
|
||||||
"layers.{bid}.feed_forward.w3", # llama-pth
|
"layers.{bid}.feed_forward.w3", # llama-pth
|
||||||
|
"encoder.layer.{bid}.intermediate.dense", # bert
|
||||||
|
"transformer.h.{bid}.mlp.fc_in", # gpt-j
|
||||||
|
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
|
||||||
),
|
),
|
||||||
|
|
||||||
# Feed-forward gate
|
# Feed-forward gate
|
||||||
MODEL_TENSOR.FFN_GATE: (
|
MODEL_TENSOR.FFN_GATE: (
|
||||||
"model.layers.{bid}.mlp.gate_proj", # llama-hf
|
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
|
||||||
"layers.{bid}.feed_forward.w1", # llama-pth
|
"layers.{bid}.feed_forward.w1", # llama-pth
|
||||||
),
|
),
|
||||||
|
|
||||||
# Feed-forward down
|
# Feed-forward down
|
||||||
MODEL_TENSOR.FFN_DOWN: (
|
MODEL_TENSOR.FFN_DOWN: (
|
||||||
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
|
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
|
||||||
"transformer.h.{bid}.mlp.c_proj", # gpt2
|
"transformer.h.{bid}.mlp.c_proj", # gpt2 refact
|
||||||
"transformer.blocks.{bid}.ffn.down_proj", # mpt
|
"transformer.blocks.{bid}.ffn.down_proj", # mpt
|
||||||
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
|
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
|
||||||
"model.layers.{bid}.mlp.down_proj", # llama-hf
|
"model.layers.{bid}.mlp.down_proj", # llama-hf
|
||||||
"layers.{bid}.feed_forward.w2", # llama-pth
|
"layers.{bid}.feed_forward.w2", # llama-pth
|
||||||
|
"encoder.layer.{bid}.output.dense", # bert
|
||||||
|
"transformer.h.{bid}.mlp.fc_out", # gpt-j
|
||||||
|
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
|
||||||
),
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||||
|
"language_model.encoder.layers.{bid}.self_attention.q_layernorm",
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.ATTN_K_NORM: (
|
||||||
|
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
|
||||||
|
),
|
||||||
|
|
||||||
|
MODEL_TENSOR.ROPE_FREQS: (
|
||||||
|
"language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
|
||||||
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
mapping: dict[str, tuple[MODEL_TENSOR, str]]
|
mapping: dict[str, tuple[MODEL_TENSOR, str]]
|
||||||
|
|
||||||
tensor_names: dict[MODEL_TENSOR, str]
|
|
||||||
|
|
||||||
def __init__(self, arch: MODEL_ARCH, n_blocks: int):
|
def __init__(self, arch: MODEL_ARCH, n_blocks: int):
|
||||||
mapping = self.mapping = {}
|
self.mapping = {}
|
||||||
tensor_names = self.tensor_names = MODEL_TENSOR_NAMES[arch]
|
|
||||||
for tensor, keys in self.mappings_cfg.items():
|
for tensor, keys in self.mappings_cfg.items():
|
||||||
tensor_name = tensor_names.get(tensor)
|
if tensor not in MODEL_TENSORS[arch]:
|
||||||
if tensor_name is None:
|
|
||||||
continue
|
continue
|
||||||
mapping[tensor_name] = (tensor, tensor_name)
|
tensor_name = TENSOR_NAMES[tensor]
|
||||||
|
self.mapping[tensor_name] = (tensor, tensor_name)
|
||||||
for key in keys:
|
for key in keys:
|
||||||
mapping[key] = (tensor, tensor_name)
|
self.mapping[key] = (tensor, tensor_name)
|
||||||
for bid in range(n_blocks):
|
for bid in range(n_blocks):
|
||||||
for tensor, keys in self.block_mappings_cfg.items():
|
for tensor, keys in self.block_mappings_cfg.items():
|
||||||
tensor_name = tensor_names.get(tensor)
|
if tensor not in MODEL_TENSORS[arch]:
|
||||||
if tensor_name is None:
|
|
||||||
continue
|
continue
|
||||||
tensor_name = tensor_name.format(bid = bid)
|
tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
|
||||||
mapping[tensor_name] = (tensor, tensor_name)
|
self.mapping[tensor_name] = (tensor, tensor_name)
|
||||||
for key in keys:
|
for key in keys:
|
||||||
key = key.format(bid = bid)
|
key = key.format(bid = bid)
|
||||||
mapping[key] = (tensor, tensor_name)
|
self.mapping[key] = (tensor, tensor_name)
|
||||||
|
|
||||||
def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
|
def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
|
||||||
result = self.mapping.get(key)
|
result = self.mapping.get(key)
|
||||||
@ -800,22 +941,25 @@ class SpecialVocab:
|
|||||||
special_token_types: tuple[str, ...] = ('bos', 'eos', 'unk', 'sep', 'pad')
|
special_token_types: tuple[str, ...] = ('bos', 'eos', 'unk', 'sep', 'pad')
|
||||||
special_token_ids: dict[str, int] = {}
|
special_token_ids: dict[str, int] = {}
|
||||||
|
|
||||||
def __init__(self, path: Path, load_merges: bool = False, special_token_types: tuple[str, ...] | None = None):
|
def __init__(
|
||||||
|
self, path: str | os.PathLike[str], load_merges: bool = False,
|
||||||
|
special_token_types: tuple[str, ...] | None = None,
|
||||||
|
):
|
||||||
self.special_token_ids = {}
|
self.special_token_ids = {}
|
||||||
self.load_merges = load_merges
|
self.load_merges = load_merges
|
||||||
if special_token_types is not None:
|
if special_token_types is not None:
|
||||||
self.special_token_types = special_token_types
|
self.special_token_types = special_token_types
|
||||||
self.load(path)
|
self._load(Path(path))
|
||||||
|
|
||||||
def load(self, path: Path):
|
def _load(self, path: Path) -> None:
|
||||||
if not self.try_load_from_tokenizer_json(path):
|
if not self._try_load_from_tokenizer_json(path):
|
||||||
self.try_load_from_config_json(path)
|
self._try_load_from_config_json(path)
|
||||||
|
|
||||||
def try_load_from_tokenizer_json(self, path: Path) -> bool:
|
def _try_load_from_tokenizer_json(self, path: Path) -> bool:
|
||||||
tokenizer_file = path / 'tokenizer.json'
|
tokenizer_file = path / 'tokenizer.json'
|
||||||
if not tokenizer_file.is_file():
|
if not tokenizer_file.is_file():
|
||||||
return False
|
return False
|
||||||
with open(tokenizer_file, 'r', encoding = 'utf-8') as f:
|
with open(tokenizer_file, encoding = 'utf-8') as f:
|
||||||
tokenizer = json.load(f)
|
tokenizer = json.load(f)
|
||||||
if self.load_merges:
|
if self.load_merges:
|
||||||
merges = tokenizer.get('model', {}).get('merges')
|
merges = tokenizer.get('model', {}).get('merges')
|
||||||
@ -825,7 +969,7 @@ class SpecialVocab:
|
|||||||
added_tokens = tokenizer.get('added_tokens')
|
added_tokens = tokenizer.get('added_tokens')
|
||||||
if added_tokens is None or not tokenizer_config_file.is_file():
|
if added_tokens is None or not tokenizer_config_file.is_file():
|
||||||
return True
|
return True
|
||||||
with open(tokenizer_config_file, 'r', encoding = 'utf-8') as f:
|
with open(tokenizer_config_file, encoding = 'utf-8') as f:
|
||||||
tokenizer_config = json.load(f)
|
tokenizer_config = json.load(f)
|
||||||
for typ in self.special_token_types:
|
for typ in self.special_token_types:
|
||||||
entry = tokenizer_config.get(f'{typ}_token')
|
entry = tokenizer_config.get(f'{typ}_token')
|
||||||
@ -844,11 +988,11 @@ class SpecialVocab:
|
|||||||
break
|
break
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def try_load_from_config_json(self, path: Path) -> bool:
|
def _try_load_from_config_json(self, path: Path) -> bool:
|
||||||
config_file = path / 'config.json'
|
config_file = path / 'config.json'
|
||||||
if not config_file.is_file():
|
if not config_file.is_file():
|
||||||
return False
|
return False
|
||||||
with open(config_file, 'r', encoding = 'utf-8') as f:
|
with open(config_file, encoding = 'utf-8') as f:
|
||||||
config = json.load(f)
|
config = json.load(f)
|
||||||
for typ in self.special_token_types:
|
for typ in self.special_token_types:
|
||||||
maybe_token_id = config.get(f'{typ}_token_id')
|
maybe_token_id = config.get(f'{typ}_token_id')
|
||||||
@ -856,7 +1000,7 @@ class SpecialVocab:
|
|||||||
self.special_token_ids[typ] = maybe_token_id
|
self.special_token_ids[typ] = maybe_token_id
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def add_to_gguf(self, gw: GGUFWriter):
|
def add_to_gguf(self, gw: GGUFWriter) -> None:
|
||||||
if len(self.merges) > 0:
|
if len(self.merges) > 0:
|
||||||
print(f'gguf: Adding {len(self.merges)} merge(s).')
|
print(f'gguf: Adding {len(self.merges)} merge(s).')
|
||||||
gw.add_token_merges(self.merges)
|
gw.add_token_merges(self.merges)
|
||||||
@ -868,8 +1012,8 @@ class SpecialVocab:
|
|||||||
print(f'gguf: Setting special token type {typ} to {tokid}')
|
print(f'gguf: Setting special token type {typ} to {tokid}')
|
||||||
handler(tokid)
|
handler(tokid)
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self) -> str:
|
||||||
return f'<SpecialVocab with {len(self.merges)} merges and special tokens {self.special_token_ids if self.special_token_ids else "unset"}>'
|
return f'<SpecialVocab with {len(self.merges)} merges and special tokens {self.special_token_ids or "unset"}>'
|
||||||
|
|
||||||
|
|
||||||
# Example usage:
|
# Example usage:
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
[tool.poetry]
|
[tool.poetry]
|
||||||
name = "gguf"
|
name = "gguf"
|
||||||
version = "0.3.3"
|
version = "0.4.4"
|
||||||
description = "Write ML models in GGUF for GGML"
|
description = "Write ML models in GGUF for GGML"
|
||||||
authors = ["GGML <ggml@ggml.ai>"]
|
authors = ["GGML <ggml@ggml.ai>"]
|
||||||
packages = [
|
packages = [
|
||||||
|
746
k_quants.c
746
k_quants.c
@ -54,6 +54,10 @@ inline static int32_t vaddvq_s32(int32x4_t v) {
|
|||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#ifdef __riscv_v_intrinsic
|
||||||
|
#include <riscv_vector.h>
|
||||||
|
#endif
|
||||||
|
|
||||||
#undef MIN
|
#undef MIN
|
||||||
#undef MAX
|
#undef MAX
|
||||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||||
@ -65,7 +69,6 @@ inline static int32_t vaddvq_s32(int32x4_t v) {
|
|||||||
// 2-6 bit quantization in super-blocks
|
// 2-6 bit quantization in super-blocks
|
||||||
//
|
//
|
||||||
|
|
||||||
|
|
||||||
//
|
//
|
||||||
// ===================== Helper functions
|
// ===================== Helper functions
|
||||||
//
|
//
|
||||||
@ -344,7 +347,6 @@ void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict
|
|||||||
const float q4scale = 15.f;
|
const float q4scale = 15.f;
|
||||||
|
|
||||||
for (int i = 0; i < nb; i++) {
|
for (int i = 0; i < nb; i++) {
|
||||||
|
|
||||||
float max_scale = 0; // as we are deducting the min, scales are always positive
|
float max_scale = 0; // as we are deducting the min, scales are always positive
|
||||||
float max_min = 0;
|
float max_min = 0;
|
||||||
for (int j = 0; j < QK_K/16; ++j) {
|
for (int j = 0; j < QK_K/16; ++j) {
|
||||||
@ -1582,6 +1584,90 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
|||||||
|
|
||||||
*s = hsum_float_8(acc);
|
*s = hsum_float_8(acc);
|
||||||
|
|
||||||
|
#elif defined __riscv_v_intrinsic
|
||||||
|
|
||||||
|
float sumf = 0;
|
||||||
|
uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||||
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
|
||||||
|
|
||||||
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
|
const uint8_t * q2 = x[i].qs;
|
||||||
|
const int8_t * q8 = y[i].qs;
|
||||||
|
const uint8_t * sc = x[i].scales;
|
||||||
|
|
||||||
|
const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
|
||||||
|
const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
|
||||||
|
|
||||||
|
size_t vl = 16;
|
||||||
|
|
||||||
|
vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
|
||||||
|
vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
|
||||||
|
|
||||||
|
vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
|
||||||
|
|
||||||
|
vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
|
||||||
|
vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
|
||||||
|
vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
|
||||||
|
vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
|
||||||
|
vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
|
||||||
|
|
||||||
|
sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
|
||||||
|
|
||||||
|
vl = 32;
|
||||||
|
|
||||||
|
vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
|
||||||
|
vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
|
||||||
|
|
||||||
|
uint8_t is=0;
|
||||||
|
int isum=0;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK_K/128; ++j) {
|
||||||
|
// load Q2
|
||||||
|
vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
|
||||||
|
|
||||||
|
vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
|
||||||
|
vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
|
||||||
|
vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
|
||||||
|
vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
|
||||||
|
|
||||||
|
// duplicate scale elements for product
|
||||||
|
vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
|
||||||
|
vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
|
||||||
|
vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
|
||||||
|
vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
|
||||||
|
|
||||||
|
vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
|
||||||
|
vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
|
||||||
|
vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
|
||||||
|
vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
|
||||||
|
|
||||||
|
// load Q8
|
||||||
|
vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
|
||||||
|
vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
|
||||||
|
vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
|
||||||
|
vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
|
||||||
|
|
||||||
|
vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
|
||||||
|
vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
|
||||||
|
vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
|
||||||
|
vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
|
||||||
|
|
||||||
|
vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
|
||||||
|
vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
|
||||||
|
|
||||||
|
isum += __riscv_vmv_x_s_i32m1_i32(isum1);
|
||||||
|
|
||||||
|
q2+=32; q8+=128; is=8;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
sumf += dall * isum;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
*s = sumf;
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
float sumf = 0;
|
float sumf = 0;
|
||||||
@ -1807,6 +1893,64 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
|||||||
|
|
||||||
*s = hsum_float_8(acc) + summs;
|
*s = hsum_float_8(acc) + summs;
|
||||||
|
|
||||||
|
#elif defined __riscv_v_intrinsic
|
||||||
|
|
||||||
|
uint32_t aux32[2];
|
||||||
|
const uint8_t * scales = (const uint8_t *)aux32;
|
||||||
|
|
||||||
|
float sumf = 0;
|
||||||
|
|
||||||
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
|
const float d = y[i].d * (float)x[i].d;
|
||||||
|
const float dmin = -y[i].d * (float)x[i].dmin;
|
||||||
|
|
||||||
|
const uint8_t * restrict q2 = x[i].qs;
|
||||||
|
const int8_t * restrict q8 = y[i].qs;
|
||||||
|
const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
|
||||||
|
|
||||||
|
aux32[0] = sc[0] & 0x0f0f0f0f;
|
||||||
|
aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
|
||||||
|
|
||||||
|
sumf += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
|
||||||
|
|
||||||
|
int isum1 = 0;
|
||||||
|
int isum2 = 0;
|
||||||
|
|
||||||
|
size_t vl = 16;
|
||||||
|
|
||||||
|
vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
|
||||||
|
|
||||||
|
// load Q2
|
||||||
|
vuint8mf2_t q2_x = __riscv_vle8_v_u8mf2(q2, vl);
|
||||||
|
|
||||||
|
vint8mf2_t q2_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q2_x, 0x03, vl));
|
||||||
|
vint8mf2_t q2_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x2, vl), 0x03 , vl));
|
||||||
|
vint8mf2_t q2_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x4, vl), 0x03 , vl));
|
||||||
|
vint8mf2_t q2_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x6, vl), 0x03 , vl));
|
||||||
|
|
||||||
|
// load Q8, and take product with Q2
|
||||||
|
vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q2_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
|
||||||
|
vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q2_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
|
||||||
|
vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q2_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
|
||||||
|
vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q2_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
|
||||||
|
|
||||||
|
vint16m1_t vs_0 = __riscv_vredsum_vs_i16m1_i16m1(p0, vzero, vl);
|
||||||
|
vint16m1_t vs_1 = __riscv_vredsum_vs_i16m1_i16m1(p1, vzero, vl);
|
||||||
|
vint16m1_t vs_2 = __riscv_vredsum_vs_i16m1_i16m1(p2, vzero, vl);
|
||||||
|
vint16m1_t vs_3 = __riscv_vredsum_vs_i16m1_i16m1(p3, vzero, vl);
|
||||||
|
|
||||||
|
isum1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[0];
|
||||||
|
isum2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[1];
|
||||||
|
isum1 += __riscv_vmv_x_s_i16m1_i16(vs_2) * scales[2];
|
||||||
|
isum2 += __riscv_vmv_x_s_i16m1_i16(vs_3) * scales[3];
|
||||||
|
|
||||||
|
sumf += d * (isum1 + isum2);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
*s = sumf;
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
float sumf = 0;
|
float sumf = 0;
|
||||||
@ -2220,6 +2364,106 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
|||||||
|
|
||||||
*s = hsum_float_8(acc);
|
*s = hsum_float_8(acc);
|
||||||
|
|
||||||
|
#elif defined __riscv_v_intrinsic
|
||||||
|
|
||||||
|
uint32_t aux[3];
|
||||||
|
uint32_t utmp[4];
|
||||||
|
|
||||||
|
float sumf = 0;
|
||||||
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
|
const uint8_t * restrict q3 = x[i].qs;
|
||||||
|
const uint8_t * restrict qh = x[i].hmask;
|
||||||
|
const int8_t * restrict q8 = y[i].qs;
|
||||||
|
|
||||||
|
memcpy(aux, x[i].scales, 12);
|
||||||
|
utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
|
||||||
|
utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
|
||||||
|
utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
|
||||||
|
utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
|
||||||
|
|
||||||
|
int8_t * scale = (int8_t *)utmp;
|
||||||
|
for (int j = 0; j < 16; ++j) scale[j] -= 32;
|
||||||
|
|
||||||
|
|
||||||
|
size_t vl = 32;
|
||||||
|
uint8_t m = 1;
|
||||||
|
|
||||||
|
vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
|
||||||
|
vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
|
||||||
|
|
||||||
|
int sum_t = 0;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK_K; j += 128) {
|
||||||
|
|
||||||
|
vl = 32;
|
||||||
|
|
||||||
|
// load Q3
|
||||||
|
vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
|
||||||
|
|
||||||
|
vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
|
||||||
|
vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
|
||||||
|
vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
|
||||||
|
vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
|
||||||
|
|
||||||
|
// compute mask for subtraction
|
||||||
|
vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
|
||||||
|
vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
|
||||||
|
vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_m(vmask_0, q3_0, 0x4, vl);
|
||||||
|
m <<= 1;
|
||||||
|
|
||||||
|
vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
|
||||||
|
vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
|
||||||
|
vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_m(vmask_1, q3_1, 0x4, vl);
|
||||||
|
m <<= 1;
|
||||||
|
|
||||||
|
vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
|
||||||
|
vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
|
||||||
|
vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_m(vmask_2, q3_2, 0x4, vl);
|
||||||
|
m <<= 1;
|
||||||
|
|
||||||
|
vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
|
||||||
|
vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
|
||||||
|
vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_m(vmask_3, q3_3, 0x4, vl);
|
||||||
|
m <<= 1;
|
||||||
|
|
||||||
|
// load Q8 and take product with Q3
|
||||||
|
vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
|
||||||
|
vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
|
||||||
|
vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
|
||||||
|
vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
|
||||||
|
|
||||||
|
vl = 16;
|
||||||
|
|
||||||
|
// retreive lane to multiply with scale
|
||||||
|
vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
|
||||||
|
vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
|
||||||
|
vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
|
||||||
|
vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
|
||||||
|
vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
|
||||||
|
vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
|
||||||
|
vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
|
||||||
|
vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
|
||||||
|
|
||||||
|
vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
|
||||||
|
vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
|
||||||
|
vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
|
||||||
|
vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
|
||||||
|
|
||||||
|
sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
|
||||||
|
|
||||||
|
q3 += 32; q8 += 128; scale += 8;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
|
||||||
|
|
||||||
|
sumf += d*sum_t;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
*s = sumf;
|
||||||
|
|
||||||
#else
|
#else
|
||||||
// scalar version
|
// scalar version
|
||||||
// This function is written like this so the compiler can manage to vectorize most of it
|
// This function is written like this so the compiler can manage to vectorize most of it
|
||||||
@ -2523,6 +2767,79 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
|||||||
|
|
||||||
*s = hsum_float_8(acc);
|
*s = hsum_float_8(acc);
|
||||||
|
|
||||||
|
#elif defined __riscv_v_intrinsic
|
||||||
|
|
||||||
|
uint16_t aux16[2];
|
||||||
|
int8_t * scales = (int8_t *)aux16;
|
||||||
|
|
||||||
|
float sumf = 0;
|
||||||
|
|
||||||
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
|
const uint8_t * restrict q3 = x[i].qs;
|
||||||
|
const int8_t * restrict q8 = y[i].qs;
|
||||||
|
|
||||||
|
const uint16_t a = *(const uint16_t *)x[i].scales;
|
||||||
|
aux16[0] = a & 0x0f0f;
|
||||||
|
aux16[1] = (a >> 4) & 0x0f0f;
|
||||||
|
|
||||||
|
for (int j = 0; j < 4; ++j) scales[j] -= 8;
|
||||||
|
|
||||||
|
int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
|
||||||
|
|
||||||
|
const float d = y[i].d * (float)x[i].d;
|
||||||
|
|
||||||
|
vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
|
||||||
|
|
||||||
|
// load qh
|
||||||
|
vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(x[i].hmask, 8);
|
||||||
|
vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
|
||||||
|
|
||||||
|
size_t vl = 16;
|
||||||
|
|
||||||
|
// extend and combine both qh_x1 and qh_x2
|
||||||
|
vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
|
||||||
|
|
||||||
|
vuint8mf2_t qh_0 = __riscv_vand_vx_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
|
||||||
|
vuint8mf2_t qh_1 = __riscv_vand_vx_u8mf2(qh_x, 0x4, vl);
|
||||||
|
vuint8mf2_t qh_2 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
|
||||||
|
vuint8mf2_t qh_3 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), 0x4, vl);
|
||||||
|
|
||||||
|
// load Q3
|
||||||
|
vuint8mf2_t q3_x = __riscv_vle8_v_u8mf2(q3, vl);
|
||||||
|
|
||||||
|
vuint8mf2_t q3h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q3_x, 0x3, vl), qh_0, vl);
|
||||||
|
vuint8mf2_t q3h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 2, vl), 0x3, vl), qh_1, vl);
|
||||||
|
vuint8mf2_t q3h_2 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 4, vl), 0x3, vl), qh_2, vl);
|
||||||
|
vuint8mf2_t q3h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 0x6, vl), qh_3, vl);
|
||||||
|
|
||||||
|
vint8mf2_t q3_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_0);
|
||||||
|
vint8mf2_t q3_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_1);
|
||||||
|
vint8mf2_t q3_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_2);
|
||||||
|
vint8mf2_t q3_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_3);
|
||||||
|
|
||||||
|
// load Q8 and take product with Q3
|
||||||
|
vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q3_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
|
||||||
|
vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q3_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
|
||||||
|
vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q3_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
|
||||||
|
vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q3_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
|
||||||
|
|
||||||
|
vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
|
||||||
|
vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
|
||||||
|
vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
|
||||||
|
vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
|
||||||
|
|
||||||
|
isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scales[0];
|
||||||
|
isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scales[2];
|
||||||
|
isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scales[1];
|
||||||
|
isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scales[3];
|
||||||
|
|
||||||
|
sumf += d * isum;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
*s = sumf;
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
int8_t aux8[QK_K];
|
int8_t aux8[QK_K];
|
||||||
@ -2823,6 +3140,78 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
|||||||
|
|
||||||
*s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
|
*s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
|
||||||
|
|
||||||
|
#elif defined __riscv_v_intrinsic
|
||||||
|
|
||||||
|
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||||
|
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||||
|
|
||||||
|
float sumf = 0;
|
||||||
|
|
||||||
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
|
size_t vl = 8;
|
||||||
|
|
||||||
|
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
|
||||||
|
const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
|
||||||
|
|
||||||
|
vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
|
||||||
|
vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
|
||||||
|
vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
|
||||||
|
|
||||||
|
memcpy(utmp, x[i].scales, 12);
|
||||||
|
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||||
|
const uint32_t uaux = utmp[1] & kmask1;
|
||||||
|
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||||
|
utmp[2] = uaux;
|
||||||
|
utmp[0] &= kmask1;
|
||||||
|
|
||||||
|
vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
|
||||||
|
vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
|
||||||
|
vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
|
||||||
|
|
||||||
|
vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
|
||||||
|
sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
|
||||||
|
|
||||||
|
const uint8_t * restrict q4 = x[i].qs;
|
||||||
|
const int8_t * restrict q8 = y[i].qs;
|
||||||
|
|
||||||
|
vl = 32;
|
||||||
|
|
||||||
|
int32_t sum_1 = 0;
|
||||||
|
int32_t sum_2 = 0;
|
||||||
|
|
||||||
|
vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
|
||||||
|
|
||||||
|
for (int j = 0; j < QK_K/64; ++j) {
|
||||||
|
// load Q4
|
||||||
|
vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
|
||||||
|
|
||||||
|
// load Q8 and multiply it with lower Q4 nibble
|
||||||
|
vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
|
||||||
|
vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
|
||||||
|
vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
|
||||||
|
vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
|
||||||
|
|
||||||
|
sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
|
||||||
|
|
||||||
|
// load Q8 and multiply it with upper Q4 nibble
|
||||||
|
vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
|
||||||
|
vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
|
||||||
|
vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
|
||||||
|
vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
|
||||||
|
|
||||||
|
sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
|
||||||
|
|
||||||
|
q4 += 32; q8 += 64;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
sumf += d*(sum_1 + sum_2);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
*s = sumf;
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
|
|
||||||
@ -3064,6 +3453,50 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
|||||||
|
|
||||||
*s = hsum_float_8(acc) - summs;
|
*s = hsum_float_8(acc) - summs;
|
||||||
|
|
||||||
|
#elif defined __riscv_v_intrinsic
|
||||||
|
|
||||||
|
uint16_t s16[2];
|
||||||
|
const uint8_t * restrict scales = (const uint8_t *)s16;
|
||||||
|
|
||||||
|
float sumf = 0;
|
||||||
|
|
||||||
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
|
const uint8_t * restrict q4 = x[i].qs;
|
||||||
|
const int8_t * restrict q8 = y[i].qs;
|
||||||
|
|
||||||
|
const uint16_t * restrict b = (const uint16_t *)x[i].scales;
|
||||||
|
s16[0] = b[0] & 0x0f0f;
|
||||||
|
s16[1] = (b[0] >> 4) & 0x0f0f;
|
||||||
|
|
||||||
|
sumf -= y[i].d * ggml_fp16_to_fp32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
|
||||||
|
const float d = y[i].d * ggml_fp16_to_fp32(x[i].d[0]);
|
||||||
|
|
||||||
|
size_t vl = 32;
|
||||||
|
|
||||||
|
vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
|
||||||
|
|
||||||
|
// load Q4
|
||||||
|
vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
|
||||||
|
|
||||||
|
// load Q8 and multiply it with lower Q4 nibble
|
||||||
|
vint8m1_t q4_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
|
||||||
|
vint16m2_t va_0 = __riscv_vwmul_vv_i16m2(q4_a, __riscv_vle8_v_i8m1(q8, vl), vl);
|
||||||
|
vint16m1_t aux1 = __riscv_vredsum_vs_i16m2_i16m1(va_0, vzero, vl);
|
||||||
|
|
||||||
|
sumf += d*scales[0]*__riscv_vmv_x_s_i16m1_i16(aux1);
|
||||||
|
|
||||||
|
// load Q8 and multiply it with upper Q4 nibble
|
||||||
|
vint8m1_t q4_s = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
|
||||||
|
vint16m2_t va_1 = __riscv_vwmul_vv_i16m2(q4_s, __riscv_vle8_v_i8m1(q8+32, vl), vl);
|
||||||
|
vint16m1_t aux2 = __riscv_vredsum_vs_i16m2_i16m1(va_1, vzero, vl);
|
||||||
|
|
||||||
|
sumf += d*scales[1]*__riscv_vmv_x_s_i16m1_i16(aux2);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
*s = sumf;
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
uint8_t aux8[QK_K];
|
uint8_t aux8[QK_K];
|
||||||
@ -3394,6 +3827,93 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
|
|||||||
|
|
||||||
*s = hsum_float_8(acc) + summs;
|
*s = hsum_float_8(acc) + summs;
|
||||||
|
|
||||||
|
#elif defined __riscv_v_intrinsic
|
||||||
|
|
||||||
|
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||||
|
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||||
|
|
||||||
|
float sumf = 0;
|
||||||
|
float sums = 0.0;
|
||||||
|
|
||||||
|
size_t vl;
|
||||||
|
|
||||||
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
|
vl = 8;
|
||||||
|
|
||||||
|
const uint8_t * restrict q5 = x[i].qs;
|
||||||
|
const uint8_t * restrict hm = x[i].qh;
|
||||||
|
const int8_t * restrict q8 = y[i].qs;
|
||||||
|
|
||||||
|
const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
|
||||||
|
const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
|
||||||
|
|
||||||
|
vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
|
||||||
|
vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
|
||||||
|
vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
|
||||||
|
|
||||||
|
memcpy(utmp, x[i].scales, 12);
|
||||||
|
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||||
|
const uint32_t uaux = utmp[1] & kmask1;
|
||||||
|
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||||
|
utmp[2] = uaux;
|
||||||
|
utmp[0] &= kmask1;
|
||||||
|
|
||||||
|
vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
|
||||||
|
vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
|
||||||
|
vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
|
||||||
|
|
||||||
|
vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
|
||||||
|
sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
|
||||||
|
|
||||||
|
vl = 32;
|
||||||
|
int32_t aux32 = 0;
|
||||||
|
int is = 0;
|
||||||
|
|
||||||
|
uint8_t m = 1;
|
||||||
|
vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
|
||||||
|
vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
|
||||||
|
|
||||||
|
for (int j = 0; j < QK_K/64; ++j) {
|
||||||
|
// load Q5 and Q8
|
||||||
|
vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
|
||||||
|
vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
|
||||||
|
vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
|
||||||
|
|
||||||
|
// compute mask for addition
|
||||||
|
vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
|
||||||
|
vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
|
||||||
|
vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
|
||||||
|
vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_m(vmask_1, q5_a, 16, vl);
|
||||||
|
m <<= 1;
|
||||||
|
|
||||||
|
vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
|
||||||
|
vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
|
||||||
|
vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
|
||||||
|
vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_m(vmask_2, q5_l, 16, vl);
|
||||||
|
m <<= 1;
|
||||||
|
|
||||||
|
vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
|
||||||
|
vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
|
||||||
|
|
||||||
|
vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
|
||||||
|
vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
|
||||||
|
|
||||||
|
vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
|
||||||
|
vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
|
||||||
|
|
||||||
|
aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
|
||||||
|
q5 += 32; q8 += 64;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
|
||||||
|
sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
*s = sumf+sums;
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||||
@ -3639,6 +4159,76 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
|
|||||||
|
|
||||||
*s = hsum_float_8(acc);
|
*s = hsum_float_8(acc);
|
||||||
|
|
||||||
|
#elif defined __riscv_v_intrinsic
|
||||||
|
|
||||||
|
float sumf = 0;
|
||||||
|
|
||||||
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
|
const float d = y[i].d * (float)x[i].d;
|
||||||
|
const int8_t * sc = x[i].scales;
|
||||||
|
|
||||||
|
const uint8_t * restrict q5 = x[i].qs;
|
||||||
|
const uint8_t * restrict qh = x[i].qh;
|
||||||
|
const int8_t * restrict q8 = y[i].qs;
|
||||||
|
|
||||||
|
vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
|
||||||
|
|
||||||
|
// load qh
|
||||||
|
vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(qh, 8);
|
||||||
|
vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
|
||||||
|
|
||||||
|
size_t vl = 16;
|
||||||
|
|
||||||
|
// combine both qh_1 and qh_2
|
||||||
|
vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
|
||||||
|
|
||||||
|
vuint8mf2_t qh_h0 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
|
||||||
|
vuint8mf2_t qh_h1 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), vl), 16, vl);
|
||||||
|
vuint8mf2_t qh_h2 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(qh_x, vl), 16, vl);
|
||||||
|
vuint8mf2_t qh_h3 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
|
||||||
|
|
||||||
|
vint8mf2_t qh_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h0);
|
||||||
|
vint8mf2_t qh_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h1);
|
||||||
|
vint8mf2_t qh_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h2);
|
||||||
|
vint8mf2_t qh_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h3);
|
||||||
|
|
||||||
|
// load q5
|
||||||
|
vuint8mf2_t q5_x1 = __riscv_vle8_v_u8mf2(q5, vl);
|
||||||
|
vuint8mf2_t q5_x2 = __riscv_vle8_v_u8mf2(q5+16, vl);
|
||||||
|
|
||||||
|
vint8mf2_t q5s_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x1, 0xF, vl));
|
||||||
|
vint8mf2_t q5s_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x2, 0xF, vl));
|
||||||
|
vint8mf2_t q5s_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x1, 0x4, vl));
|
||||||
|
vint8mf2_t q5s_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x2, 0x4, vl));
|
||||||
|
|
||||||
|
vint8mf2_t q5_0 = __riscv_vsub_vv_i8mf2(q5s_0, qh_0, vl);
|
||||||
|
vint8mf2_t q5_1 = __riscv_vsub_vv_i8mf2(q5s_1, qh_1, vl);
|
||||||
|
vint8mf2_t q5_2 = __riscv_vsub_vv_i8mf2(q5s_2, qh_2, vl);
|
||||||
|
vint8mf2_t q5_3 = __riscv_vsub_vv_i8mf2(q5s_3, qh_3, vl);
|
||||||
|
|
||||||
|
// load Q8 and multiply it with Q5
|
||||||
|
vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q5_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
|
||||||
|
vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q5_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
|
||||||
|
vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q5_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
|
||||||
|
vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q5_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
|
||||||
|
|
||||||
|
vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
|
||||||
|
vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
|
||||||
|
vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
|
||||||
|
vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
|
||||||
|
|
||||||
|
int32_t sumi1 = sc[0] * __riscv_vmv_x_s_i32m1_i32(vs_0);
|
||||||
|
int32_t sumi2 = sc[1] * __riscv_vmv_x_s_i32m1_i32(vs_1);
|
||||||
|
int32_t sumi3 = sc[2] * __riscv_vmv_x_s_i32m1_i32(vs_2);
|
||||||
|
int32_t sumi4 = sc[3] * __riscv_vmv_x_s_i32m1_i32(vs_3);
|
||||||
|
|
||||||
|
sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
*s = sumf;
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
int8_t aux8[QK_K];
|
int8_t aux8[QK_K];
|
||||||
@ -4023,6 +4613,91 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
|||||||
|
|
||||||
*s = hsum_float_8(acc);
|
*s = hsum_float_8(acc);
|
||||||
|
|
||||||
|
#elif defined __riscv_v_intrinsic
|
||||||
|
|
||||||
|
float sumf = 0;
|
||||||
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
|
const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
|
||||||
|
|
||||||
|
const uint8_t * restrict q6 = x[i].ql;
|
||||||
|
const uint8_t * restrict qh = x[i].qh;
|
||||||
|
const int8_t * restrict q8 = y[i].qs;
|
||||||
|
|
||||||
|
const int8_t * restrict scale = x[i].scales;
|
||||||
|
|
||||||
|
size_t vl;
|
||||||
|
|
||||||
|
vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
|
||||||
|
|
||||||
|
int sum_t = 0;
|
||||||
|
int is = 0;
|
||||||
|
|
||||||
|
for (int j = 0; j < QK_K/128; ++j) {
|
||||||
|
|
||||||
|
vl = 32;
|
||||||
|
|
||||||
|
// load qh
|
||||||
|
vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
|
||||||
|
|
||||||
|
// load Q6
|
||||||
|
vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
|
||||||
|
vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
|
||||||
|
|
||||||
|
vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
|
||||||
|
vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
|
||||||
|
vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
|
||||||
|
vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
|
||||||
|
|
||||||
|
vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
|
||||||
|
vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
|
||||||
|
vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
|
||||||
|
vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
|
||||||
|
|
||||||
|
vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
|
||||||
|
vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
|
||||||
|
vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
|
||||||
|
vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
|
||||||
|
|
||||||
|
vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
|
||||||
|
vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
|
||||||
|
vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
|
||||||
|
vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
|
||||||
|
|
||||||
|
// load Q8 and take product
|
||||||
|
vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
|
||||||
|
vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
|
||||||
|
vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
|
||||||
|
vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
|
||||||
|
|
||||||
|
vl = 16;
|
||||||
|
|
||||||
|
vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
|
||||||
|
vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
|
||||||
|
vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
|
||||||
|
vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
|
||||||
|
vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
|
||||||
|
vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
|
||||||
|
vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
|
||||||
|
vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
|
||||||
|
|
||||||
|
vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
|
||||||
|
vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
|
||||||
|
vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
|
||||||
|
vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
|
||||||
|
|
||||||
|
sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
|
||||||
|
|
||||||
|
q6 += 64; qh += 32; q8 += 128; is=8;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
sumf += d * sum_t;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
*s = sumf;
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
int8_t aux8[QK_K];
|
int8_t aux8[QK_K];
|
||||||
@ -4276,6 +4951,73 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
|||||||
|
|
||||||
*s = hsum_float_8(acc);
|
*s = hsum_float_8(acc);
|
||||||
|
|
||||||
|
#elif defined __riscv_v_intrinsic
|
||||||
|
|
||||||
|
float sumf = 0;
|
||||||
|
|
||||||
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
|
const float d_all = (float)x[i].d;
|
||||||
|
|
||||||
|
const uint8_t * restrict q6 = x[i].ql;
|
||||||
|
const uint8_t * restrict qh = x[i].qh;
|
||||||
|
const int8_t * restrict q8 = y[i].qs;
|
||||||
|
|
||||||
|
const int8_t * restrict scale = x[i].scales;
|
||||||
|
|
||||||
|
int32_t isum = 0;
|
||||||
|
|
||||||
|
size_t vl = 16;
|
||||||
|
|
||||||
|
vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
|
||||||
|
|
||||||
|
// load Q6
|
||||||
|
vuint8mf2_t q6_0 = __riscv_vle8_v_u8mf2(q6, vl);
|
||||||
|
vuint8mf2_t q6_1 = __riscv_vle8_v_u8mf2(q6+16, vl);
|
||||||
|
|
||||||
|
// load qh
|
||||||
|
vuint8mf2_t qh_x = __riscv_vle8_v_u8mf2(qh, vl);
|
||||||
|
|
||||||
|
vuint8mf2_t qh0 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
|
||||||
|
qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
|
||||||
|
vuint8mf2_t qh1 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
|
||||||
|
qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
|
||||||
|
vuint8mf2_t qh2 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
|
||||||
|
qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
|
||||||
|
vuint8mf2_t qh3 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
|
||||||
|
|
||||||
|
vuint8mf2_t q6h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_0, 0xF, vl), qh0, vl);
|
||||||
|
vuint8mf2_t q6h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_1, 0xF, vl), qh1, vl);
|
||||||
|
vuint8mf2_t q6h_2 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_0, 0x4, vl), qh2, vl);
|
||||||
|
vuint8mf2_t q6h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_1, 0x4, vl), qh3, vl);
|
||||||
|
|
||||||
|
vint8mf2_t q6v_0 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_0), 32, vl);
|
||||||
|
vint8mf2_t q6v_1 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_1), 32, vl);
|
||||||
|
vint8mf2_t q6v_2 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_2), 32, vl);
|
||||||
|
vint8mf2_t q6v_3 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_3), 32, vl);
|
||||||
|
|
||||||
|
// load Q8 and take product
|
||||||
|
vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q6v_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
|
||||||
|
vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q6v_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
|
||||||
|
vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q6v_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
|
||||||
|
vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q6v_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
|
||||||
|
|
||||||
|
vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
|
||||||
|
vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
|
||||||
|
vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
|
||||||
|
vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
|
||||||
|
|
||||||
|
isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scale[0];
|
||||||
|
isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scale[1];
|
||||||
|
isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scale[2];
|
||||||
|
isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scale[3];
|
||||||
|
|
||||||
|
sumf += isum * d_all * y[i].d;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
*s = sumf;
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
int8_t aux8[QK_K];
|
int8_t aux8[QK_K];
|
||||||
|
10
k_quants.h
10
k_quants.h
@ -29,7 +29,7 @@
|
|||||||
|
|
||||||
// 2-bit quantization
|
// 2-bit quantization
|
||||||
// weight is represented as x = a * q + b
|
// weight is represented as x = a * q + b
|
||||||
// 16 blocks of 16 elemenets each
|
// 16 blocks of 16 elements each
|
||||||
// Effectively 2.5625 bits per weight
|
// Effectively 2.5625 bits per weight
|
||||||
typedef struct {
|
typedef struct {
|
||||||
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
|
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
|
||||||
@ -41,7 +41,7 @@ static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "w
|
|||||||
|
|
||||||
// 3-bit quantization
|
// 3-bit quantization
|
||||||
// weight is represented as x = a * q
|
// weight is represented as x = a * q
|
||||||
// 16 blocks of 16 elemenets each
|
// 16 blocks of 16 elements each
|
||||||
// Effectively 3.4375 bits per weight
|
// Effectively 3.4375 bits per weight
|
||||||
#ifdef GGML_QKK_64
|
#ifdef GGML_QKK_64
|
||||||
typedef struct {
|
typedef struct {
|
||||||
@ -62,7 +62,7 @@ static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 +
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
// 4-bit quantization
|
// 4-bit quantization
|
||||||
// 16 blocks of 32 elements each
|
// 8 blocks of 32 elements each
|
||||||
// weight is represented as x = a * q + b
|
// weight is represented as x = a * q + b
|
||||||
// Effectively 4.5 bits per weight
|
// Effectively 4.5 bits per weight
|
||||||
#ifdef GGML_QKK_64
|
#ifdef GGML_QKK_64
|
||||||
@ -83,7 +83,7 @@ static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
// 5-bit quantization
|
// 5-bit quantization
|
||||||
// 16 blocks of 32 elements each
|
// 8 blocks of 32 elements each
|
||||||
// weight is represented as x = a * q + b
|
// weight is represented as x = a * q + b
|
||||||
// Effectively 5.5 bits per weight
|
// Effectively 5.5 bits per weight
|
||||||
#ifdef GGML_QKK_64
|
#ifdef GGML_QKK_64
|
||||||
@ -107,7 +107,7 @@ static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/
|
|||||||
|
|
||||||
// 6-bit quantization
|
// 6-bit quantization
|
||||||
// weight is represented as x = a * q
|
// weight is represented as x = a * q
|
||||||
// 16 blocks of 16 elemenets each
|
// 16 blocks of 16 elements each
|
||||||
// Effectively 6.5625 bits per weight
|
// Effectively 6.5625 bits per weight
|
||||||
typedef struct {
|
typedef struct {
|
||||||
uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
||||||
|
113
llama.h
113
llama.h
@ -42,7 +42,7 @@
|
|||||||
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
||||||
|
|
||||||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||||
#define LLAMA_SESSION_VERSION 1
|
#define LLAMA_SESSION_VERSION 2
|
||||||
|
|
||||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_KOMPUTE)
|
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_KOMPUTE)
|
||||||
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
||||||
@ -149,32 +149,37 @@ extern "C" {
|
|||||||
llama_seq_id all_seq_id; // used if seq_id == NULL
|
llama_seq_id all_seq_id; // used if seq_id == NULL
|
||||||
} llama_batch;
|
} llama_batch;
|
||||||
|
|
||||||
struct llama_context_params {
|
struct llama_model_params {
|
||||||
uint32_t seed; // RNG seed, -1 for random
|
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||||
int32_t n_ctx; // text context
|
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||||
int32_t n_batch; // prompt processing batch size
|
|
||||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
|
||||||
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
|
||||||
|
|
||||||
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
|
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
|
||||||
|
|
||||||
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
|
||||||
float rope_freq_base; // RoPE base frequency
|
|
||||||
float rope_freq_scale; // RoPE frequency scaling factor
|
|
||||||
|
|
||||||
// called with a progress value between 0 and 1, pass NULL to disable
|
// called with a progress value between 0 and 1, pass NULL to disable
|
||||||
llama_progress_callback progress_callback;
|
llama_progress_callback progress_callback;
|
||||||
// context pointer passed to the progress callback
|
// context pointer passed to the progress callback
|
||||||
void * progress_callback_user_data;
|
void * progress_callback_user_data;
|
||||||
|
|
||||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||||
bool low_vram; // if true, reduce VRAM usage at the cost of performance
|
|
||||||
bool mul_mat_q; // if true, use experimental mul_mat_q kernels
|
|
||||||
bool f16_kv; // use fp16 for KV cache
|
|
||||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
|
||||||
bool vocab_only; // only load the vocabulary, no weights
|
bool vocab_only; // only load the vocabulary, no weights
|
||||||
bool use_mmap; // use mmap if possible
|
bool use_mmap; // use mmap if possible
|
||||||
bool use_mlock; // force system to keep model in RAM
|
bool use_mlock; // force system to keep model in RAM
|
||||||
|
};
|
||||||
|
|
||||||
|
struct llama_context_params {
|
||||||
|
uint32_t seed; // RNG seed, -1 for random
|
||||||
|
uint32_t n_ctx; // text context, 0 = from model
|
||||||
|
uint32_t n_batch; // prompt processing maximum batch size
|
||||||
|
uint32_t n_threads; // number of threads to use for generation
|
||||||
|
uint32_t n_threads_batch; // number of threads to use for batch processing
|
||||||
|
|
||||||
|
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||||||
|
float rope_freq_base; // RoPE base frequency, 0 = from model
|
||||||
|
float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
|
||||||
|
|
||||||
|
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||||
|
bool mul_mat_q; // if true, use experimental mul_mat_q kernels
|
||||||
|
bool f16_kv; // use fp16 for KV cache, fp32 otherwise
|
||||||
|
bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
||||||
bool embedding; // embedding mode only
|
bool embedding; // embedding mode only
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -236,6 +241,7 @@ extern "C" {
|
|||||||
};
|
};
|
||||||
|
|
||||||
// Helpers for getting default parameters
|
// Helpers for getting default parameters
|
||||||
|
LLAMA_API struct llama_model_params llama_model_default_params(void);
|
||||||
LLAMA_API struct llama_context_params llama_context_default_params(void);
|
LLAMA_API struct llama_context_params llama_context_default_params(void);
|
||||||
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
|
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
|
||||||
|
|
||||||
@ -249,7 +255,7 @@ extern "C" {
|
|||||||
|
|
||||||
LLAMA_API struct llama_model * llama_load_model_from_file(
|
LLAMA_API struct llama_model * llama_load_model_from_file(
|
||||||
const char * path_model,
|
const char * path_model,
|
||||||
struct llama_context_params params);
|
struct llama_model_params params);
|
||||||
|
|
||||||
LLAMA_API void llama_free_model(struct llama_model * model);
|
LLAMA_API void llama_free_model(struct llama_model * model);
|
||||||
|
|
||||||
@ -266,17 +272,18 @@ extern "C" {
|
|||||||
LLAMA_API bool llama_mmap_supported (void);
|
LLAMA_API bool llama_mmap_supported (void);
|
||||||
LLAMA_API bool llama_mlock_supported(void);
|
LLAMA_API bool llama_mlock_supported(void);
|
||||||
|
|
||||||
LLAMA_API int llama_n_vocab (const struct llama_context * ctx);
|
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
|
||||||
|
|
||||||
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
|
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
|
||||||
LLAMA_API int llama_n_ctx_train(const struct llama_context * ctx);
|
|
||||||
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
|
|
||||||
|
|
||||||
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx);
|
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
|
||||||
|
|
||||||
LLAMA_API int llama_model_n_vocab (const struct llama_model * model);
|
LLAMA_API int llama_n_vocab (const struct llama_model * model);
|
||||||
LLAMA_API int llama_model_n_ctx (const struct llama_model * model);
|
LLAMA_API int llama_n_ctx_train(const struct llama_model * model);
|
||||||
LLAMA_API int llama_model_n_ctx_train(const struct llama_model * model);
|
LLAMA_API int llama_n_embd (const struct llama_model * model);
|
||||||
LLAMA_API int llama_model_n_embd (const struct llama_model * model);
|
|
||||||
|
// Get the model's RoPE frequency scaling factor
|
||||||
|
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
|
||||||
|
|
||||||
// Get a string describing the model type
|
// Get a string describing the model type
|
||||||
LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
|
LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
|
||||||
@ -287,6 +294,9 @@ extern "C" {
|
|||||||
// Returns the total number of parameters in the model
|
// Returns the total number of parameters in the model
|
||||||
LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
|
LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
|
||||||
|
|
||||||
|
// Get a llama model tensor
|
||||||
|
LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
|
||||||
|
|
||||||
// Returns 0 on success
|
// Returns 0 on success
|
||||||
LLAMA_API int llama_model_quantize(
|
LLAMA_API int llama_model_quantize(
|
||||||
const char * fname_inp,
|
const char * fname_inp,
|
||||||
@ -302,15 +312,17 @@ extern "C" {
|
|||||||
LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
|
LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
|
||||||
struct llama_context * ctx,
|
struct llama_context * ctx,
|
||||||
const char * path_lora,
|
const char * path_lora,
|
||||||
|
float scale,
|
||||||
const char * path_base_model,
|
const char * path_base_model,
|
||||||
int n_threads),
|
int n_threads),
|
||||||
"use llama_model_apply_lora_from_file instead");
|
"use llama_model_apply_lora_from_file instead");
|
||||||
|
|
||||||
LLAMA_API int llama_model_apply_lora_from_file(
|
LLAMA_API int llama_model_apply_lora_from_file(
|
||||||
const struct llama_model * model,
|
const struct llama_model * model,
|
||||||
const char * path_lora,
|
const char * path_lora,
|
||||||
const char * path_base_model,
|
float scale,
|
||||||
int n_threads);
|
const char * path_base_model,
|
||||||
|
int n_threads);
|
||||||
|
|
||||||
//
|
//
|
||||||
// KV cache
|
// KV cache
|
||||||
@ -321,12 +333,16 @@ extern "C" {
|
|||||||
"avoid using this, it will be removed in the future, instead - count the tokens in user code");
|
"avoid using this, it will be removed in the future, instead - count the tokens in user code");
|
||||||
|
|
||||||
// Remove all tokens data of cells in [c0, c1)
|
// Remove all tokens data of cells in [c0, c1)
|
||||||
|
// c0 < 0 : [0, c1]
|
||||||
|
// c1 < 0 : [c0, inf)
|
||||||
LLAMA_API void llama_kv_cache_tokens_rm(
|
LLAMA_API void llama_kv_cache_tokens_rm(
|
||||||
struct llama_context * ctx,
|
struct llama_context * ctx,
|
||||||
int32_t c0,
|
int32_t c0,
|
||||||
int32_t c1);
|
int32_t c1);
|
||||||
|
|
||||||
// Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
|
// Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
|
||||||
|
// p0 < 0 : [0, p1]
|
||||||
|
// p1 < 0 : [p0, inf)
|
||||||
LLAMA_API void llama_kv_cache_seq_rm(
|
LLAMA_API void llama_kv_cache_seq_rm(
|
||||||
struct llama_context * ctx,
|
struct llama_context * ctx,
|
||||||
llama_seq_id seq_id,
|
llama_seq_id seq_id,
|
||||||
@ -335,6 +351,8 @@ extern "C" {
|
|||||||
|
|
||||||
// Copy all tokens that belong to the specified sequence to another sequence
|
// Copy all tokens that belong to the specified sequence to another sequence
|
||||||
// Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
|
// Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
|
||||||
|
// p0 < 0 : [0, p1]
|
||||||
|
// p1 < 0 : [p0, inf)
|
||||||
LLAMA_API void llama_kv_cache_seq_cp(
|
LLAMA_API void llama_kv_cache_seq_cp(
|
||||||
struct llama_context * ctx,
|
struct llama_context * ctx,
|
||||||
llama_seq_id seq_id_src,
|
llama_seq_id seq_id_src,
|
||||||
@ -349,6 +367,8 @@ extern "C" {
|
|||||||
|
|
||||||
// Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
|
// Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
|
||||||
// If the KV cache is RoPEd, the KV data is updated accordingly
|
// If the KV cache is RoPEd, the KV data is updated accordingly
|
||||||
|
// p0 < 0 : [0, p1]
|
||||||
|
// p1 < 0 : [p0, inf)
|
||||||
LLAMA_API void llama_kv_cache_seq_shift(
|
LLAMA_API void llama_kv_cache_seq_shift(
|
||||||
struct llama_context * ctx,
|
struct llama_context * ctx,
|
||||||
llama_seq_id seq_id,
|
llama_seq_id seq_id,
|
||||||
@ -404,8 +424,7 @@ extern "C" {
|
|||||||
struct llama_context * ctx,
|
struct llama_context * ctx,
|
||||||
llama_token * tokens,
|
llama_token * tokens,
|
||||||
int32_t n_tokens,
|
int32_t n_tokens,
|
||||||
int n_past,
|
int n_past),
|
||||||
int n_threads),
|
|
||||||
"use llama_decode() instead");
|
"use llama_decode() instead");
|
||||||
|
|
||||||
// Same as llama_eval, but use float matrix input directly.
|
// Same as llama_eval, but use float matrix input directly.
|
||||||
@ -414,8 +433,7 @@ extern "C" {
|
|||||||
struct llama_context * ctx,
|
struct llama_context * ctx,
|
||||||
float * embd,
|
float * embd,
|
||||||
int32_t n_tokens,
|
int32_t n_tokens,
|
||||||
int n_past,
|
int n_past),
|
||||||
int n_threads),
|
|
||||||
"use llama_decode() instead");
|
"use llama_decode() instead");
|
||||||
|
|
||||||
// Return batch for single sequence of tokens starting at pos_0
|
// Return batch for single sequence of tokens starting at pos_0
|
||||||
@ -447,8 +465,12 @@ extern "C" {
|
|||||||
// < 0 - error
|
// < 0 - error
|
||||||
LLAMA_API int llama_decode(
|
LLAMA_API int llama_decode(
|
||||||
struct llama_context * ctx,
|
struct llama_context * ctx,
|
||||||
struct llama_batch batch,
|
struct llama_batch batch);
|
||||||
int n_threads);
|
|
||||||
|
// Set the number of threads used for decoding
|
||||||
|
// n_threads is the number of threads used for generation (single token)
|
||||||
|
// n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
|
||||||
|
LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
|
||||||
|
|
||||||
// Token logits obtained from the last call to llama_eval()
|
// Token logits obtained from the last call to llama_eval()
|
||||||
// The logits for the last token are stored in the last row
|
// The logits for the last token are stored in the last row
|
||||||
@ -479,6 +501,11 @@ extern "C" {
|
|||||||
LLAMA_API llama_token llama_token_bos(const struct llama_context * ctx); // beginning-of-sentence
|
LLAMA_API llama_token llama_token_bos(const struct llama_context * ctx); // beginning-of-sentence
|
||||||
LLAMA_API llama_token llama_token_eos(const struct llama_context * ctx); // end-of-sentence
|
LLAMA_API llama_token llama_token_eos(const struct llama_context * ctx); // end-of-sentence
|
||||||
LLAMA_API llama_token llama_token_nl (const struct llama_context * ctx); // next-line
|
LLAMA_API llama_token llama_token_nl (const struct llama_context * ctx); // next-line
|
||||||
|
// codellama infill tokens
|
||||||
|
LLAMA_API llama_token llama_token_prefix(const struct llama_context * ctx); // Beginning of infill prefix
|
||||||
|
LLAMA_API llama_token llama_token_middle(const struct llama_context * ctx); // Beginning of infill middle
|
||||||
|
LLAMA_API llama_token llama_token_suffix(const struct llama_context * ctx); // Beginning of infill suffix
|
||||||
|
LLAMA_API llama_token llama_token_eot (const struct llama_context * ctx); // End of infill middle
|
||||||
|
|
||||||
//
|
//
|
||||||
// Tokenization
|
// Tokenization
|
||||||
@ -489,14 +516,6 @@ extern "C" {
|
|||||||
// Returns the number of tokens on success, no more than n_max_tokens
|
// Returns the number of tokens on success, no more than n_max_tokens
|
||||||
// Returns a negative number on failure - the number of tokens that would have been returned
|
// Returns a negative number on failure - the number of tokens that would have been returned
|
||||||
LLAMA_API int llama_tokenize(
|
LLAMA_API int llama_tokenize(
|
||||||
struct llama_context * ctx,
|
|
||||||
const char * text,
|
|
||||||
int text_len,
|
|
||||||
llama_token * tokens,
|
|
||||||
int n_max_tokens,
|
|
||||||
bool add_bos);
|
|
||||||
|
|
||||||
LLAMA_API int llama_tokenize_with_model(
|
|
||||||
const struct llama_model * model,
|
const struct llama_model * model,
|
||||||
const char * text,
|
const char * text,
|
||||||
int text_len,
|
int text_len,
|
||||||
@ -509,12 +528,6 @@ extern "C" {
|
|||||||
// Does not write null terminator to the buffer.
|
// Does not write null terminator to the buffer.
|
||||||
// User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
|
// User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
|
||||||
LLAMA_API int llama_token_to_piece(
|
LLAMA_API int llama_token_to_piece(
|
||||||
const struct llama_context * ctx,
|
|
||||||
llama_token token,
|
|
||||||
char * buf,
|
|
||||||
int length);
|
|
||||||
|
|
||||||
LLAMA_API int llama_token_to_piece_with_model(
|
|
||||||
const struct llama_model * model,
|
const struct llama_model * model,
|
||||||
llama_token token,
|
llama_token token,
|
||||||
char * buf,
|
char * buf,
|
||||||
@ -695,15 +708,13 @@ extern "C" {
|
|||||||
/// @param n_beams Number of beams to use.
|
/// @param n_beams Number of beams to use.
|
||||||
/// @param n_past Number of tokens already evaluated.
|
/// @param n_past Number of tokens already evaluated.
|
||||||
/// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
|
/// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
|
||||||
/// @param n_threads Number of threads as passed to llama_eval().
|
|
||||||
LLAMA_API void llama_beam_search(
|
LLAMA_API void llama_beam_search(
|
||||||
struct llama_context * ctx,
|
struct llama_context * ctx,
|
||||||
llama_beam_search_callback_fn_t callback,
|
llama_beam_search_callback_fn_t callback,
|
||||||
void * callback_data,
|
void * callback_data,
|
||||||
size_t n_beams,
|
size_t n_beams,
|
||||||
int n_past,
|
int n_past,
|
||||||
int n_predict,
|
int n_predict);
|
||||||
int n_threads);
|
|
||||||
|
|
||||||
// Performance information
|
// Performance information
|
||||||
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
|
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
|
||||||
|
BIN
models/ggml-vocab-aquila.gguf
Normal file
BIN
models/ggml-vocab-aquila.gguf
Normal file
Binary file not shown.
BIN
models/ggml-vocab-falcon.gguf
Normal file
BIN
models/ggml-vocab-falcon.gguf
Normal file
Binary file not shown.
@ -43,7 +43,7 @@ static_assert(QK4_1 == QK8_0, "QK4_1 and QK8_0 must be the same");
|
|||||||
static_assert(QK4_0 == QK8_0, "QK4_0 and QK8_0 must be the same");
|
static_assert(QK4_0 == QK8_0, "QK4_0 and QK8_0 must be the same");
|
||||||
|
|
||||||
template <typename T>
|
template <typename T>
|
||||||
void fillQ4blocks(std::vector<T>& blocks, std::mt19937& rndm) {
|
static void fillQ4blocks(std::vector<T>& blocks, std::mt19937& rndm) {
|
||||||
for (auto& b : blocks) {
|
for (auto& b : blocks) {
|
||||||
b.d = 1;
|
b.d = 1;
|
||||||
for (int i=0; i<QK4_1/2; ++i) {
|
for (int i=0; i<QK4_1/2; ++i) {
|
||||||
@ -54,7 +54,7 @@ void fillQ4blocks(std::vector<T>& blocks, std::mt19937& rndm) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void fillQ80blocks(std::vector<block_q8_0>& blocks, std::mt19937& rndm) {
|
static void fillQ80blocks(std::vector<block_q8_0>& blocks, std::mt19937& rndm) {
|
||||||
for (auto& b : blocks) {
|
for (auto& b : blocks) {
|
||||||
b.d = 1;
|
b.d = 1;
|
||||||
int sum = 0;
|
int sum = 0;
|
||||||
@ -66,7 +66,7 @@ void fillQ80blocks(std::vector<block_q8_0>& blocks, std::mt19937& rndm) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
float simpleDot(const block_q4_0& x, const block_q8_0& y) {
|
static float simpleDot(const block_q4_0& x, const block_q8_0& y) {
|
||||||
int s1 = 0; //, s2 = 0;
|
int s1 = 0; //, s2 = 0;
|
||||||
for (int i=0; i<QK4_1/2; i+=2) {
|
for (int i=0; i<QK4_1/2; i+=2) {
|
||||||
int v1 = x.qs[i+0] & 0xf;
|
int v1 = x.qs[i+0] & 0xf;
|
||||||
@ -81,7 +81,7 @@ float simpleDot(const block_q4_0& x, const block_q8_0& y) {
|
|||||||
//return y.d * x.d * (s1 - 8 * s2);
|
//return y.d * x.d * (s1 - 8 * s2);
|
||||||
}
|
}
|
||||||
|
|
||||||
float simpleDot(const block_q4_1& x, const block_q8_0& y) {
|
static float simpleDot(const block_q4_1& x, const block_q8_0& y) {
|
||||||
int s1 = 0; //, s2 = 0;
|
int s1 = 0; //, s2 = 0;
|
||||||
for (int i=0; i<QK4_1/2; i+=2) {
|
for (int i=0; i<QK4_1/2; i+=2) {
|
||||||
int v1 = x.qs[i+0] & 0xf;
|
int v1 = x.qs[i+0] & 0xf;
|
||||||
|
49
prompts/LLM-questions.txt
Normal file
49
prompts/LLM-questions.txt
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
In the context of LLMs, what is "Attention"?
|
||||||
|
In the context of LLMs, what is a completion?
|
||||||
|
In the context of LLMs, what is a prompt?
|
||||||
|
In the context of LLMs, what is GELU?
|
||||||
|
In the context of LLMs, what is RELU?
|
||||||
|
In the context of LLMs, what is softmax?
|
||||||
|
In the context of LLMs, what is decoding?
|
||||||
|
In the context of LLMs, what is encoding?
|
||||||
|
In the context of LLMs, what is tokenizing?
|
||||||
|
In the context of LLMs, what is an embedding?
|
||||||
|
In the context of LLMs, what is quantization?
|
||||||
|
In the context of LLMs, what is a tensor?
|
||||||
|
In the context of LLMs, what is a sparse tensor?
|
||||||
|
In the context of LLMs, what is a vector?
|
||||||
|
In the context of LLMs, how is attention implemented?
|
||||||
|
In the context of LLMs, why is attention all you need?
|
||||||
|
In the context of LLMs, what is "RoPe" and what is it used for?
|
||||||
|
In the context of LLMs, what is "LoRA" and what is it used for?
|
||||||
|
In the context of LLMs, what are weights?
|
||||||
|
In the context of LLMs, what are biases?
|
||||||
|
In the context of LLMs, what are checkpoints?
|
||||||
|
In the context of LLMs, what is "perplexity"?
|
||||||
|
In the context of LLMs, what are models?
|
||||||
|
In the context of machine-learning, what is "catastrophic forgetting"?
|
||||||
|
In the context of machine-learning, what is "elastic weight consolidation (EWC)"?
|
||||||
|
In the context of neural nets, what is a hidden layer?
|
||||||
|
In the context of neural nets, what is a convolution?
|
||||||
|
In the context of neural nets, what is dropout?
|
||||||
|
In the context of neural nets, what is cross-entropy?
|
||||||
|
In the context of neural nets, what is over-fitting?
|
||||||
|
In the context of neural nets, what is under-fitting?
|
||||||
|
What is the difference between an interpreted computer language and a compiled computer language?
|
||||||
|
In the context of software development, what is a debugger?
|
||||||
|
When processing using a GPU, what is off-loading?
|
||||||
|
When processing using a GPU, what is a batch?
|
||||||
|
When processing using a GPU, what is a block?
|
||||||
|
When processing using a GPU, what is the difference between a batch and a block?
|
||||||
|
When processing using a GPU, what is a scratch tensor?
|
||||||
|
When processing using a GPU, what is a layer?
|
||||||
|
When processing using a GPU, what is a cache?
|
||||||
|
When processing using a GPU, what is unified memory?
|
||||||
|
When processing using a GPU, what is VRAM?
|
||||||
|
When processing using a GPU, what is a kernel?
|
||||||
|
When processing using a GPU, what is "metal"?
|
||||||
|
In the context of LLMs, what are "Zero-Shot", "One-Shot" and "Few-Shot" learning models?
|
||||||
|
In the context of LLMs, what is the "Transformer-model" architecture?
|
||||||
|
In the context of LLMs, what is "Multi-Head Attention"?
|
||||||
|
In the context of LLMs, what is "Self-Attention"?
|
||||||
|
In the context of transformer-model architectures, how do attention mechanisms use masks?
|
43
prompts/parallel-questions.txt
Normal file
43
prompts/parallel-questions.txt
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
What do you know about Hobbits?
|
||||||
|
What is quantum field theory?
|
||||||
|
Why did the chicken cross the road?
|
||||||
|
Who is the president of the United States?
|
||||||
|
How do I run CMake on MacOS?
|
||||||
|
Do you agree that C++ is a really finicky language compared with Python3?
|
||||||
|
Is it a good idea to invest in technology?
|
||||||
|
Do you like Wagner's Ring?
|
||||||
|
Do you think this file input option is really neat?
|
||||||
|
What should we all do about climate change?
|
||||||
|
Is time-travel possible within the laws of current physics?
|
||||||
|
Is it like anything to be a bat?
|
||||||
|
Once the chicken has crossed the road, does it try to go back?
|
||||||
|
Who is the greatest of all musical composers?
|
||||||
|
What is art?
|
||||||
|
Is there life elsewhere in the universe?
|
||||||
|
What is intelligence?
|
||||||
|
What is the difference between knowledge and intelligence?
|
||||||
|
Will religion ever die?
|
||||||
|
Do we understand ourselves?
|
||||||
|
What is the best way to cook eggs?
|
||||||
|
If you cannot see things, on what basis do you evaluate them?
|
||||||
|
Explain the role of the np junction in photovoltaic cells?
|
||||||
|
Is professional sport a good or bad influence on human behaviour?
|
||||||
|
Is capital punishment immoral?
|
||||||
|
Should we care about other people?
|
||||||
|
Who are you?
|
||||||
|
Which sense would you surrender if you could?
|
||||||
|
Was Henry Ford a hero or a villain?
|
||||||
|
Do we need leaders?
|
||||||
|
What is nucleosynthesis?
|
||||||
|
Who is the greatest scientist of all time?
|
||||||
|
Who first observed what came to be known as the photovoltaic effect?
|
||||||
|
What is nuclear fusion and why does it release energy?
|
||||||
|
Can you know that you exist?
|
||||||
|
What is an exoplanet?
|
||||||
|
Do you like cream?
|
||||||
|
What is the difference?
|
||||||
|
Can I know that I exist while I'm dreaming that I'm Descartes?
|
||||||
|
Who said "I didn't know I thought that until I heard myself saying it"?
|
||||||
|
Does anything really matter?
|
||||||
|
Can you explain the unreasonable effectiveness of mathematics?
|
||||||
|
|
@ -1,3 +1,3 @@
|
|||||||
numpy==1.24
|
numpy==1.24.4
|
||||||
sentencepiece==0.1.98
|
sentencepiece==0.1.98
|
||||||
gguf>=0.1.0
|
gguf>=0.1.0
|
||||||
|
@ -56,11 +56,13 @@ find_library(llama_LIBRARY llama
|
|||||||
HINTS ${LLAMA_LIB_DIR})
|
HINTS ${LLAMA_LIB_DIR})
|
||||||
|
|
||||||
set(_llama_link_deps "Threads::Threads" "@LLAMA_EXTRA_LIBS@")
|
set(_llama_link_deps "Threads::Threads" "@LLAMA_EXTRA_LIBS@")
|
||||||
|
set(_llama_transient_defines "@LLAMA_TRANSIENT_DEFINES@")
|
||||||
add_library(llama UNKNOWN IMPORTED)
|
add_library(llama UNKNOWN IMPORTED)
|
||||||
set_target_properties(llama
|
set_target_properties(llama
|
||||||
PROPERTIES
|
PROPERTIES
|
||||||
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"
|
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"
|
||||||
INTERFACE_LINK_LIBRARIES "${_llama_link_deps}"
|
INTERFACE_LINK_LIBRARIES "${_llama_link_deps}"
|
||||||
|
INTERFACE_COMPILE_DEFINITIONS "${_llama_transient_defines}"
|
||||||
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
||||||
IMPORTED_LOCATION "${llama_LIBRARY}"
|
IMPORTED_LOCATION "${llama_LIBRARY}"
|
||||||
INTERFACE_COMPILE_FEATURES cxx_std_11
|
INTERFACE_COMPILE_FEATURES cxx_std_11
|
||||||
|
@ -1,16 +1,18 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
cp -rpv ../ggml/src/ggml.c ./ggml.c
|
cp -rpv ../ggml/src/ggml.c ./ggml.c
|
||||||
cp -rpv ../ggml/src/ggml-alloc.c ./ggml-alloc.c
|
cp -rpv ../ggml/src/ggml-alloc.c ./ggml-alloc.c
|
||||||
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
|
cp -rpv ../ggml/src/ggml-backend.c ./ggml-backend.c
|
||||||
cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
|
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
|
||||||
cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h
|
cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
|
||||||
cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp
|
cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h
|
||||||
cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h
|
cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp
|
||||||
cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m
|
cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h
|
||||||
cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal
|
cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m
|
||||||
cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h
|
cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal
|
||||||
cp -rpv ../ggml/include/ggml/ggml-alloc.h ./ggml-alloc.h
|
cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h
|
||||||
|
cp -rpv ../ggml/include/ggml/ggml-alloc.h ./ggml-alloc.h
|
||||||
|
cp -rpv ../ggml/include/ggml/ggml-backend.h ./ggml-backend.h
|
||||||
|
|
||||||
cp -rpv ../ggml/tests/test-opt.cpp ./tests/test-opt.cpp
|
cp -rpv ../ggml/tests/test-opt.cpp ./tests/test-opt.cpp
|
||||||
cp -rpv ../ggml/tests/test-grad0.cpp ./tests/test-grad0.cpp
|
cp -rpv ../ggml/tests/test-grad0.cpp ./tests/test-grad0.cpp
|
||||||
|
@ -7,9 +7,6 @@ endfunction()
|
|||||||
|
|
||||||
function(llama_test_executable name source)
|
function(llama_test_executable name source)
|
||||||
get_filename_component(TEST_TARGET ${source} NAME_WE)
|
get_filename_component(TEST_TARGET ${source} NAME_WE)
|
||||||
# add_executable(${TEST_TARGET} ${source})
|
|
||||||
# install(TARGETS ${TEST_TARGET} RUNTIME)
|
|
||||||
# target_link_libraries(${TEST_TARGET} PRIVATE llama)
|
|
||||||
add_test(NAME ${name} COMMAND $<TARGET_FILE:${TEST_TARGET}> ${ARGN})
|
add_test(NAME ${name} COMMAND $<TARGET_FILE:${TEST_TARGET}> ${ARGN})
|
||||||
endfunction()
|
endfunction()
|
||||||
|
|
||||||
@ -28,10 +25,12 @@ llama_build_and_test_executable(test-sampling.cpp)
|
|||||||
llama_build_executable(test-tokenizer-0-llama.cpp)
|
llama_build_executable(test-tokenizer-0-llama.cpp)
|
||||||
llama_test_executable (test-tokenizer-0-llama test-tokenizer-0-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
|
llama_test_executable (test-tokenizer-0-llama test-tokenizer-0-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
|
||||||
llama_build_executable(test-tokenizer-0-falcon.cpp)
|
llama_build_executable(test-tokenizer-0-falcon.cpp)
|
||||||
#llama_test_executable (test-tokenizer-0-falcon test-tokenizer-0-falcon.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
|
llama_test_executable (test-tokenizer-0-falcon test-tokenizer-0-falcon.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
|
||||||
llama_build_executable(test-tokenizer-1-llama.cpp)
|
llama_build_executable(test-tokenizer-1-llama.cpp)
|
||||||
llama_test_executable (test-tokenizer-1-llama test-tokenizer-1-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
|
llama_test_executable (test-tokenizer-1-llama test-tokenizer-1-llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
|
||||||
#llama_test_executable(test-tokenizer-1.aquila test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
|
llama_build_executable(test-tokenizer-1-bpe.cpp)
|
||||||
|
llama_test_executable (test-tokenizer-1-falcon test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
|
||||||
|
llama_test_executable(test-tokenizer-1-aquila test-tokenizer-1-bpe.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
|
||||||
llama_build_and_test_executable(test-grammar-parser.cpp)
|
llama_build_and_test_executable(test-grammar-parser.cpp)
|
||||||
llama_build_and_test_executable(test-llama-grammar.cpp)
|
llama_build_and_test_executable(test-llama-grammar.cpp)
|
||||||
llama_build_and_test_executable(test-grad0.cpp) # SLOW
|
llama_build_and_test_executable(test-grad0.cpp) # SLOW
|
||||||
|
@ -107,7 +107,7 @@ static struct ggml_tensor * get_random_tensor_f32(
|
|||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
assert(false);
|
assert(false);
|
||||||
};
|
}
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
@ -155,7 +155,7 @@ static struct ggml_tensor * get_random_tensor_f16(
|
|||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
assert(false);
|
assert(false);
|
||||||
};
|
}
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
@ -203,31 +203,11 @@ static struct ggml_tensor * get_random_tensor_i32(
|
|||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
assert(false);
|
assert(false);
|
||||||
};
|
}
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void print_elements(const char* label, const struct ggml_tensor * t) {
|
|
||||||
if (!t) {
|
|
||||||
printf("%s: %s = null\n", __func__, label);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
const int nelements = ggml_nelements(t);
|
|
||||||
printf("%s: %s = [", __func__, label);
|
|
||||||
for (int k = 0; k < nelements; ++k) {
|
|
||||||
if (k > 0) { printf(", "); }
|
|
||||||
printf("%.5f", ggml_get_f32_1d(t, k));
|
|
||||||
}
|
|
||||||
printf("] shape: [");
|
|
||||||
for (int k = 0; k < t->n_dims; ++k) {
|
|
||||||
if (k > 0) { printf(", "); }
|
|
||||||
printf("%d", (int)t->ne[k]);
|
|
||||||
}
|
|
||||||
printf("]\n");
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
static bool check_gradient(
|
static bool check_gradient(
|
||||||
const char * op_name,
|
const char * op_name,
|
||||||
struct ggml_context * ctx0,
|
struct ggml_context * ctx0,
|
||||||
@ -251,18 +231,20 @@ static bool check_gradient(
|
|||||||
printf("GGML_N_THREADS = %d\n", n_threads);
|
printf("GGML_N_THREADS = %d\n", n_threads);
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_cgraph gf = ggml_build_forward (f);
|
struct ggml_cgraph * gf = ggml_build_forward_ctx(ctx0, f);
|
||||||
struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
|
struct ggml_cgraph * gb = ggml_new_graph(ctx0);
|
||||||
|
*gb = *gf;
|
||||||
|
ggml_build_backward_expand(ctx0, gf, gb, false);
|
||||||
|
|
||||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
ggml_graph_compute_with_ctx(ctx0, gf, n_threads);
|
||||||
|
|
||||||
ggml_graph_reset (&gf);
|
ggml_graph_reset (gf);
|
||||||
ggml_set_f32 (f->grad, 1.0f);
|
ggml_set_f32 (f->grad, 1.0f);
|
||||||
|
|
||||||
ggml_graph_compute_with_ctx(ctx0, &gb, n_threads);
|
ggml_graph_compute_with_ctx(ctx0, gb, n_threads);
|
||||||
|
|
||||||
// ggml_graph_dump_dot(&gf, NULL, "test-grad0-forward.dot");
|
// ggml_graph_dump_dot(gf, NULL, "test-grad0-forward.dot");
|
||||||
// ggml_graph_dump_dot(&gb, &gf, "test-grad0-backward.dot");
|
// ggml_graph_dump_dot(gb, gf, "test-grad0-backward.dot");
|
||||||
|
|
||||||
for (int i = 0; i < nargs; ++i) {
|
for (int i = 0; i < nargs; ++i) {
|
||||||
const int nelements = ggml_nelements(x[i]);
|
const int nelements = ggml_nelements(x[i]);
|
||||||
@ -273,13 +255,13 @@ static bool check_gradient(
|
|||||||
const float xp = x0 + eps;
|
const float xp = x0 + eps;
|
||||||
ggml_set_f32_1d(x[i], k, xp);
|
ggml_set_f32_1d(x[i], k, xp);
|
||||||
|
|
||||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
ggml_graph_compute_with_ctx(ctx0, gf, n_threads);
|
||||||
|
|
||||||
const double f0 = ggml_get_f32_1d(f, 0);
|
const double f0 = ggml_get_f32_1d(f, 0);
|
||||||
|
|
||||||
ggml_set_f32_1d(x[i], k, xm);
|
ggml_set_f32_1d(x[i], k, xm);
|
||||||
|
|
||||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
ggml_graph_compute_with_ctx(ctx0, gf, n_threads);
|
||||||
|
|
||||||
const double f1 = ggml_get_f32_1d(f, 0);
|
const double f1 = ggml_get_f32_1d(f, 0);
|
||||||
const double g0 = (f0 - f1)/(2.0*(double) eps);
|
const double g0 = (f0 - f1)/(2.0*(double) eps);
|
||||||
@ -287,10 +269,10 @@ static bool check_gradient(
|
|||||||
ggml_set_f32_1d(x[i], k, x0);
|
ggml_set_f32_1d(x[i], k, x0);
|
||||||
|
|
||||||
// compute gradient using backward graph
|
// compute gradient using backward graph
|
||||||
ggml_graph_reset (&gf);
|
ggml_graph_reset (gf);
|
||||||
ggml_set_f32 (f->grad, 1.0f);
|
ggml_set_f32 (f->grad, 1.0f);
|
||||||
|
|
||||||
ggml_graph_compute_with_ctx(ctx0, &gb, n_threads);
|
ggml_graph_compute_with_ctx(ctx0, gb, n_threads);
|
||||||
|
|
||||||
const double g1 = ggml_get_f32_1d(x[i]->grad, k);
|
const double g1 = ggml_get_f32_1d(x[i]->grad, k);
|
||||||
|
|
||||||
@ -373,7 +355,7 @@ static bool check_mat_mul(
|
|||||||
|
|
||||||
int main(int argc, const char ** argv) {
|
int main(int argc, const char ** argv) {
|
||||||
struct ggml_init_params params = {
|
struct ggml_init_params params = {
|
||||||
/* .mem_size = */ 128*1024*1024,
|
/* .mem_size = */ 256*1024*1024,
|
||||||
/* .mem_buffer = */ NULL,
|
/* .mem_buffer = */ NULL,
|
||||||
/* .no_alloc = */ false,
|
/* .no_alloc = */ false,
|
||||||
};
|
};
|
||||||
@ -405,6 +387,7 @@ int main(int argc, const char ** argv) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
unsigned seed_iter = 1;
|
||||||
|
|
||||||
// original loop: 1000
|
// original loop: 1000
|
||||||
int niter = 4;
|
int niter = 4;
|
||||||
@ -416,6 +399,10 @@ int main(int argc, const char ** argv) {
|
|||||||
niter = atoi(argv[1]);
|
niter = atoi(argv[1]);
|
||||||
}
|
}
|
||||||
for (int iter = 0; iter < niter; ++iter) {
|
for (int iter = 0; iter < niter; ++iter) {
|
||||||
|
srand(seed_iter);
|
||||||
|
seed_iter = rand();
|
||||||
|
unsigned seed = rand();
|
||||||
|
|
||||||
printf("test-grad0: iter:%d/%d\n", iter, niter);
|
printf("test-grad0: iter:%d/%d\n", iter, niter);
|
||||||
struct ggml_context * ctx0 = ggml_init(params);
|
struct ggml_context * ctx0 = ggml_init(params);
|
||||||
|
|
||||||
@ -425,6 +412,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// add f32
|
// add f32
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 2;
|
const int nargs = 2;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||||
@ -441,6 +429,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// add f16
|
// add f16
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 2;
|
const int nargs = 2;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||||
@ -457,6 +446,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// sub
|
// sub
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 2;
|
const int nargs = 2;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||||
@ -473,6 +463,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// mul
|
// mul
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 2;
|
const int nargs = 2;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||||
@ -489,6 +480,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// div
|
// div
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 2;
|
const int nargs = 2;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||||
@ -505,6 +497,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// sqr
|
// sqr
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||||
@ -521,6 +514,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// sqrt
|
// sqrt
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||||
@ -537,6 +531,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// log
|
// log
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||||
@ -553,6 +548,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// sum
|
// sum
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||||
@ -570,6 +566,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// sum_rows
|
// sum_rows
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||||
@ -587,6 +584,7 @@ int main(int argc, const char ** argv) {
|
|||||||
// mean, not yet fully implemented
|
// mean, not yet fully implemented
|
||||||
if(0)
|
if(0)
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||||
@ -604,6 +602,7 @@ int main(int argc, const char ** argv) {
|
|||||||
// argmax
|
// argmax
|
||||||
if (0)
|
if (0)
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||||
@ -620,6 +619,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// repeat
|
// repeat
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
int64_t ne2[4];
|
int64_t ne2[4];
|
||||||
get_random_dims(ne2, 4);
|
get_random_dims(ne2, 4);
|
||||||
|
|
||||||
@ -642,6 +642,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// repeat back
|
// repeat back
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
int64_t ne2[4];
|
int64_t ne2[4];
|
||||||
get_random_dims(ne2, 4);
|
get_random_dims(ne2, 4);
|
||||||
|
|
||||||
@ -680,6 +681,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// sgn
|
// sgn
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||||
@ -696,6 +698,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// neg
|
// neg
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||||
@ -712,6 +715,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// step
|
// step
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||||
@ -729,6 +733,7 @@ int main(int argc, const char ** argv) {
|
|||||||
// tanh, not yet fully implemented
|
// tanh, not yet fully implemented
|
||||||
if(0)
|
if(0)
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||||
@ -745,33 +750,45 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// mul_mat
|
// mul_mat
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 2;
|
const int nargs = 2;
|
||||||
|
|
||||||
for (int ndims = 2; ndims <= 2; ++ndims) {
|
for (int ndims = 2; ndims <= 4; ++ndims) {
|
||||||
|
int max_nrep = (ndims >= 3) ? 2 : 1;
|
||||||
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
|
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||||
{
|
for (int nrep2 = 1; nrep2 < max_nrep; ++nrep2) {
|
||||||
int64_t ne2[4];
|
for (int nrep3 = 1; nrep3 < max_nrep; ++nrep3) {
|
||||||
get_random_dims(ne2, 4);
|
{
|
||||||
ne2[0] = ne[0];
|
int64_t ne2[4];
|
||||||
x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
|
get_random_dims(ne2, 4);
|
||||||
|
ne2[0] = ne[0];
|
||||||
|
ne2[2] = nrep2 * ne[2];
|
||||||
|
ne2[3] = nrep3 * ne[3];
|
||||||
|
x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_set_param(ctx0, x[0]);
|
||||||
|
ggml_set_param(ctx0, x[1]);
|
||||||
|
|
||||||
|
struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]);
|
||||||
|
struct ggml_tensor * f = ggml_sum(ctx0, m);
|
||||||
|
|
||||||
|
GGML_PRINT_DEBUG("testing: mul_mat, [%lld, %lld] (%d) * [%lld, %lld] (%d)\n", x[1]->ne[0], x[1]->ne[1], x[1]->n_dims, x[0]->ne[0], x[0]->ne[1], x[0]->n_dims);
|
||||||
|
|
||||||
|
check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
|
||||||
|
if (ndims == 2) {
|
||||||
|
// check_mat_mul does not support ndims > 2
|
||||||
|
check_mat_mul(m, x[1], x[0]);
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
ggml_set_param(ctx0, x[0]);
|
|
||||||
ggml_set_param(ctx0, x[1]);
|
|
||||||
|
|
||||||
struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]);
|
|
||||||
struct ggml_tensor * f = ggml_sum(ctx0, m);
|
|
||||||
|
|
||||||
GGML_PRINT_DEBUG("testing: mul_mat, [%lld, %lld] (%d) * [%lld, %lld] (%d)\n", x[1]->ne[0], x[1]->ne[1], x[1]->n_dims, x[0]->ne[0], x[0]->ne[1], x[0]->n_dims);
|
|
||||||
|
|
||||||
check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
|
|
||||||
check_mat_mul(m, x[1], x[0]);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// elu, not yet fully implemented
|
// elu, not yet fully implemented
|
||||||
if(0)
|
if(0)
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||||
@ -788,6 +805,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// relu
|
// relu
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||||
@ -805,6 +823,7 @@ int main(int argc, const char ** argv) {
|
|||||||
// gelu, not yet fully implemented
|
// gelu, not yet fully implemented
|
||||||
if(0)
|
if(0)
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||||
@ -821,6 +840,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// silu
|
// silu
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||||
@ -842,6 +862,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// rms_norm
|
// rms_norm
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||||
@ -858,6 +879,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// scale
|
// scale
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 2;
|
const int nargs = 2;
|
||||||
|
|
||||||
int64_t ne2[4];
|
int64_t ne2[4];
|
||||||
@ -878,6 +900,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// cpy f32
|
// cpy f32
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 2;
|
const int nargs = 2;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||||
@ -895,6 +918,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// cpy f16
|
// cpy f16
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 2;
|
const int nargs = 2;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||||
@ -912,6 +936,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// reshape (1d->nd)
|
// reshape (1d->nd)
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||||
@ -935,6 +960,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// reshape (nd->1d)
|
// reshape (nd->1d)
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||||
@ -958,6 +984,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// acc 1d
|
// acc 1d
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
int64_t ne2[4] = { 1, 1, 1, 1 };
|
int64_t ne2[4] = { 1, 1, 1, 1 };
|
||||||
|
|
||||||
const int nargs = 2;
|
const int nargs = 2;
|
||||||
@ -985,6 +1012,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// acc 2d
|
// acc 2d
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
int64_t ne2[4] = { 1, 1, 1, 1 };
|
int64_t ne2[4] = { 1, 1, 1, 1 };
|
||||||
int64_t max_offsets[4] = { 0, 0, 0, 0 };
|
int64_t max_offsets[4] = { 0, 0, 0, 0 };
|
||||||
int64_t offsets[4] = { 0, 0, 0, 0 };
|
int64_t offsets[4] = { 0, 0, 0, 0 };
|
||||||
@ -1017,6 +1045,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// acc 3d
|
// acc 3d
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
int64_t ne2[4] = { 1, 1, 1, 1 };
|
int64_t ne2[4] = { 1, 1, 1, 1 };
|
||||||
int64_t max_offsets[4] = { 0, 0, 0, 0 };
|
int64_t max_offsets[4] = { 0, 0, 0, 0 };
|
||||||
int64_t offsets[4] = { 0, 0, 0, 0 };
|
int64_t offsets[4] = { 0, 0, 0, 0 };
|
||||||
@ -1051,6 +1080,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// acc 4d
|
// acc 4d
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
int64_t ne2[4] = { 1, 1, 1, 1 };
|
int64_t ne2[4] = { 1, 1, 1, 1 };
|
||||||
int64_t max_offsets[4] = { 0, 0, 0, 0 };
|
int64_t max_offsets[4] = { 0, 0, 0, 0 };
|
||||||
int64_t offsets[4] = { 0, 0, 0, 0 };
|
int64_t offsets[4] = { 0, 0, 0, 0 };
|
||||||
@ -1087,6 +1117,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// set_1d
|
// set_1d
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
int64_t ne2[4];
|
int64_t ne2[4];
|
||||||
|
|
||||||
const int nargs = 2;
|
const int nargs = 2;
|
||||||
@ -1114,6 +1145,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// set_2d
|
// set_2d
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
int64_t ne2[4];
|
int64_t ne2[4];
|
||||||
int64_t max_offsets[4] = { 0, 0, 0, 0 };
|
int64_t max_offsets[4] = { 0, 0, 0, 0 };
|
||||||
int64_t offsets[4] = { 0, 0, 0, 0 };
|
int64_t offsets[4] = { 0, 0, 0, 0 };
|
||||||
@ -1146,6 +1178,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// view_1d
|
// view_1d
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||||
|
|
||||||
@ -1169,6 +1202,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// view_2d
|
// view_2d
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
int64_t ne2[4];
|
int64_t ne2[4];
|
||||||
int64_t nb2[4];
|
int64_t nb2[4];
|
||||||
|
|
||||||
@ -1199,6 +1233,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// view_3d
|
// view_3d
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
int64_t ne2[4] = {1,1,1,1};
|
int64_t ne2[4] = {1,1,1,1};
|
||||||
int64_t nb2[4] = {0,0,0,0};
|
int64_t nb2[4] = {0,0,0,0};
|
||||||
|
|
||||||
@ -1230,6 +1265,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// permute
|
// permute
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
int64_t ne2[4];
|
int64_t ne2[4];
|
||||||
|
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
@ -1263,6 +1299,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// transpose
|
// transpose
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
int64_t ne2[4];
|
int64_t ne2[4];
|
||||||
|
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
@ -1290,6 +1327,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// get_rows
|
// get_rows
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
int64_t ne2[4] = {ne[0], ne[1], 1, 1};
|
int64_t ne2[4] = {ne[0], ne[1], 1, 1};
|
||||||
int64_t ne3[4] = {1+irand(ne[1]), 1, 1, 1};
|
int64_t ne3[4] = {1+irand(ne[1]), 1, 1, 1};
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
@ -1306,6 +1344,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// diag_mask_inf
|
// diag_mask_inf
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
const int ndims = 2;
|
const int ndims = 2;
|
||||||
|
|
||||||
@ -1321,6 +1360,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// diag_mask_zero
|
// diag_mask_zero
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
const int ndims = 2;
|
const int ndims = 2;
|
||||||
|
|
||||||
@ -1336,6 +1376,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// softmax
|
// softmax
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
int64_t ne2[4];
|
int64_t ne2[4];
|
||||||
@ -1357,11 +1398,16 @@ int main(int argc, const char ** argv) {
|
|||||||
ggml_new_f32(ctx0, eps))));
|
ggml_new_f32(ctx0, eps))));
|
||||||
|
|
||||||
check_gradient("softmax", ctx0, x, f, ndims, nargs, 1e-3f, 2e-1f, INFINITY);
|
check_gradient("softmax", ctx0, x, f, ndims, nargs, 1e-3f, 2e-1f, INFINITY);
|
||||||
|
// NOTE: softmax forward is computed using f16 table lookup instead of using actual expf, but backward assumes actual expf.
|
||||||
|
// this may result in different gradients too finite differences.
|
||||||
|
// when this test reports errors, first try to replace the table lookup with actual expf and test again to see if just that was the cause.
|
||||||
|
// if only the table lookup causes gradients to differ this is acceptable.
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// cross_entropy_loss
|
// cross_entropy_loss
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
int64_t ne2[4];
|
int64_t ne2[4];
|
||||||
@ -1392,6 +1438,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// rope f32
|
// rope f32
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
int64_t ne2[4];
|
int64_t ne2[4];
|
||||||
@ -1431,6 +1478,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// rope f16
|
// rope f16
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 1;
|
const int nargs = 1;
|
||||||
|
|
||||||
int64_t ne2[4];
|
int64_t ne2[4];
|
||||||
@ -1470,6 +1518,7 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
// flash_attn f32
|
// flash_attn f32
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 3;
|
const int nargs = 3;
|
||||||
|
|
||||||
int64_t ne2[4];
|
int64_t ne2[4];
|
||||||
@ -1482,28 +1531,31 @@ int main(int argc, const char ** argv) {
|
|||||||
|
|
||||||
for (int masked = 0; masked <= 1; ++masked) {
|
for (int masked = 0; masked <= 1; ++masked) {
|
||||||
for (int ndims = 2; ndims <= 4; ++ndims) {
|
for (int ndims = 2; ndims <= 4; ++ndims) {
|
||||||
int64_t neq[4] = { D, N, B, ne[3] };
|
int max_nrep = (ndims >= 3) ? 2 : 1;
|
||||||
int64_t nek[4] = { D, M, B, ne[3] };
|
for (int nrep = 1; nrep < max_nrep; ++nrep) {
|
||||||
int64_t nev[4] = { M, D, B, ne[3] };
|
int64_t neq[4] = { D, N, B*nrep, ne[3] };
|
||||||
if (ndims == 2) {
|
int64_t nek[4] = { D, M, B, ne[3] };
|
||||||
neq[2] = 1; neq[3] = 1;
|
int64_t nev[4] = { M, D, B, ne[3] };
|
||||||
nek[2] = 1; nek[3] = 1;
|
if (ndims == 2) {
|
||||||
nev[2] = 1; nev[3] = 1;
|
neq[2] = 1; neq[3] = 1;
|
||||||
} else if (ndims == 3) {
|
nek[2] = 1; nek[3] = 1;
|
||||||
neq[3] = 1;
|
nev[2] = 1; nev[3] = 1;
|
||||||
nek[3] = 1;
|
} else if (ndims == 3) {
|
||||||
nev[3] = 1;
|
neq[3] = 1;
|
||||||
|
nek[3] = 1;
|
||||||
|
nev[3] = 1;
|
||||||
|
}
|
||||||
|
x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f);
|
||||||
|
x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f);
|
||||||
|
x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f);
|
||||||
|
ggml_set_param(ctx0, x[0]);
|
||||||
|
ggml_set_param(ctx0, x[1]);
|
||||||
|
ggml_set_param(ctx0, x[2]);
|
||||||
|
|
||||||
|
struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
|
||||||
|
|
||||||
|
check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY);
|
||||||
}
|
}
|
||||||
x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f);
|
|
||||||
x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f);
|
|
||||||
x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f);
|
|
||||||
ggml_set_param(ctx0, x[0]);
|
|
||||||
ggml_set_param(ctx0, x[1]);
|
|
||||||
ggml_set_param(ctx0, x[2]);
|
|
||||||
|
|
||||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
|
|
||||||
|
|
||||||
check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -1511,6 +1563,7 @@ int main(int argc, const char ** argv) {
|
|||||||
// flash_attn f16, not yet fully implemented
|
// flash_attn f16, not yet fully implemented
|
||||||
if(0)
|
if(0)
|
||||||
{
|
{
|
||||||
|
srand(seed);
|
||||||
const int nargs = 3;
|
const int nargs = 3;
|
||||||
|
|
||||||
int64_t ne2[4];
|
int64_t ne2[4];
|
||||||
|
@ -40,27 +40,6 @@ static float frand(void) {
|
|||||||
return (float)rand()/(float)RAND_MAX;
|
return (float)rand()/(float)RAND_MAX;
|
||||||
}
|
}
|
||||||
|
|
||||||
static int irand(int n) {
|
|
||||||
return rand()%n;
|
|
||||||
}
|
|
||||||
|
|
||||||
static void get_random_dims(int64_t * dims, int ndims) {
|
|
||||||
dims[0] = dims[1] = dims[2] = dims[3] = 1;
|
|
||||||
|
|
||||||
for (int i = 0; i < ndims; i++) {
|
|
||||||
dims[i] = 1 + irand(4);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
static void get_random_dims_minmax(int64_t * dims, int ndims, int min, int max) {
|
|
||||||
dims[0] = dims[1] = dims[2] = dims[3] = 1;
|
|
||||||
|
|
||||||
for (int i = 0; i < ndims; i++) {
|
|
||||||
dims[i] = min + irand(max-min);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
static struct ggml_tensor * get_random_tensor(
|
static struct ggml_tensor * get_random_tensor(
|
||||||
struct ggml_context * ctx0, int ndims, int64_t ne[], float fmin, float fmax
|
struct ggml_context * ctx0, int ndims, int64_t ne[], float fmin, float fmax
|
||||||
) {
|
) {
|
||||||
@ -101,19 +80,11 @@ static struct ggml_tensor * get_random_tensor(
|
|||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
assert(false);
|
assert(false);
|
||||||
};
|
}
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
static float get_element(const struct ggml_tensor * t, int idx) {
|
|
||||||
return ((float *)t->data)[idx];
|
|
||||||
}
|
|
||||||
|
|
||||||
static void set_element(struct ggml_tensor * t, int idx, float value) {
|
|
||||||
((float *)t->data)[idx] = value;
|
|
||||||
}
|
|
||||||
|
|
||||||
int main(void) {
|
int main(void) {
|
||||||
struct ggml_init_params params = {
|
struct ggml_init_params params = {
|
||||||
/* .mem_size = */ 1024*1024*1024,
|
/* .mem_size = */ 1024*1024*1024,
|
||||||
@ -124,7 +95,7 @@ int main(void) {
|
|||||||
struct ggml_context * ctx = ggml_init(params);
|
struct ggml_context * ctx = ggml_init(params);
|
||||||
|
|
||||||
int64_t ne1[4] = {4, 128, 1, 1};
|
int64_t ne1[4] = {4, 128, 1, 1};
|
||||||
int64_t ne2[4] = {4, 256, 1, 1};;
|
int64_t ne2[4] = {4, 256, 1, 1};
|
||||||
int64_t ne3[4] = {128, 256, 1, 1};
|
int64_t ne3[4] = {128, 256, 1, 1};
|
||||||
|
|
||||||
struct ggml_tensor * a = get_random_tensor(ctx, 2, ne1, -1, +1);
|
struct ggml_tensor * a = get_random_tensor(ctx, 2, ne1, -1, +1);
|
||||||
|
@ -76,22 +76,21 @@ static void * align_with_offset(void * ptr, int offset) {
|
|||||||
return (char *) std::align(MAX_ALIGNMENT, MAX_ALIGNMENT, ptr, dummy_size) + offset;
|
return (char *) std::align(MAX_ALIGNMENT, MAX_ALIGNMENT, ptr, dummy_size) + offset;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void benchmark_function(size_t size, size_t q_size, int64_t iterations, const std::function<size_t(void)> & function) {
|
static void benchmark_function(size_t size, size_t q_size, int64_t iterations, const std::function<float(void)> & func) {
|
||||||
int64_t min_time_us = INT64_MAX;
|
int64_t min_time_us = INT64_MAX;
|
||||||
int64_t total_time_us = 0;
|
int64_t total_time_us = 0;
|
||||||
int64_t min_time_cycles = INT64_MAX;
|
int64_t min_time_cycles = INT64_MAX;
|
||||||
int64_t total_time_cycles = 0;
|
int64_t total_time_cycles = 0;
|
||||||
|
|
||||||
for (int i = 0; i < WARMUP; i++) {
|
for (int i = 0; i < WARMUP; i++) {
|
||||||
function();
|
func();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
for (int i = 0; i < iterations; i++) {
|
for (int i = 0; i < iterations; i++) {
|
||||||
const int64_t start_time = ggml_time_us();
|
const int64_t start_time = ggml_time_us();
|
||||||
const int64_t start_cycles = cpu_cycles();
|
const int64_t start_cycles = cpu_cycles();
|
||||||
|
|
||||||
function();
|
func();
|
||||||
|
|
||||||
const int64_t end_cycles = cpu_cycles();
|
const int64_t end_cycles = cpu_cycles();
|
||||||
const int64_t end_time = ggml_time_us();
|
const int64_t end_time = ggml_time_us();
|
||||||
@ -245,15 +244,15 @@ int main(int argc, char * argv[]) {
|
|||||||
|
|
||||||
std::vector<uint8_t> test_data1_v(largest*4 + MAX_ALIGNMENT*2);
|
std::vector<uint8_t> test_data1_v(largest*4 + MAX_ALIGNMENT*2);
|
||||||
std::vector<uint8_t> test_data2_v(largest*4 + MAX_ALIGNMENT*2);
|
std::vector<uint8_t> test_data2_v(largest*4 + MAX_ALIGNMENT*2);
|
||||||
std::vector<uint8_t> test_q1_v(largest*4 + MAX_ALIGNMENT*2);
|
std::vector<uint8_t> test_q1_v (largest*4 + MAX_ALIGNMENT*2);
|
||||||
std::vector<uint8_t> test_q2_v(largest*4 + MAX_ALIGNMENT*2);
|
std::vector<uint8_t> test_q2_v (largest*4 + MAX_ALIGNMENT*2);
|
||||||
std::vector<uint8_t> test_out_v(largest*4 + MAX_ALIGNMENT*2);
|
std::vector<uint8_t> test_out_v (largest*4 + MAX_ALIGNMENT*2);
|
||||||
|
|
||||||
float * test_data1 = (float *) align_with_offset(test_data1_v.data(), params.alignment_offset);
|
float * test_data1 = (float *) align_with_offset(test_data1_v.data(), params.alignment_offset);
|
||||||
float * test_data2 = (float *) align_with_offset(test_data2_v.data(), params.alignment_offset);
|
float * test_data2 = (float *) align_with_offset(test_data2_v.data(), params.alignment_offset);
|
||||||
float * test_q1 = (float *) align_with_offset(test_q1_v.data(), params.alignment_offset);
|
float * test_q1 = (float *) align_with_offset(test_q1_v.data(), params.alignment_offset);
|
||||||
float * test_q2 = (float *) align_with_offset(test_q2_v.data(), params.alignment_offset);
|
float * test_q2 = (float *) align_with_offset(test_q2_v.data(), params.alignment_offset);
|
||||||
float * test_out = (float *) align_with_offset(test_out_v.data(), params.alignment_offset);
|
float * test_out = (float *) align_with_offset(test_out_v.data(), params.alignment_offset);
|
||||||
|
|
||||||
generate_data(0, largest, test_data1);
|
generate_data(0, largest, test_data1);
|
||||||
generate_data(1, largest, test_data2);
|
generate_data(1, largest, test_data2);
|
||||||
@ -283,7 +282,7 @@ int main(int argc, char * argv[]) {
|
|||||||
printf(" quantize_row_q_reference\n");
|
printf(" quantize_row_q_reference\n");
|
||||||
for (size_t size : params.test_sizes) {
|
for (size_t size : params.test_sizes) {
|
||||||
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
||||||
auto quantize_fn = [&](void ) {
|
auto quantize_fn = [&](void) -> float {
|
||||||
qfns.from_float_reference(test_data1, test_q1, size);
|
qfns.from_float_reference(test_data1, test_q1, size);
|
||||||
return test_q1[0];
|
return test_q1[0];
|
||||||
};
|
};
|
||||||
@ -297,7 +296,7 @@ int main(int argc, char * argv[]) {
|
|||||||
printf(" quantize_row_q\n");
|
printf(" quantize_row_q\n");
|
||||||
for (size_t size : params.test_sizes) {
|
for (size_t size : params.test_sizes) {
|
||||||
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
||||||
auto quantize_fn = [&](void ) {
|
auto quantize_fn = [&](void) -> float {
|
||||||
qfns.from_float(test_data1, test_q1, size);
|
qfns.from_float(test_data1, test_q1, size);
|
||||||
return test_q1[0];
|
return test_q1[0];
|
||||||
};
|
};
|
||||||
@ -312,7 +311,7 @@ int main(int argc, char * argv[]) {
|
|||||||
qfns.from_float(test_data1, test_q1, largest);
|
qfns.from_float(test_data1, test_q1, largest);
|
||||||
for (size_t size : params.test_sizes) {
|
for (size_t size : params.test_sizes) {
|
||||||
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
||||||
auto quantize_fn = [&](void ) {
|
auto quantize_fn = [&](void) -> float {
|
||||||
qfns.to_float(test_q1, test_out, size);
|
qfns.to_float(test_q1, test_out, size);
|
||||||
return test_out[0];
|
return test_out[0];
|
||||||
};
|
};
|
||||||
@ -326,7 +325,7 @@ int main(int argc, char * argv[]) {
|
|||||||
printf(" quantize_row_q_dot\n");
|
printf(" quantize_row_q_dot\n");
|
||||||
for (size_t size : params.test_sizes) {
|
for (size_t size : params.test_sizes) {
|
||||||
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
||||||
auto quantize_fn = [&](void ) {
|
auto quantize_fn = [&](void) -> float {
|
||||||
auto vdot = ggml_internal_get_type_traits(qfns.vec_dot_type);
|
auto vdot = ggml_internal_get_type_traits(qfns.vec_dot_type);
|
||||||
vdot.from_float(test_data1, test_q1, size);
|
vdot.from_float(test_data1, test_q1, size);
|
||||||
return test_q1[0];
|
return test_q1[0];
|
||||||
@ -343,7 +342,7 @@ int main(int argc, char * argv[]) {
|
|||||||
qfns.from_float(test_data2, test_q2, largest);
|
qfns.from_float(test_data2, test_q2, largest);
|
||||||
for (size_t size : params.test_sizes) {
|
for (size_t size : params.test_sizes) {
|
||||||
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
||||||
auto quantize_fn = [&](void ) {
|
auto quantize_fn = [&](void) -> float {
|
||||||
float result;
|
float result;
|
||||||
qfns.vec_dot(size, &result, test_q1, test_q2);
|
qfns.vec_dot(size, &result, test_q1, test_q2);
|
||||||
return result;
|
return result;
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
|
#include "console.h"
|
||||||
|
|
||||||
#include <cstdio>
|
#include <cstdio>
|
||||||
#include <string>
|
#include <string>
|
||||||
@ -62,18 +63,20 @@ int main(int argc, char **argv) {
|
|||||||
|
|
||||||
// load the vocab
|
// load the vocab
|
||||||
{
|
{
|
||||||
auto lparams = llama_context_default_params();
|
auto mparams = llama_model_default_params();
|
||||||
|
|
||||||
lparams.vocab_only = true;
|
mparams.vocab_only = true;
|
||||||
|
|
||||||
model = llama_load_model_from_file(fname.c_str(), lparams);
|
model = llama_load_model_from_file(fname.c_str(), mparams);
|
||||||
|
|
||||||
if (model == NULL) {
|
if (model == NULL) {
|
||||||
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
ctx = llama_new_context_with_model(model, lparams);
|
auto cparams = llama_context_default_params();
|
||||||
|
|
||||||
|
ctx = llama_new_context_with_model(model, cparams);
|
||||||
|
|
||||||
if (ctx == NULL) {
|
if (ctx == NULL) {
|
||||||
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||||
@ -82,13 +85,19 @@ int main(int argc, char **argv) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (llama_vocab_type(ctx) != LLAMA_VOCAB_TYPE_BPE) {
|
if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_BPE) {
|
||||||
fprintf(stderr, "%s : error: vocab type is not SPM\n", __func__);
|
fprintf(stderr, "%s : error: vocab type is not BPE\n", __func__);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
return 2;
|
return 2;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#ifdef _WIN32
|
||||||
|
// We need this for unicode console support
|
||||||
|
console::init(false, false);
|
||||||
|
atexit([]() { console::cleanup(); });
|
||||||
|
#endif
|
||||||
|
|
||||||
bool success = true;
|
bool success = true;
|
||||||
|
|
||||||
for (const auto & test_kv : k_tests()) {
|
for (const auto & test_kv : k_tests()) {
|
||||||
|
@ -64,18 +64,20 @@ int main(int argc, char **argv) {
|
|||||||
|
|
||||||
// load the vocab
|
// load the vocab
|
||||||
{
|
{
|
||||||
auto lparams = llama_context_default_params();
|
auto mparams = llama_model_default_params();
|
||||||
|
|
||||||
lparams.vocab_only = true;
|
mparams.vocab_only = true;
|
||||||
|
|
||||||
model = llama_load_model_from_file(fname.c_str(), lparams);
|
model = llama_load_model_from_file(fname.c_str(), mparams);
|
||||||
|
|
||||||
if (model == NULL) {
|
if (model == NULL) {
|
||||||
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
ctx = llama_new_context_with_model(model, lparams);
|
auto cparams = llama_context_default_params();
|
||||||
|
|
||||||
|
ctx = llama_new_context_with_model(model, cparams);
|
||||||
|
|
||||||
if (ctx == NULL) {
|
if (ctx == NULL) {
|
||||||
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||||
@ -84,7 +86,7 @@ int main(int argc, char **argv) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (llama_vocab_type(ctx) != LLAMA_VOCAB_TYPE_SPM) {
|
if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_SPM) {
|
||||||
fprintf(stderr, "%s : error: vocab type is not SPM\n", __func__);
|
fprintf(stderr, "%s : error: vocab type is not SPM\n", __func__);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
|
113
tests/test-tokenizer-1-bpe.cpp
Normal file
113
tests/test-tokenizer-1-bpe.cpp
Normal file
@ -0,0 +1,113 @@
|
|||||||
|
#include "llama.h"
|
||||||
|
#include "common.h"
|
||||||
|
#include "unicode.h"
|
||||||
|
#include "console.h"
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstring>
|
||||||
|
#include <string>
|
||||||
|
#include <codecvt>
|
||||||
|
#include <map>
|
||||||
|
#include <vector>
|
||||||
|
#include <locale>
|
||||||
|
|
||||||
|
int main(int argc, char **argv) {
|
||||||
|
if (argc < 2) {
|
||||||
|
fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
const std::string fname = argv[1];
|
||||||
|
|
||||||
|
fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
|
||||||
|
|
||||||
|
llama_model * model;
|
||||||
|
llama_context * ctx;
|
||||||
|
|
||||||
|
llama_backend_init(false);
|
||||||
|
|
||||||
|
// load the vocab
|
||||||
|
{
|
||||||
|
auto mparams = llama_model_default_params();
|
||||||
|
|
||||||
|
mparams.vocab_only = true;
|
||||||
|
|
||||||
|
model = llama_load_model_from_file(fname.c_str(), mparams);
|
||||||
|
|
||||||
|
if (model == NULL) {
|
||||||
|
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto cparams = llama_context_default_params();
|
||||||
|
|
||||||
|
ctx = llama_new_context_with_model(model, cparams);
|
||||||
|
|
||||||
|
if (ctx == NULL) {
|
||||||
|
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||||
|
llama_free_model(model);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_BPE);
|
||||||
|
|
||||||
|
#ifdef _WIN32
|
||||||
|
// We need this for unicode console support
|
||||||
|
console::init(false, false);
|
||||||
|
atexit([]() { console::cleanup(); });
|
||||||
|
#endif
|
||||||
|
|
||||||
|
const int n_vocab = llama_n_vocab(model);
|
||||||
|
|
||||||
|
for (int i = 0; i < n_vocab; ++i) {
|
||||||
|
std::string str = llama_detokenize_bpe(ctx, std::vector<int>(1, i));
|
||||||
|
try {
|
||||||
|
auto cps = codepoints_from_utf8(str);
|
||||||
|
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
|
||||||
|
std::string check = llama_detokenize_bpe(ctx, tokens);
|
||||||
|
if (check != str) {
|
||||||
|
fprintf(stderr, "%s : error: token %d detokenizes to '%s'(%zu) but tokenization of this detokenizes to '%s'(%zu)\n",
|
||||||
|
__func__, i, str.c_str(), str.length(), check.c_str(), check.length());
|
||||||
|
return 2;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
catch (const std::invalid_argument &) {
|
||||||
|
fprintf(stderr, "%s : info: utf8 conversion %d '%s'\n", __func__, i, str.c_str());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (uint32_t cp = 0x0000; cp < 0xffff; ++cp) {
|
||||||
|
// NOTE: these exceptions seem to be necessary, because the GPT2 tokenizer doesn't want to interfere with some ASCII control characters
|
||||||
|
if ((cp < 0x03 || cp > 0x05) && cp != 0x0b && cp != 0x11 && (cp < 0x13 || cp > 0x17) && cp != 0x19 && (cp < 0x1c || cp > 0x1e) && (cp < 0xd800 || cp > 0xdfff)) {
|
||||||
|
std::string str = " " + codepoint_to_utf8(cp);
|
||||||
|
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
|
||||||
|
std::string check = llama_detokenize_bpe(ctx, tokens);
|
||||||
|
if (str != check) {
|
||||||
|
fprintf(stderr, "%s : error: codepoint %x detokenizes to '%s'(%zu) instead of '%s'(%zu)\n",
|
||||||
|
__func__, cp, check.c_str(), check.length(), str.c_str(), str.length());
|
||||||
|
return 3;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// TODO: why doesn't this work for the full range of Unicodes?
|
||||||
|
// for (uint32_t cp = 0x10000; cp < 0x0010ffff; ++cp) {
|
||||||
|
for (uint32_t cp = 0x10000; cp < 0x00080000; ++cp) {
|
||||||
|
std::string str = codepoint_to_utf8(cp);
|
||||||
|
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
|
||||||
|
std::string check = llama_detokenize_bpe(ctx, tokens);
|
||||||
|
if (str != check) {
|
||||||
|
fprintf(stderr, "%s : error: codepoint %x detokenizes to '%s'(%zu) instead of '%s'(%zu)\n",
|
||||||
|
__func__, cp, check.c_str(), check.length(), str.c_str(), str.length());
|
||||||
|
return 4;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_free_model(model);
|
||||||
|
llama_free(ctx);
|
||||||
|
|
||||||
|
llama_backend_free();
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
@ -1,5 +1,6 @@
|
|||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
|
#include "unicode.h"
|
||||||
#include "console.h"
|
#include "console.h"
|
||||||
|
|
||||||
#include <cassert>
|
#include <cassert>
|
||||||
@ -11,30 +12,6 @@
|
|||||||
#include <vector>
|
#include <vector>
|
||||||
#include <locale>
|
#include <locale>
|
||||||
|
|
||||||
typedef int codepoint;
|
|
||||||
|
|
||||||
static std::string codepoint_to_utf8(codepoint cp) {
|
|
||||||
std::string result;
|
|
||||||
if (0x00 <= cp && cp <= 0x7f) {
|
|
||||||
result.push_back(cp);
|
|
||||||
} else if (0x80 <= cp && cp <= 0x7ff) {
|
|
||||||
result.push_back(0xc0 | ((cp >> 6) & 0x1f));
|
|
||||||
result.push_back(0x80 | (cp & 0x3f));
|
|
||||||
} else if (0x800 <= cp && cp <= 0xffff) {
|
|
||||||
result.push_back(0xe0 | ((cp >> 12) & 0x0f));
|
|
||||||
result.push_back(0x80 | ((cp >> 6) & 0x3f));
|
|
||||||
result.push_back(0x80 | (cp & 0x3f));
|
|
||||||
} else if (0x10000 <= cp && cp <= 0x10ffff) {
|
|
||||||
result.push_back(0xf0 | ((cp >> 18) & 0x07));
|
|
||||||
result.push_back(0x80 | ((cp >> 12) & 0x3f));
|
|
||||||
result.push_back(0x80 | ((cp >> 6) & 0x3f));
|
|
||||||
result.push_back(0x80 | (cp & 0x3f));
|
|
||||||
} else {
|
|
||||||
throw std::invalid_argument("invalid codepoint");
|
|
||||||
}
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
int main(int argc, char **argv) {
|
int main(int argc, char **argv) {
|
||||||
if (argc < 2) {
|
if (argc < 2) {
|
||||||
fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
|
fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
|
||||||
@ -52,18 +29,20 @@ int main(int argc, char **argv) {
|
|||||||
|
|
||||||
// load the vocab
|
// load the vocab
|
||||||
{
|
{
|
||||||
auto lparams = llama_context_default_params();
|
auto mparams = llama_model_default_params();
|
||||||
|
|
||||||
lparams.vocab_only = true;
|
mparams.vocab_only = true;
|
||||||
|
|
||||||
model = llama_load_model_from_file(fname.c_str(), lparams);
|
model = llama_load_model_from_file(fname.c_str(), mparams);
|
||||||
|
|
||||||
if (model == NULL) {
|
if (model == NULL) {
|
||||||
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
ctx = llama_new_context_with_model(model, lparams);
|
auto cparams = llama_context_default_params();
|
||||||
|
|
||||||
|
ctx = llama_new_context_with_model(model, cparams);
|
||||||
|
|
||||||
if (ctx == NULL) {
|
if (ctx == NULL) {
|
||||||
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||||
@ -72,7 +51,7 @@ int main(int argc, char **argv) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
GGML_ASSERT(llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM);
|
GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
|
||||||
|
|
||||||
#ifdef _WIN32
|
#ifdef _WIN32
|
||||||
// We need this for unicode console support
|
// We need this for unicode console support
|
||||||
@ -80,7 +59,7 @@ int main(int argc, char **argv) {
|
|||||||
atexit([]() { console::cleanup(); });
|
atexit([]() { console::cleanup(); });
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
const int n_vocab = llama_n_vocab(ctx);
|
const int n_vocab = llama_n_vocab(model);
|
||||||
|
|
||||||
for (int i = 0; i < n_vocab; ++i) {
|
for (int i = 0; i < n_vocab; ++i) {
|
||||||
std::string str = llama_detokenize_spm(ctx, std::vector<int>(1, i));
|
std::string str = llama_detokenize_spm(ctx, std::vector<int>(1, i));
|
||||||
@ -93,7 +72,7 @@ int main(int argc, char **argv) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
for (codepoint cp = 0x0000; cp < 0xffff; ++cp) {
|
for (uint32_t cp = 0x0000; cp < 0xffff; ++cp) {
|
||||||
if (cp < 0xd800 || cp > 0xdfff) {
|
if (cp < 0xd800 || cp > 0xdfff) {
|
||||||
std::string str = codepoint_to_utf8(cp);
|
std::string str = codepoint_to_utf8(cp);
|
||||||
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
|
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
|
||||||
@ -105,7 +84,7 @@ int main(int argc, char **argv) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
for (codepoint cp = 0x10000; cp < 0x0010ffff; ++cp) {
|
for (uint32_t cp = 0x10000; cp < 0x0010ffff; ++cp) {
|
||||||
std::string str = codepoint_to_utf8(cp);
|
std::string str = codepoint_to_utf8(cp);
|
||||||
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
|
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
|
||||||
std::string check = llama_detokenize_spm(ctx, tokens);
|
std::string check = llama_detokenize_spm(ctx, tokens);
|
||||||
|
462
unicode.h
Normal file
462
unicode.h
Normal file
@ -0,0 +1,462 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
#include <stdexcept>
|
||||||
|
#include <vector>
|
||||||
|
#include <unordered_map>
|
||||||
|
|
||||||
|
static const std::vector<std::pair<uint32_t, uint32_t>> digit_ranges = {
|
||||||
|
{0x30, 0x39}, {0xB2, 0xB3}, {0xB9, 0xB9}, {0x660, 0x669}, {0x6F0, 0x6F9}, {0x7C0, 0x7C9}, {0x966, 0x96F}, {0x9E6, 0x9EF}, {0xA66, 0xA6F}, {0xAE6, 0xAEF}, {0xB66, 0xB6F}, {0xBE6, 0xBEF}, {0xC66, 0xC6F},
|
||||||
|
{0xCE6, 0xCEF}, {0xD66, 0xD6F}, {0xDE6, 0xDEF}, {0xE50, 0xE59}, {0xED0, 0xED9}, {0xF20, 0xF29}, {0x1040, 0x1049}, {0x1090, 0x1099}, {0x1369, 0x1371}, {0x17E0, 0x17E9}, {0x1810, 0x1819}, {0x1946, 0x194F},
|
||||||
|
{0x19D0, 0x19DA}, {0x1A80, 0x1A89}, {0x1A90, 0x1A99}, {0x1B50, 0x1B59}, {0x1BB0, 0x1BB9}, {0x1C40, 0x1C49}, {0x1C50, 0x1C59}, {0x2070, 0x2070}, {0x2074, 0x2079}, {0x2080, 0x2089}, {0x2460, 0x2468},
|
||||||
|
{0x2474, 0x247C}, {0x2488, 0x2490}, {0x24EA, 0x24EA}, {0x24F5, 0x24FD}, {0x24FF, 0x24FF}, {0x2776, 0x277E}, {0x2780, 0x2788}, {0x278A, 0x2792}, {0xA620, 0xA629}, {0xA8D0, 0xA8D9}, {0xA900, 0xA909},
|
||||||
|
{0xA9D0, 0xA9D9}, {0xA9F0, 0xA9F9}, {0xAA50, 0xAA59}, {0xABF0, 0xABF9}, {0xFF10, 0xFF19}, {0x104A0, 0x104A9}, {0x10A40, 0x10A43}, {0x10D30, 0x10D39}, {0x10E60, 0x10E68}, {0x11052, 0x1105A},
|
||||||
|
{0x11066, 0x1106F}, {0x110F0, 0x110F9}, {0x11136, 0x1113F}, {0x111D0, 0x111D9}, {0x112F0, 0x112F9}, {0x11450, 0x11459}, {0x114D0, 0x114D9}, {0x11650, 0x11659}, {0x116C0, 0x116C9}, {0x11730, 0x11739},
|
||||||
|
{0x118E0, 0x118E9}, {0x11950, 0x11959}, {0x11C50, 0x11C59}, {0x11D50, 0x11D59}, {0x11DA0, 0x11DA9}, {0x16A60, 0x16A69}, {0x16B50, 0x16B59}, {0x1D7CE, 0x1D7FF}, {0x1E140, 0x1E149}, {0x1E2F0, 0x1E2F9},
|
||||||
|
{0x1E950, 0x1E959}, {0x1F100, 0x1F10A}, {0x1FBF0, 0x1FBF9},
|
||||||
|
};
|
||||||
|
|
||||||
|
static const std::vector<std::pair<uint32_t, uint32_t>> letter_ranges = {
|
||||||
|
{0x41, 0x5A}, {0x61, 0x7A}, {0xAA, 0xAA}, {0xB5, 0xB5}, {0xBA, 0xBA}, {0xC0, 0xD6}, {0xD8, 0xF6}, {0xF8, 0x2C1}, {0x2C6, 0x2D1}, {0x2E0, 0x2E4}, {0x2EC, 0x2EC}, {0x2EE, 0x2EE}, {0x370, 0x374},
|
||||||
|
{0x376, 0x377}, {0x37A, 0x37D}, {0x37F, 0x37F}, {0x386, 0x386}, {0x388, 0x38A}, {0x38C, 0x38C}, {0x38E, 0x3A1}, {0x3A3, 0x3F5}, {0x3F7, 0x481}, {0x48A, 0x52F}, {0x531, 0x556}, {0x559, 0x559},
|
||||||
|
{0x560, 0x588}, {0x5D0, 0x5EA}, {0x5EF, 0x5F2}, {0x620, 0x64A}, {0x66E, 0x66F}, {0x671, 0x6D3}, {0x6D5, 0x6D5}, {0x6E5, 0x6E6}, {0x6EE, 0x6EF}, {0x6FA, 0x6FC}, {0x6FF, 0x6FF}, {0x710, 0x710},
|
||||||
|
{0x712, 0x72F}, {0x74D, 0x7A5}, {0x7B1, 0x7B1}, {0x7CA, 0x7EA}, {0x7F4, 0x7F5}, {0x7FA, 0x7FA}, {0x800, 0x815}, {0x81A, 0x81A}, {0x824, 0x824}, {0x828, 0x828}, {0x840, 0x858}, {0x860, 0x86A},
|
||||||
|
{0x8A0, 0x8B4}, {0x8B6, 0x8C7}, {0x904, 0x939}, {0x93D, 0x93D}, {0x950, 0x950}, {0x958, 0x961}, {0x971, 0x980}, {0x985, 0x98C}, {0x98F, 0x990}, {0x993, 0x9A8}, {0x9AA, 0x9B0}, {0x9B2, 0x9B2},
|
||||||
|
{0x9B6, 0x9B9}, {0x9BD, 0x9BD}, {0x9CE, 0x9CE}, {0x9DC, 0x9DD}, {0x9DF, 0x9E1}, {0x9F0, 0x9F1}, {0x9FC, 0x9FC}, {0xA05, 0xA0A}, {0xA0F, 0xA10}, {0xA13, 0xA28}, {0xA2A, 0xA30}, {0xA32, 0xA33},
|
||||||
|
{0xA35, 0xA36}, {0xA38, 0xA39}, {0xA59, 0xA5C}, {0xA5E, 0xA5E}, {0xA72, 0xA74}, {0xA85, 0xA8D}, {0xA8F, 0xA91}, {0xA93, 0xAA8}, {0xAAA, 0xAB0}, {0xAB2, 0xAB3}, {0xAB5, 0xAB9}, {0xABD, 0xABD},
|
||||||
|
{0xAD0, 0xAD0}, {0xAE0, 0xAE1}, {0xAF9, 0xAF9}, {0xB05, 0xB0C}, {0xB0F, 0xB10}, {0xB13, 0xB28}, {0xB2A, 0xB30}, {0xB32, 0xB33}, {0xB35, 0xB39}, {0xB3D, 0xB3D}, {0xB5C, 0xB5D}, {0xB5F, 0xB61},
|
||||||
|
{0xB71, 0xB71}, {0xB83, 0xB83}, {0xB85, 0xB8A}, {0xB8E, 0xB90}, {0xB92, 0xB95}, {0xB99, 0xB9A}, {0xB9C, 0xB9C}, {0xB9E, 0xB9F}, {0xBA3, 0xBA4}, {0xBA8, 0xBAA}, {0xBAE, 0xBB9}, {0xBD0, 0xBD0},
|
||||||
|
{0xC05, 0xC0C}, {0xC0E, 0xC10}, {0xC12, 0xC28}, {0xC2A, 0xC39}, {0xC3D, 0xC3D}, {0xC58, 0xC5A}, {0xC60, 0xC61}, {0xC80, 0xC80}, {0xC85, 0xC8C}, {0xC8E, 0xC90}, {0xC92, 0xCA8}, {0xCAA, 0xCB3},
|
||||||
|
{0xCB5, 0xCB9}, {0xCBD, 0xCBD}, {0xCDE, 0xCDE}, {0xCE0, 0xCE1}, {0xCF1, 0xCF2}, {0xD04, 0xD0C}, {0xD0E, 0xD10}, {0xD12, 0xD3A}, {0xD3D, 0xD3D}, {0xD4E, 0xD4E}, {0xD54, 0xD56}, {0xD5F, 0xD61},
|
||||||
|
{0xD7A, 0xD7F}, {0xD85, 0xD96}, {0xD9A, 0xDB1}, {0xDB3, 0xDBB}, {0xDBD, 0xDBD}, {0xDC0, 0xDC6}, {0xE01, 0xE30}, {0xE32, 0xE33}, {0xE40, 0xE46}, {0xE81, 0xE82}, {0xE84, 0xE84}, {0xE86, 0xE8A},
|
||||||
|
{0xE8C, 0xEA3}, {0xEA5, 0xEA5}, {0xEA7, 0xEB0}, {0xEB2, 0xEB3}, {0xEBD, 0xEBD}, {0xEC0, 0xEC4}, {0xEC6, 0xEC6}, {0xEDC, 0xEDF}, {0xF00, 0xF00}, {0xF40, 0xF47}, {0xF49, 0xF6C}, {0xF88, 0xF8C},
|
||||||
|
{0x1000, 0x102A}, {0x103F, 0x103F}, {0x1050, 0x1055}, {0x105A, 0x105D}, {0x1061, 0x1061}, {0x1065, 0x1066}, {0x106E, 0x1070}, {0x1075, 0x1081}, {0x108E, 0x108E}, {0x10A0, 0x10C5}, {0x10C7, 0x10C7},
|
||||||
|
{0x10CD, 0x10CD}, {0x10D0, 0x10FA}, {0x10FC, 0x1248}, {0x124A, 0x124D}, {0x1250, 0x1256}, {0x1258, 0x1258}, {0x125A, 0x125D}, {0x1260, 0x1288}, {0x128A, 0x128D}, {0x1290, 0x12B0}, {0x12B2, 0x12B5},
|
||||||
|
{0x12B8, 0x12BE}, {0x12C0, 0x12C0}, {0x12C2, 0x12C5}, {0x12C8, 0x12D6}, {0x12D8, 0x1310}, {0x1312, 0x1315}, {0x1318, 0x135A}, {0x1380, 0x138F}, {0x13A0, 0x13F5}, {0x13F8, 0x13FD}, {0x1401, 0x166C},
|
||||||
|
{0x166F, 0x167F}, {0x1681, 0x169A}, {0x16A0, 0x16EA}, {0x16F1, 0x16F8}, {0x1700, 0x170C}, {0x170E, 0x1711}, {0x1720, 0x1731}, {0x1740, 0x1751}, {0x1760, 0x176C}, {0x176E, 0x1770}, {0x1780, 0x17B3},
|
||||||
|
{0x17D7, 0x17D7}, {0x17DC, 0x17DC}, {0x1820, 0x1878}, {0x1880, 0x1884}, {0x1887, 0x18A8}, {0x18AA, 0x18AA}, {0x18B0, 0x18F5}, {0x1900, 0x191E}, {0x1950, 0x196D}, {0x1970, 0x1974}, {0x1980, 0x19AB},
|
||||||
|
{0x19B0, 0x19C9}, {0x1A00, 0x1A16}, {0x1A20, 0x1A54}, {0x1AA7, 0x1AA7}, {0x1B05, 0x1B33}, {0x1B45, 0x1B4B}, {0x1B83, 0x1BA0}, {0x1BAE, 0x1BAF}, {0x1BBA, 0x1BE5}, {0x1C00, 0x1C23}, {0x1C4D, 0x1C4F},
|
||||||
|
{0x1C5A, 0x1C7D}, {0x1C80, 0x1C88}, {0x1C90, 0x1CBA}, {0x1CBD, 0x1CBF}, {0x1CE9, 0x1CEC}, {0x1CEE, 0x1CF3}, {0x1CF5, 0x1CF6}, {0x1CFA, 0x1CFA}, {0x1D00, 0x1DBF}, {0x1E00, 0x1F15}, {0x1F18, 0x1F1D},
|
||||||
|
{0x1F20, 0x1F45}, {0x1F48, 0x1F4D}, {0x1F50, 0x1F57}, {0x1F59, 0x1F59}, {0x1F5B, 0x1F5B}, {0x1F5D, 0x1F5D}, {0x1F5F, 0x1F7D}, {0x1F80, 0x1FB4}, {0x1FB6, 0x1FBC}, {0x1FBE, 0x1FBE}, {0x1FC2, 0x1FC4},
|
||||||
|
{0x1FC6, 0x1FCC}, {0x1FD0, 0x1FD3}, {0x1FD6, 0x1FDB}, {0x1FE0, 0x1FEC}, {0x1FF2, 0x1FF4}, {0x1FF6, 0x1FFC}, {0x2071, 0x2071}, {0x207F, 0x207F}, {0x2090, 0x209C}, {0x2102, 0x2102}, {0x2107, 0x2107},
|
||||||
|
{0x210A, 0x2113}, {0x2115, 0x2115}, {0x2119, 0x211D}, {0x2124, 0x2124}, {0x2126, 0x2126}, {0x2128, 0x2128}, {0x212A, 0x212D}, {0x212F, 0x2139}, {0x213C, 0x213F}, {0x2145, 0x2149}, {0x214E, 0x214E},
|
||||||
|
{0x2183, 0x2184}, {0x2C00, 0x2C2E}, {0x2C30, 0x2C5E}, {0x2C60, 0x2CE4}, {0x2CEB, 0x2CEE}, {0x2CF2, 0x2CF3}, {0x2D00, 0x2D25}, {0x2D27, 0x2D27}, {0x2D2D, 0x2D2D}, {0x2D30, 0x2D67}, {0x2D6F, 0x2D6F},
|
||||||
|
{0x2D80, 0x2D96}, {0x2DA0, 0x2DA6}, {0x2DA8, 0x2DAE}, {0x2DB0, 0x2DB6}, {0x2DB8, 0x2DBE}, {0x2DC0, 0x2DC6}, {0x2DC8, 0x2DCE}, {0x2DD0, 0x2DD6}, {0x2DD8, 0x2DDE}, {0x2E2F, 0x2E2F}, {0x3005, 0x3006},
|
||||||
|
{0x3031, 0x3035}, {0x303B, 0x303C}, {0x3041, 0x3096}, {0x309D, 0x309F}, {0x30A1, 0x30FA}, {0x30FC, 0x30FF}, {0x3105, 0x312F}, {0x3131, 0x318E}, {0x31A0, 0x31BF}, {0x31F0, 0x31FF}, {0x3400, 0x4DBF},
|
||||||
|
{0x4E00, 0x9FFC}, {0xA000, 0xA48C}, {0xA4D0, 0xA4FD}, {0xA500, 0xA60C}, {0xA610, 0xA61F}, {0xA62A, 0xA62B}, {0xA640, 0xA66E}, {0xA67F, 0xA69D}, {0xA6A0, 0xA6E5}, {0xA717, 0xA71F}, {0xA722, 0xA788},
|
||||||
|
{0xA78B, 0xA7BF}, {0xA7C2, 0xA7CA}, {0xA7F5, 0xA801}, {0xA803, 0xA805}, {0xA807, 0xA80A}, {0xA80C, 0xA822}, {0xA840, 0xA873}, {0xA882, 0xA8B3}, {0xA8F2, 0xA8F7}, {0xA8FB, 0xA8FB}, {0xA8FD, 0xA8FE},
|
||||||
|
{0xA90A, 0xA925}, {0xA930, 0xA946}, {0xA960, 0xA97C}, {0xA984, 0xA9B2}, {0xA9CF, 0xA9CF}, {0xA9E0, 0xA9E4}, {0xA9E6, 0xA9EF}, {0xA9FA, 0xA9FE}, {0xAA00, 0xAA28}, {0xAA40, 0xAA42}, {0xAA44, 0xAA4B},
|
||||||
|
{0xAA60, 0xAA76}, {0xAA7A, 0xAA7A}, {0xAA7E, 0xAAAF}, {0xAAB1, 0xAAB1}, {0xAAB5, 0xAAB6}, {0xAAB9, 0xAABD}, {0xAAC0, 0xAAC0}, {0xAAC2, 0xAAC2}, {0xAADB, 0xAADD}, {0xAAE0, 0xAAEA}, {0xAAF2, 0xAAF4},
|
||||||
|
{0xAB01, 0xAB06}, {0xAB09, 0xAB0E}, {0xAB11, 0xAB16}, {0xAB20, 0xAB26}, {0xAB28, 0xAB2E}, {0xAB30, 0xAB5A}, {0xAB5C, 0xAB69}, {0xAB70, 0xABE2}, {0xAC00, 0xD7A3}, {0xD7B0, 0xD7C6}, {0xD7CB, 0xD7FB},
|
||||||
|
{0xF900, 0xFA6D}, {0xFA70, 0xFAD9}, {0xFB00, 0xFB06}, {0xFB13, 0xFB17}, {0xFB1D, 0xFB1D}, {0xFB1F, 0xFB28}, {0xFB2A, 0xFB36}, {0xFB38, 0xFB3C}, {0xFB3E, 0xFB3E}, {0xFB40, 0xFB41}, {0xFB43, 0xFB44},
|
||||||
|
{0xFB46, 0xFBB1}, {0xFBD3, 0xFD3D}, {0xFD50, 0xFD8F}, {0xFD92, 0xFDC7}, {0xFDF0, 0xFDFB}, {0xFE70, 0xFE74}, {0xFE76, 0xFEFC}, {0xFF21, 0xFF3A}, {0xFF41, 0xFF5A}, {0xFF66, 0xFFBE}, {0xFFC2, 0xFFC7},
|
||||||
|
{0xFFCA, 0xFFCF}, {0xFFD2, 0xFFD7}, {0xFFDA, 0xFFDC}, {0x10000, 0x1000B}, {0x1000D, 0x10026}, {0x10028, 0x1003A}, {0x1003C, 0x1003D}, {0x1003F, 0x1004D}, {0x10050, 0x1005D}, {0x10080, 0x100FA},
|
||||||
|
{0x10280, 0x1029C}, {0x102A0, 0x102D0}, {0x10300, 0x1031F}, {0x1032D, 0x10340}, {0x10342, 0x10349}, {0x10350, 0x10375}, {0x10380, 0x1039D}, {0x103A0, 0x103C3}, {0x103C8, 0x103CF}, {0x10400, 0x1049D},
|
||||||
|
{0x104B0, 0x104D3}, {0x104D8, 0x104FB}, {0x10500, 0x10527}, {0x10530, 0x10563}, {0x10600, 0x10736}, {0x10740, 0x10755}, {0x10760, 0x10767}, {0x10800, 0x10805}, {0x10808, 0x10808}, {0x1080A, 0x10835},
|
||||||
|
{0x10837, 0x10838}, {0x1083C, 0x1083C}, {0x1083F, 0x10855}, {0x10860, 0x10876}, {0x10880, 0x1089E}, {0x108E0, 0x108F2}, {0x108F4, 0x108F5}, {0x10900, 0x10915}, {0x10920, 0x10939}, {0x10980, 0x109B7},
|
||||||
|
{0x109BE, 0x109BF}, {0x10A00, 0x10A00}, {0x10A10, 0x10A13}, {0x10A15, 0x10A17}, {0x10A19, 0x10A35}, {0x10A60, 0x10A7C}, {0x10A80, 0x10A9C}, {0x10AC0, 0x10AC7}, {0x10AC9, 0x10AE4}, {0x10B00, 0x10B35},
|
||||||
|
{0x10B40, 0x10B55}, {0x10B60, 0x10B72}, {0x10B80, 0x10B91}, {0x10C00, 0x10C48}, {0x10C80, 0x10CB2}, {0x10CC0, 0x10CF2}, {0x10D00, 0x10D23}, {0x10E80, 0x10EA9}, {0x10EB0, 0x10EB1}, {0x10F00, 0x10F1C},
|
||||||
|
{0x10F27, 0x10F27}, {0x10F30, 0x10F45}, {0x10FB0, 0x10FC4}, {0x10FE0, 0x10FF6}, {0x11003, 0x11037}, {0x11083, 0x110AF}, {0x110D0, 0x110E8}, {0x11103, 0x11126}, {0x11144, 0x11144}, {0x11147, 0x11147},
|
||||||
|
{0x11150, 0x11172}, {0x11176, 0x11176}, {0x11183, 0x111B2}, {0x111C1, 0x111C4}, {0x111DA, 0x111DA}, {0x111DC, 0x111DC}, {0x11200, 0x11211}, {0x11213, 0x1122B}, {0x11280, 0x11286}, {0x11288, 0x11288},
|
||||||
|
{0x1128A, 0x1128D}, {0x1128F, 0x1129D}, {0x1129F, 0x112A8}, {0x112B0, 0x112DE}, {0x11305, 0x1130C}, {0x1130F, 0x11310}, {0x11313, 0x11328}, {0x1132A, 0x11330}, {0x11332, 0x11333}, {0x11335, 0x11339},
|
||||||
|
{0x1133D, 0x1133D}, {0x11350, 0x11350}, {0x1135D, 0x11361}, {0x11400, 0x11434}, {0x11447, 0x1144A}, {0x1145F, 0x11461}, {0x11480, 0x114AF}, {0x114C4, 0x114C5}, {0x114C7, 0x114C7}, {0x11580, 0x115AE},
|
||||||
|
{0x115D8, 0x115DB}, {0x11600, 0x1162F}, {0x11644, 0x11644}, {0x11680, 0x116AA}, {0x116B8, 0x116B8}, {0x11700, 0x1171A}, {0x11800, 0x1182B}, {0x118A0, 0x118DF}, {0x118FF, 0x11906}, {0x11909, 0x11909},
|
||||||
|
{0x1190C, 0x11913}, {0x11915, 0x11916}, {0x11918, 0x1192F}, {0x1193F, 0x1193F}, {0x11941, 0x11941}, {0x119A0, 0x119A7}, {0x119AA, 0x119D0}, {0x119E1, 0x119E1}, {0x119E3, 0x119E3}, {0x11A00, 0x11A00},
|
||||||
|
{0x11A0B, 0x11A32}, {0x11A3A, 0x11A3A}, {0x11A50, 0x11A50}, {0x11A5C, 0x11A89}, {0x11A9D, 0x11A9D}, {0x11AC0, 0x11AF8}, {0x11C00, 0x11C08}, {0x11C0A, 0x11C2E}, {0x11C40, 0x11C40}, {0x11C72, 0x11C8F},
|
||||||
|
{0x11D00, 0x11D06}, {0x11D08, 0x11D09}, {0x11D0B, 0x11D30}, {0x11D46, 0x11D46}, {0x11D60, 0x11D65}, {0x11D67, 0x11D68}, {0x11D6A, 0x11D89}, {0x11D98, 0x11D98}, {0x11EE0, 0x11EF2}, {0x11FB0, 0x11FB0},
|
||||||
|
{0x12000, 0x12399}, {0x12480, 0x12543}, {0x13000, 0x1342E}, {0x14400, 0x14646}, {0x16800, 0x16A38}, {0x16A40, 0x16A5E}, {0x16AD0, 0x16AED}, {0x16B00, 0x16B2F}, {0x16B40, 0x16B43}, {0x16B63, 0x16B77},
|
||||||
|
{0x16B7D, 0x16B8F}, {0x16E40, 0x16E7F}, {0x16F00, 0x16F4A}, {0x16F50, 0x16F50}, {0x16F93, 0x16F9F}, {0x16FE0, 0x16FE1}, {0x16FE3, 0x16FE3}, {0x17000, 0x187F7}, {0x18800, 0x18CD5}, {0x18D00, 0x18D08},
|
||||||
|
{0x1B000, 0x1B11E}, {0x1B150, 0x1B152}, {0x1B164, 0x1B167}, {0x1B170, 0x1B2FB}, {0x1BC00, 0x1BC6A}, {0x1BC70, 0x1BC7C}, {0x1BC80, 0x1BC88}, {0x1BC90, 0x1BC99}, {0x1D400, 0x1D454}, {0x1D456, 0x1D49C},
|
||||||
|
{0x1D49E, 0x1D49F}, {0x1D4A2, 0x1D4A2}, {0x1D4A5, 0x1D4A6}, {0x1D4A9, 0x1D4AC}, {0x1D4AE, 0x1D4B9}, {0x1D4BB, 0x1D4BB}, {0x1D4BD, 0x1D4C3}, {0x1D4C5, 0x1D505}, {0x1D507, 0x1D50A}, {0x1D50D, 0x1D514},
|
||||||
|
{0x1D516, 0x1D51C}, {0x1D51E, 0x1D539}, {0x1D53B, 0x1D53E}, {0x1D540, 0x1D544}, {0x1D546, 0x1D546}, {0x1D54A, 0x1D550}, {0x1D552, 0x1D6A5}, {0x1D6A8, 0x1D6C0}, {0x1D6C2, 0x1D6DA}, {0x1D6DC, 0x1D6FA},
|
||||||
|
{0x1D6FC, 0x1D714}, {0x1D716, 0x1D734}, {0x1D736, 0x1D74E}, {0x1D750, 0x1D76E}, {0x1D770, 0x1D788}, {0x1D78A, 0x1D7A8}, {0x1D7AA, 0x1D7C2}, {0x1D7C4, 0x1D7CB}, {0x1E100, 0x1E12C}, {0x1E137, 0x1E13D},
|
||||||
|
{0x1E14E, 0x1E14E}, {0x1E2C0, 0x1E2EB}, {0x1E800, 0x1E8C4}, {0x1E900, 0x1E943}, {0x1E94B, 0x1E94B}, {0x1EE00, 0x1EE03}, {0x1EE05, 0x1EE1F}, {0x1EE21, 0x1EE22}, {0x1EE24, 0x1EE24}, {0x1EE27, 0x1EE27},
|
||||||
|
{0x1EE29, 0x1EE32}, {0x1EE34, 0x1EE37}, {0x1EE39, 0x1EE39}, {0x1EE3B, 0x1EE3B}, {0x1EE42, 0x1EE42}, {0x1EE47, 0x1EE47}, {0x1EE49, 0x1EE49}, {0x1EE4B, 0x1EE4B}, {0x1EE4D, 0x1EE4F}, {0x1EE51, 0x1EE52},
|
||||||
|
{0x1EE54, 0x1EE54}, {0x1EE57, 0x1EE57}, {0x1EE59, 0x1EE59}, {0x1EE5B, 0x1EE5B}, {0x1EE5D, 0x1EE5D}, {0x1EE5F, 0x1EE5F}, {0x1EE61, 0x1EE62}, {0x1EE64, 0x1EE64}, {0x1EE67, 0x1EE6A}, {0x1EE6C, 0x1EE72},
|
||||||
|
{0x1EE74, 0x1EE77}, {0x1EE79, 0x1EE7C}, {0x1EE7E, 0x1EE7E}, {0x1EE80, 0x1EE89}, {0x1EE8B, 0x1EE9B}, {0x1EEA1, 0x1EEA3}, {0x1EEA5, 0x1EEA9}, {0x1EEAB, 0x1EEBB}, {0x20000, 0x2A6DD}, {0x2A700, 0x2B734},
|
||||||
|
{0x2B740, 0x2B81D}, {0x2B820, 0x2CEA1}, {0x2CEB0, 0x2EBE0}, {0x2F800, 0x2FA1D}, {0x30000, 0x3134A},
|
||||||
|
};
|
||||||
|
|
||||||
|
static const std::vector<std::pair<uint32_t, uint32_t>> whitespace_ranges = {
|
||||||
|
{0x9, 0xD}, {0x1C, 0x20}, {0x85, 0x85}, {0xA0, 0xA0}, {0x1680, 0x1680}, {0x2000, 0x200A}, {0x2028, 0x2029}, {0x202F, 0x202F}, {0x205F, 0x205F}, {0x3000, 0x3000},
|
||||||
|
};
|
||||||
|
|
||||||
|
static const std::vector<std::pair<uint32_t, uint32_t>> accent_mark_ranges = {
|
||||||
|
{0x300, 0x36F}, {0x483, 0x489}, {0x591, 0x5BD}, {0x5BF, 0x5BF}, {0x5C1, 0x5C2}, {0x5C4, 0x5C5}, {0x5C7, 0x5C7}, {0x610, 0x61A}, {0x64B, 0x65F}, {0x670, 0x670}, {0x6D6, 0x6DC}, {0x6DF, 0x6E4},
|
||||||
|
{0x6E7, 0x6E8}, {0x6EA, 0x6ED}, {0x711, 0x711}, {0x730, 0x74A}, {0x7A6, 0x7B0}, {0x7EB, 0x7F3}, {0x7FD, 0x7FD}, {0x816, 0x819}, {0x81B, 0x823}, {0x825, 0x827}, {0x829, 0x82D}, {0x859, 0x85B},
|
||||||
|
{0x8D3, 0x8E1}, {0x8E3, 0x903}, {0x93A, 0x93C}, {0x93E, 0x94F}, {0x951, 0x957}, {0x962, 0x963}, {0x981, 0x983}, {0x9BC, 0x9BC}, {0x9BE, 0x9C4}, {0x9C7, 0x9C8}, {0x9CB, 0x9CD}, {0x9D7, 0x9D7},
|
||||||
|
{0x9E2, 0x9E3}, {0x9FE, 0x9FE}, {0xA01, 0xA03}, {0xA3C, 0xA3C}, {0xA3E, 0xA42}, {0xA47, 0xA48}, {0xA4B, 0xA4D}, {0xA51, 0xA51}, {0xA70, 0xA71}, {0xA75, 0xA75}, {0xA81, 0xA83}, {0xABC, 0xABC},
|
||||||
|
{0xABE, 0xAC5}, {0xAC7, 0xAC9}, {0xACB, 0xACD}, {0xAE2, 0xAE3}, {0xAFA, 0xAFF}, {0xB01, 0xB03}, {0xB3C, 0xB3C}, {0xB3E, 0xB44}, {0xB47, 0xB48}, {0xB4B, 0xB4D}, {0xB55, 0xB57}, {0xB62, 0xB63},
|
||||||
|
{0xB82, 0xB82}, {0xBBE, 0xBC2}, {0xBC6, 0xBC8}, {0xBCA, 0xBCD}, {0xBD7, 0xBD7}, {0xC00, 0xC04}, {0xC3E, 0xC44}, {0xC46, 0xC48}, {0xC4A, 0xC4D}, {0xC55, 0xC56}, {0xC62, 0xC63}, {0xC81, 0xC83},
|
||||||
|
{0xCBC, 0xCBC}, {0xCBE, 0xCC4}, {0xCC6, 0xCC8}, {0xCCA, 0xCCD}, {0xCD5, 0xCD6}, {0xCE2, 0xCE3}, {0xD00, 0xD03}, {0xD3B, 0xD3C}, {0xD3E, 0xD44}, {0xD46, 0xD48}, {0xD4A, 0xD4D}, {0xD57, 0xD57},
|
||||||
|
{0xD62, 0xD63}, {0xD81, 0xD83}, {0xDCA, 0xDCA}, {0xDCF, 0xDD4}, {0xDD6, 0xDD6}, {0xDD8, 0xDDF}, {0xDF2, 0xDF3}, {0xE31, 0xE31}, {0xE34, 0xE3A}, {0xE47, 0xE4E}, {0xEB1, 0xEB1}, {0xEB4, 0xEBC},
|
||||||
|
{0xEC8, 0xECD}, {0xF18, 0xF19}, {0xF35, 0xF35}, {0xF37, 0xF37}, {0xF39, 0xF39}, {0xF3E, 0xF3F}, {0xF71, 0xF84}, {0xF86, 0xF87}, {0xF8D, 0xF97}, {0xF99, 0xFBC}, {0xFC6, 0xFC6}, {0x102B, 0x103E},
|
||||||
|
{0x1056, 0x1059}, {0x105E, 0x1060}, {0x1062, 0x1064}, {0x1067, 0x106D}, {0x1071, 0x1074}, {0x1082, 0x108D}, {0x108F, 0x108F}, {0x109A, 0x109D}, {0x135D, 0x135F}, {0x1712, 0x1714}, {0x1732, 0x1734},
|
||||||
|
{0x1752, 0x1753}, {0x1772, 0x1773}, {0x17B4, 0x17D3}, {0x17DD, 0x17DD}, {0x180B, 0x180D}, {0x1885, 0x1886}, {0x18A9, 0x18A9}, {0x1920, 0x192B}, {0x1930, 0x193B}, {0x1A17, 0x1A1B}, {0x1A55, 0x1A5E},
|
||||||
|
{0x1A60, 0x1A7C}, {0x1A7F, 0x1A7F}, {0x1AB0, 0x1AC0}, {0x1B00, 0x1B04}, {0x1B34, 0x1B44}, {0x1B6B, 0x1B73}, {0x1B80, 0x1B82}, {0x1BA1, 0x1BAD}, {0x1BE6, 0x1BF3}, {0x1C24, 0x1C37}, {0x1CD0, 0x1CD2},
|
||||||
|
{0x1CD4, 0x1CE8}, {0x1CED, 0x1CED}, {0x1CF4, 0x1CF4}, {0x1CF7, 0x1CF9}, {0x1DC0, 0x1DF9}, {0x1DFB, 0x1DFF}, {0x20D0, 0x20F0}, {0x2CEF, 0x2CF1}, {0x2D7F, 0x2D7F}, {0x2DE0, 0x2DFF}, {0x302A, 0x302F},
|
||||||
|
{0x3099, 0x309A}, {0xA66F, 0xA672}, {0xA674, 0xA67D}, {0xA69E, 0xA69F}, {0xA6F0, 0xA6F1}, {0xA802, 0xA802}, {0xA806, 0xA806}, {0xA80B, 0xA80B}, {0xA823, 0xA827}, {0xA82C, 0xA82C}, {0xA880, 0xA881},
|
||||||
|
{0xA8B4, 0xA8C5}, {0xA8E0, 0xA8F1}, {0xA8FF, 0xA8FF}, {0xA926, 0xA92D}, {0xA947, 0xA953}, {0xA980, 0xA983}, {0xA9B3, 0xA9C0}, {0xA9E5, 0xA9E5}, {0xAA29, 0xAA36}, {0xAA43, 0xAA43}, {0xAA4C, 0xAA4D},
|
||||||
|
{0xAA7B, 0xAA7D}, {0xAAB0, 0xAAB0}, {0xAAB2, 0xAAB4}, {0xAAB7, 0xAAB8}, {0xAABE, 0xAABF}, {0xAAC1, 0xAAC1}, {0xAAEB, 0xAAEF}, {0xAAF5, 0xAAF6}, {0xABE3, 0xABEA}, {0xABEC, 0xABED}, {0xFB1E, 0xFB1E},
|
||||||
|
{0xFE00, 0xFE0F}, {0xFE20, 0xFE2F}, {0x101FD, 0x101FD}, {0x102E0, 0x102E0}, {0x10376, 0x1037A}, {0x10A01, 0x10A03}, {0x10A05, 0x10A06}, {0x10A0C, 0x10A0F}, {0x10A38, 0x10A3A}, {0x10A3F, 0x10A3F},
|
||||||
|
{0x10AE5, 0x10AE6}, {0x10D24, 0x10D27}, {0x10EAB, 0x10EAC}, {0x10F46, 0x10F50}, {0x11000, 0x11002}, {0x11038, 0x11046}, {0x1107F, 0x11082}, {0x110B0, 0x110BA}, {0x11100, 0x11102}, {0x11127, 0x11134},
|
||||||
|
{0x11145, 0x11146}, {0x11173, 0x11173}, {0x11180, 0x11182}, {0x111B3, 0x111C0}, {0x111C9, 0x111CC}, {0x111CE, 0x111CF}, {0x1122C, 0x11237}, {0x1123E, 0x1123E}, {0x112DF, 0x112EA}, {0x11300, 0x11303},
|
||||||
|
{0x1133B, 0x1133C}, {0x1133E, 0x11344}, {0x11347, 0x11348}, {0x1134B, 0x1134D}, {0x11357, 0x11357}, {0x11362, 0x11363}, {0x11366, 0x1136C}, {0x11370, 0x11374}, {0x11435, 0x11446}, {0x1145E, 0x1145E},
|
||||||
|
{0x114B0, 0x114C3}, {0x115AF, 0x115B5}, {0x115B8, 0x115C0}, {0x115DC, 0x115DD}, {0x11630, 0x11640}, {0x116AB, 0x116B7}, {0x1171D, 0x1172B}, {0x1182C, 0x1183A}, {0x11930, 0x11935}, {0x11937, 0x11938},
|
||||||
|
{0x1193B, 0x1193E}, {0x11940, 0x11940}, {0x11942, 0x11943}, {0x119D1, 0x119D7}, {0x119DA, 0x119E0}, {0x119E4, 0x119E4}, {0x11A01, 0x11A0A}, {0x11A33, 0x11A39}, {0x11A3B, 0x11A3E}, {0x11A47, 0x11A47},
|
||||||
|
{0x11A51, 0x11A5B}, {0x11A8A, 0x11A99}, {0x11C2F, 0x11C36}, {0x11C38, 0x11C3F}, {0x11C92, 0x11CA7}, {0x11CA9, 0x11CB6}, {0x11D31, 0x11D36}, {0x11D3A, 0x11D3A}, {0x11D3C, 0x11D3D}, {0x11D3F, 0x11D45},
|
||||||
|
{0x11D47, 0x11D47}, {0x11D8A, 0x11D8E}, {0x11D90, 0x11D91}, {0x11D93, 0x11D97}, {0x11EF3, 0x11EF6}, {0x16AF0, 0x16AF4}, {0x16B30, 0x16B36}, {0x16F4F, 0x16F4F}, {0x16F51, 0x16F87}, {0x16F8F, 0x16F92},
|
||||||
|
{0x16FE4, 0x16FE4}, {0x16FF0, 0x16FF1}, {0x1BC9D, 0x1BC9E}, {0x1D165, 0x1D169}, {0x1D16D, 0x1D172}, {0x1D17B, 0x1D182}, {0x1D185, 0x1D18B}, {0x1D1AA, 0x1D1AD}, {0x1D242, 0x1D244}, {0x1DA00, 0x1DA36},
|
||||||
|
{0x1DA3B, 0x1DA6C}, {0x1DA75, 0x1DA75}, {0x1DA84, 0x1DA84}, {0x1DA9B, 0x1DA9F}, {0x1DAA1, 0x1DAAF}, {0x1E000, 0x1E006}, {0x1E008, 0x1E018}, {0x1E01B, 0x1E021}, {0x1E023, 0x1E024}, {0x1E026, 0x1E02A},
|
||||||
|
{0x1E130, 0x1E136}, {0x1E2EC, 0x1E2EF}, {0x1E8D0, 0x1E8D6}, {0x1E944, 0x1E94A}, {0xE0100, 0xE01EF},
|
||||||
|
};
|
||||||
|
|
||||||
|
static const std::vector<std::pair<uint32_t, uint32_t>> punctuation_ranges = {
|
||||||
|
{0x21, 0x23}, {0x25, 0x2A}, {0x2C, 0x2F}, {0x3A, 0x3B}, {0x3F, 0x40}, {0x5B, 0x5D}, {0x5F, 0x5F}, {0x7B, 0x7B}, {0x7D, 0x7D}, {0xA1, 0xA1}, {0xA7, 0xA7}, {0xAB, 0xAB}, {0xB6, 0xB7}, {0xBB, 0xBB},
|
||||||
|
{0xBF, 0xBF}, {0x37E, 0x37E}, {0x387, 0x387}, {0x55A, 0x55F}, {0x589, 0x58A}, {0x5BE, 0x5BE}, {0x5C0, 0x5C0}, {0x5C3, 0x5C3}, {0x5C6, 0x5C6}, {0x5F3, 0x5F4}, {0x609, 0x60A}, {0x60C, 0x60D},
|
||||||
|
{0x61B, 0x61B}, {0x61E, 0x61F}, {0x66A, 0x66D}, {0x6D4, 0x6D4}, {0x700, 0x70D}, {0x7F7, 0x7F9}, {0x830, 0x83E}, {0x85E, 0x85E}, {0x964, 0x965}, {0x970, 0x970}, {0x9FD, 0x9FD}, {0xA76, 0xA76},
|
||||||
|
{0xAF0, 0xAF0}, {0xC77, 0xC77}, {0xC84, 0xC84}, {0xDF4, 0xDF4}, {0xE4F, 0xE4F}, {0xE5A, 0xE5B}, {0xF04, 0xF12}, {0xF14, 0xF14}, {0xF3A, 0xF3D}, {0xF85, 0xF85}, {0xFD0, 0xFD4}, {0xFD9, 0xFDA},
|
||||||
|
{0x104A, 0x104F}, {0x10FB, 0x10FB}, {0x1360, 0x1368}, {0x1400, 0x1400}, {0x166E, 0x166E}, {0x169B, 0x169C}, {0x16EB, 0x16ED}, {0x1735, 0x1736}, {0x17D4, 0x17D6}, {0x17D8, 0x17DA}, {0x1800, 0x180A},
|
||||||
|
{0x1944, 0x1945}, {0x1A1E, 0x1A1F}, {0x1AA0, 0x1AA6}, {0x1AA8, 0x1AAD}, {0x1B5A, 0x1B60}, {0x1BFC, 0x1BFF}, {0x1C3B, 0x1C3F}, {0x1C7E, 0x1C7F}, {0x1CC0, 0x1CC7}, {0x1CD3, 0x1CD3}, {0x2010, 0x2027},
|
||||||
|
{0x2030, 0x2043}, {0x2045, 0x2051}, {0x2053, 0x205E}, {0x207D, 0x207E}, {0x208D, 0x208E}, {0x2308, 0x230B}, {0x2329, 0x232A}, {0x2768, 0x2775}, {0x27C5, 0x27C6}, {0x27E6, 0x27EF}, {0x2983, 0x2998},
|
||||||
|
{0x29D8, 0x29DB}, {0x29FC, 0x29FD}, {0x2CF9, 0x2CFC}, {0x2CFE, 0x2CFF}, {0x2D70, 0x2D70}, {0x2E00, 0x2E2E}, {0x2E30, 0x2E4F}, {0x2E52, 0x2E52}, {0x3001, 0x3003}, {0x3008, 0x3011}, {0x3014, 0x301F},
|
||||||
|
{0x3030, 0x3030}, {0x303D, 0x303D}, {0x30A0, 0x30A0}, {0x30FB, 0x30FB}, {0xA4FE, 0xA4FF}, {0xA60D, 0xA60F}, {0xA673, 0xA673}, {0xA67E, 0xA67E}, {0xA6F2, 0xA6F7}, {0xA874, 0xA877}, {0xA8CE, 0xA8CF},
|
||||||
|
{0xA8F8, 0xA8FA}, {0xA8FC, 0xA8FC}, {0xA92E, 0xA92F}, {0xA95F, 0xA95F}, {0xA9C1, 0xA9CD}, {0xA9DE, 0xA9DF}, {0xAA5C, 0xAA5F}, {0xAADE, 0xAADF}, {0xAAF0, 0xAAF1}, {0xABEB, 0xABEB}, {0xFD3E, 0xFD3F},
|
||||||
|
{0xFE10, 0xFE19}, {0xFE30, 0xFE52}, {0xFE54, 0xFE61}, {0xFE63, 0xFE63}, {0xFE68, 0xFE68}, {0xFE6A, 0xFE6B}, {0xFF01, 0xFF03}, {0xFF05, 0xFF0A}, {0xFF0C, 0xFF0F}, {0xFF1A, 0xFF1B}, {0xFF1F, 0xFF20},
|
||||||
|
{0xFF3B, 0xFF3D}, {0xFF3F, 0xFF3F}, {0xFF5B, 0xFF5B}, {0xFF5D, 0xFF5D}, {0xFF5F, 0xFF65}, {0x10100, 0x10102}, {0x1039F, 0x1039F}, {0x103D0, 0x103D0}, {0x1056F, 0x1056F}, {0x10857, 0x10857},
|
||||||
|
{0x1091F, 0x1091F}, {0x1093F, 0x1093F}, {0x10A50, 0x10A58}, {0x10A7F, 0x10A7F}, {0x10AF0, 0x10AF6}, {0x10B39, 0x10B3F}, {0x10B99, 0x10B9C}, {0x10EAD, 0x10EAD}, {0x10F55, 0x10F59}, {0x11047, 0x1104D},
|
||||||
|
{0x110BB, 0x110BC}, {0x110BE, 0x110C1}, {0x11140, 0x11143}, {0x11174, 0x11175}, {0x111C5, 0x111C8}, {0x111CD, 0x111CD}, {0x111DB, 0x111DB}, {0x111DD, 0x111DF}, {0x11238, 0x1123D}, {0x112A9, 0x112A9},
|
||||||
|
{0x1144B, 0x1144F}, {0x1145A, 0x1145B}, {0x1145D, 0x1145D}, {0x114C6, 0x114C6}, {0x115C1, 0x115D7}, {0x11641, 0x11643}, {0x11660, 0x1166C}, {0x1173C, 0x1173E}, {0x1183B, 0x1183B}, {0x11944, 0x11946},
|
||||||
|
{0x119E2, 0x119E2}, {0x11A3F, 0x11A46}, {0x11A9A, 0x11A9C}, {0x11A9E, 0x11AA2}, {0x11C41, 0x11C45}, {0x11C70, 0x11C71}, {0x11EF7, 0x11EF8}, {0x11FFF, 0x11FFF}, {0x12470, 0x12474}, {0x16A6E, 0x16A6F},
|
||||||
|
{0x16AF5, 0x16AF5}, {0x16B37, 0x16B3B}, {0x16B44, 0x16B44}, {0x16E97, 0x16E9A}, {0x16FE2, 0x16FE2}, {0x1BC9F, 0x1BC9F}, {0x1DA87, 0x1DA8B}, {0x1E95E, 0x1E95F},
|
||||||
|
};
|
||||||
|
|
||||||
|
static const std::vector<std::pair<uint32_t, uint32_t>> symbol_ranges = {
|
||||||
|
{0x24, 0x24}, {0x2B, 0x2B}, {0x3C, 0x3E}, {0x5E, 0x5E}, {0x60, 0x60}, {0x7C, 0x7C}, {0x7E, 0x7E}, {0xA2, 0xA6}, {0xA8, 0xA9}, {0xAC, 0xAC}, {0xAE, 0xB1}, {0xB4, 0xB4}, {0xB8, 0xB8}, {0xD7, 0xD7},
|
||||||
|
{0xF7, 0xF7}, {0x2C2, 0x2C5}, {0x2D2, 0x2DF}, {0x2E5, 0x2EB}, {0x2ED, 0x2ED}, {0x2EF, 0x2FF}, {0x375, 0x375}, {0x384, 0x385}, {0x3F6, 0x3F6}, {0x482, 0x482}, {0x58D, 0x58F}, {0x606, 0x608},
|
||||||
|
{0x60B, 0x60B}, {0x60E, 0x60F}, {0x6DE, 0x6DE}, {0x6E9, 0x6E9}, {0x6FD, 0x6FE}, {0x7F6, 0x7F6}, {0x7FE, 0x7FF}, {0x9F2, 0x9F3}, {0x9FA, 0x9FB}, {0xAF1, 0xAF1}, {0xB70, 0xB70}, {0xBF3, 0xBFA},
|
||||||
|
{0xC7F, 0xC7F}, {0xD4F, 0xD4F}, {0xD79, 0xD79}, {0xE3F, 0xE3F}, {0xF01, 0xF03}, {0xF13, 0xF13}, {0xF15, 0xF17}, {0xF1A, 0xF1F}, {0xF34, 0xF34}, {0xF36, 0xF36}, {0xF38, 0xF38}, {0xFBE, 0xFC5},
|
||||||
|
{0xFC7, 0xFCC}, {0xFCE, 0xFCF}, {0xFD5, 0xFD8}, {0x109E, 0x109F}, {0x1390, 0x1399}, {0x166D, 0x166D}, {0x17DB, 0x17DB}, {0x1940, 0x1940}, {0x19DE, 0x19FF}, {0x1B61, 0x1B6A}, {0x1B74, 0x1B7C},
|
||||||
|
{0x1FBD, 0x1FBD}, {0x1FBF, 0x1FC1}, {0x1FCD, 0x1FCF}, {0x1FDD, 0x1FDF}, {0x1FED, 0x1FEF}, {0x1FFD, 0x1FFE}, {0x2044, 0x2044}, {0x2052, 0x2052}, {0x207A, 0x207C}, {0x208A, 0x208C}, {0x20A0, 0x20BF},
|
||||||
|
{0x2100, 0x2101}, {0x2103, 0x2106}, {0x2108, 0x2109}, {0x2114, 0x2114}, {0x2116, 0x2118}, {0x211E, 0x2123}, {0x2125, 0x2125}, {0x2127, 0x2127}, {0x2129, 0x2129}, {0x212E, 0x212E}, {0x213A, 0x213B},
|
||||||
|
{0x2140, 0x2144}, {0x214A, 0x214D}, {0x214F, 0x214F}, {0x218A, 0x218B}, {0x2190, 0x2307}, {0x230C, 0x2328}, {0x232B, 0x2426}, {0x2440, 0x244A}, {0x249C, 0x24E9}, {0x2500, 0x2767}, {0x2794, 0x27C4},
|
||||||
|
{0x27C7, 0x27E5}, {0x27F0, 0x2982}, {0x2999, 0x29D7}, {0x29DC, 0x29FB}, {0x29FE, 0x2B73}, {0x2B76, 0x2B95}, {0x2B97, 0x2BFF}, {0x2CE5, 0x2CEA}, {0x2E50, 0x2E51}, {0x2E80, 0x2E99}, {0x2E9B, 0x2EF3},
|
||||||
|
{0x2F00, 0x2FD5}, {0x2FF0, 0x2FFB}, {0x3004, 0x3004}, {0x3012, 0x3013}, {0x3020, 0x3020}, {0x3036, 0x3037}, {0x303E, 0x303F}, {0x309B, 0x309C}, {0x3190, 0x3191}, {0x3196, 0x319F}, {0x31C0, 0x31E3},
|
||||||
|
{0x3200, 0x321E}, {0x322A, 0x3247}, {0x3250, 0x3250}, {0x3260, 0x327F}, {0x328A, 0x32B0}, {0x32C0, 0x33FF}, {0x4DC0, 0x4DFF}, {0xA490, 0xA4C6}, {0xA700, 0xA716}, {0xA720, 0xA721}, {0xA789, 0xA78A},
|
||||||
|
{0xA828, 0xA82B}, {0xA836, 0xA839}, {0xAA77, 0xAA79}, {0xAB5B, 0xAB5B}, {0xAB6A, 0xAB6B}, {0xFB29, 0xFB29}, {0xFBB2, 0xFBC1}, {0xFDFC, 0xFDFD}, {0xFE62, 0xFE62}, {0xFE64, 0xFE66}, {0xFE69, 0xFE69},
|
||||||
|
{0xFF04, 0xFF04}, {0xFF0B, 0xFF0B}, {0xFF1C, 0xFF1E}, {0xFF3E, 0xFF3E}, {0xFF40, 0xFF40}, {0xFF5C, 0xFF5C}, {0xFF5E, 0xFF5E}, {0xFFE0, 0xFFE6}, {0xFFE8, 0xFFEE}, {0xFFFC, 0xFFFD}, {0x10137, 0x1013F},
|
||||||
|
{0x10179, 0x10189}, {0x1018C, 0x1018E}, {0x10190, 0x1019C}, {0x101A0, 0x101A0}, {0x101D0, 0x101FC}, {0x10877, 0x10878}, {0x10AC8, 0x10AC8}, {0x1173F, 0x1173F}, {0x11FD5, 0x11FF1}, {0x16B3C, 0x16B3F},
|
||||||
|
{0x16B45, 0x16B45}, {0x1BC9C, 0x1BC9C}, {0x1D000, 0x1D0F5}, {0x1D100, 0x1D126}, {0x1D129, 0x1D164}, {0x1D16A, 0x1D16C}, {0x1D183, 0x1D184}, {0x1D18C, 0x1D1A9}, {0x1D1AE, 0x1D1E8}, {0x1D200, 0x1D241},
|
||||||
|
{0x1D245, 0x1D245}, {0x1D300, 0x1D356}, {0x1D6C1, 0x1D6C1}, {0x1D6DB, 0x1D6DB}, {0x1D6FB, 0x1D6FB}, {0x1D715, 0x1D715}, {0x1D735, 0x1D735}, {0x1D74F, 0x1D74F}, {0x1D76F, 0x1D76F}, {0x1D789, 0x1D789},
|
||||||
|
{0x1D7A9, 0x1D7A9}, {0x1D7C3, 0x1D7C3}, {0x1D800, 0x1D9FF}, {0x1DA37, 0x1DA3A}, {0x1DA6D, 0x1DA74}, {0x1DA76, 0x1DA83}, {0x1DA85, 0x1DA86}, {0x1E14F, 0x1E14F}, {0x1E2FF, 0x1E2FF}, {0x1ECAC, 0x1ECAC},
|
||||||
|
{0x1ECB0, 0x1ECB0}, {0x1ED2E, 0x1ED2E}, {0x1EEF0, 0x1EEF1}, {0x1F000, 0x1F02B}, {0x1F030, 0x1F093}, {0x1F0A0, 0x1F0AE}, {0x1F0B1, 0x1F0BF}, {0x1F0C1, 0x1F0CF}, {0x1F0D1, 0x1F0F5}, {0x1F10D, 0x1F1AD},
|
||||||
|
{0x1F1E6, 0x1F202}, {0x1F210, 0x1F23B}, {0x1F240, 0x1F248}, {0x1F250, 0x1F251}, {0x1F260, 0x1F265}, {0x1F300, 0x1F6D7}, {0x1F6E0, 0x1F6EC}, {0x1F6F0, 0x1F6FC}, {0x1F700, 0x1F773}, {0x1F780, 0x1F7D8},
|
||||||
|
{0x1F7E0, 0x1F7EB}, {0x1F800, 0x1F80B}, {0x1F810, 0x1F847}, {0x1F850, 0x1F859}, {0x1F860, 0x1F887}, {0x1F890, 0x1F8AD}, {0x1F8B0, 0x1F8B1}, {0x1F900, 0x1F978}, {0x1F97A, 0x1F9CB}, {0x1F9CD, 0x1FA53},
|
||||||
|
{0x1FA60, 0x1FA6D}, {0x1FA70, 0x1FA74}, {0x1FA78, 0x1FA7A}, {0x1FA80, 0x1FA86}, {0x1FA90, 0x1FAA8}, {0x1FAB0, 0x1FAB6}, {0x1FAC0, 0x1FAC2}, {0x1FAD0, 0x1FAD6}, {0x1FB00, 0x1FB92}, {0x1FB94, 0x1FBCA},
|
||||||
|
};
|
||||||
|
|
||||||
|
static const std::vector<std::pair<uint32_t, uint32_t>> control_ranges = {
|
||||||
|
{0x0, 0x8}, {0xE, 0x1B}, {0x7F, 0x84}, {0x86, 0x9F}, {0xAD, 0xAD}, {0x378, 0x379}, {0x380, 0x383}, {0x38B, 0x38B}, {0x38D, 0x38D}, {0x3A2, 0x3A2}, {0x530, 0x530}, {0x557, 0x558}, {0x58B, 0x58C},
|
||||||
|
{0x590, 0x590}, {0x5C8, 0x5CF}, {0x5EB, 0x5EE}, {0x5F5, 0x605}, {0x61C, 0x61D}, {0x6DD, 0x6DD}, {0x70E, 0x70F}, {0x74B, 0x74C}, {0x7B2, 0x7BF}, {0x7FB, 0x7FC}, {0x82E, 0x82F}, {0x83F, 0x83F},
|
||||||
|
{0x85C, 0x85D}, {0x85F, 0x85F}, {0x86B, 0x89F}, {0x8B5, 0x8B5}, {0x8C8, 0x8D2}, {0x8E2, 0x8E2}, {0x984, 0x984}, {0x98D, 0x98E}, {0x991, 0x992}, {0x9A9, 0x9A9}, {0x9B1, 0x9B1}, {0x9B3, 0x9B5},
|
||||||
|
{0x9BA, 0x9BB}, {0x9C5, 0x9C6}, {0x9C9, 0x9CA}, {0x9CF, 0x9D6}, {0x9D8, 0x9DB}, {0x9DE, 0x9DE}, {0x9E4, 0x9E5}, {0x9FF, 0xA00}, {0xA04, 0xA04}, {0xA0B, 0xA0E}, {0xA11, 0xA12}, {0xA29, 0xA29},
|
||||||
|
{0xA31, 0xA31}, {0xA34, 0xA34}, {0xA37, 0xA37}, {0xA3A, 0xA3B}, {0xA3D, 0xA3D}, {0xA43, 0xA46}, {0xA49, 0xA4A}, {0xA4E, 0xA50}, {0xA52, 0xA58}, {0xA5D, 0xA5D}, {0xA5F, 0xA65}, {0xA77, 0xA80},
|
||||||
|
{0xA84, 0xA84}, {0xA8E, 0xA8E}, {0xA92, 0xA92}, {0xAA9, 0xAA9}, {0xAB1, 0xAB1}, {0xAB4, 0xAB4}, {0xABA, 0xABB}, {0xAC6, 0xAC6}, {0xACA, 0xACA}, {0xACE, 0xACF}, {0xAD1, 0xADF}, {0xAE4, 0xAE5},
|
||||||
|
{0xAF2, 0xAF8}, {0xB00, 0xB00}, {0xB04, 0xB04}, {0xB0D, 0xB0E}, {0xB11, 0xB12}, {0xB29, 0xB29}, {0xB31, 0xB31}, {0xB34, 0xB34}, {0xB3A, 0xB3B}, {0xB45, 0xB46}, {0xB49, 0xB4A}, {0xB4E, 0xB54},
|
||||||
|
{0xB58, 0xB5B}, {0xB5E, 0xB5E}, {0xB64, 0xB65}, {0xB78, 0xB81}, {0xB84, 0xB84}, {0xB8B, 0xB8D}, {0xB91, 0xB91}, {0xB96, 0xB98}, {0xB9B, 0xB9B}, {0xB9D, 0xB9D}, {0xBA0, 0xBA2}, {0xBA5, 0xBA7},
|
||||||
|
{0xBAB, 0xBAD}, {0xBBA, 0xBBD}, {0xBC3, 0xBC5}, {0xBC9, 0xBC9}, {0xBCE, 0xBCF}, {0xBD1, 0xBD6}, {0xBD8, 0xBE5}, {0xBFB, 0xBFF}, {0xC0D, 0xC0D}, {0xC11, 0xC11}, {0xC29, 0xC29}, {0xC3A, 0xC3C},
|
||||||
|
{0xC45, 0xC45}, {0xC49, 0xC49}, {0xC4E, 0xC54}, {0xC57, 0xC57}, {0xC5B, 0xC5F}, {0xC64, 0xC65}, {0xC70, 0xC76}, {0xC8D, 0xC8D}, {0xC91, 0xC91}, {0xCA9, 0xCA9}, {0xCB4, 0xCB4}, {0xCBA, 0xCBB},
|
||||||
|
{0xCC5, 0xCC5}, {0xCC9, 0xCC9}, {0xCCE, 0xCD4}, {0xCD7, 0xCDD}, {0xCDF, 0xCDF}, {0xCE4, 0xCE5}, {0xCF0, 0xCF0}, {0xCF3, 0xCFF}, {0xD0D, 0xD0D}, {0xD11, 0xD11}, {0xD45, 0xD45}, {0xD49, 0xD49},
|
||||||
|
{0xD50, 0xD53}, {0xD64, 0xD65}, {0xD80, 0xD80}, {0xD84, 0xD84}, {0xD97, 0xD99}, {0xDB2, 0xDB2}, {0xDBC, 0xDBC}, {0xDBE, 0xDBF}, {0xDC7, 0xDC9}, {0xDCB, 0xDCE}, {0xDD5, 0xDD5}, {0xDD7, 0xDD7},
|
||||||
|
{0xDE0, 0xDE5}, {0xDF0, 0xDF1}, {0xDF5, 0xE00}, {0xE3B, 0xE3E}, {0xE5C, 0xE80}, {0xE83, 0xE83}, {0xE85, 0xE85}, {0xE8B, 0xE8B}, {0xEA4, 0xEA4}, {0xEA6, 0xEA6}, {0xEBE, 0xEBF}, {0xEC5, 0xEC5},
|
||||||
|
{0xEC7, 0xEC7}, {0xECE, 0xECF}, {0xEDA, 0xEDB}, {0xEE0, 0xEFF}, {0xF48, 0xF48}, {0xF6D, 0xF70}, {0xF98, 0xF98}, {0xFBD, 0xFBD}, {0xFCD, 0xFCD}, {0xFDB, 0xFFF}, {0x10C6, 0x10C6}, {0x10C8, 0x10CC},
|
||||||
|
{0x10CE, 0x10CF}, {0x1249, 0x1249}, {0x124E, 0x124F}, {0x1257, 0x1257}, {0x1259, 0x1259}, {0x125E, 0x125F}, {0x1289, 0x1289}, {0x128E, 0x128F}, {0x12B1, 0x12B1}, {0x12B6, 0x12B7}, {0x12BF, 0x12BF},
|
||||||
|
{0x12C1, 0x12C1}, {0x12C6, 0x12C7}, {0x12D7, 0x12D7}, {0x1311, 0x1311}, {0x1316, 0x1317}, {0x135B, 0x135C}, {0x137D, 0x137F}, {0x139A, 0x139F}, {0x13F6, 0x13F7}, {0x13FE, 0x13FF}, {0x169D, 0x169F},
|
||||||
|
{0x16F9, 0x16FF}, {0x170D, 0x170D}, {0x1715, 0x171F}, {0x1737, 0x173F}, {0x1754, 0x175F}, {0x176D, 0x176D}, {0x1771, 0x1771}, {0x1774, 0x177F}, {0x17DE, 0x17DF}, {0x17EA, 0x17EF}, {0x17FA, 0x17FF},
|
||||||
|
{0x180E, 0x180F}, {0x181A, 0x181F}, {0x1879, 0x187F}, {0x18AB, 0x18AF}, {0x18F6, 0x18FF}, {0x191F, 0x191F}, {0x192C, 0x192F}, {0x193C, 0x193F}, {0x1941, 0x1943}, {0x196E, 0x196F}, {0x1975, 0x197F},
|
||||||
|
{0x19AC, 0x19AF}, {0x19CA, 0x19CF}, {0x19DB, 0x19DD}, {0x1A1C, 0x1A1D}, {0x1A5F, 0x1A5F}, {0x1A7D, 0x1A7E}, {0x1A8A, 0x1A8F}, {0x1A9A, 0x1A9F}, {0x1AAE, 0x1AAF}, {0x1AC1, 0x1AFF}, {0x1B4C, 0x1B4F},
|
||||||
|
{0x1B7D, 0x1B7F}, {0x1BF4, 0x1BFB}, {0x1C38, 0x1C3A}, {0x1C4A, 0x1C4C}, {0x1C89, 0x1C8F}, {0x1CBB, 0x1CBC}, {0x1CC8, 0x1CCF}, {0x1CFB, 0x1CFF}, {0x1DFA, 0x1DFA}, {0x1F16, 0x1F17}, {0x1F1E, 0x1F1F},
|
||||||
|
{0x1F46, 0x1F47}, {0x1F4E, 0x1F4F}, {0x1F58, 0x1F58}, {0x1F5A, 0x1F5A}, {0x1F5C, 0x1F5C}, {0x1F5E, 0x1F5E}, {0x1F7E, 0x1F7F}, {0x1FB5, 0x1FB5}, {0x1FC5, 0x1FC5}, {0x1FD4, 0x1FD5}, {0x1FDC, 0x1FDC},
|
||||||
|
{0x1FF0, 0x1FF1}, {0x1FF5, 0x1FF5}, {0x1FFF, 0x1FFF}, {0x200B, 0x200F}, {0x202A, 0x202E}, {0x2060, 0x206F}, {0x2072, 0x2073}, {0x208F, 0x208F}, {0x209D, 0x209F}, {0x20C0, 0x20CF}, {0x20F1, 0x20FF},
|
||||||
|
{0x218C, 0x218F}, {0x2427, 0x243F}, {0x244B, 0x245F}, {0x2B74, 0x2B75}, {0x2B96, 0x2B96}, {0x2C2F, 0x2C2F}, {0x2C5F, 0x2C5F}, {0x2CF4, 0x2CF8}, {0x2D26, 0x2D26}, {0x2D28, 0x2D2C}, {0x2D2E, 0x2D2F},
|
||||||
|
{0x2D68, 0x2D6E}, {0x2D71, 0x2D7E}, {0x2D97, 0x2D9F}, {0x2DA7, 0x2DA7}, {0x2DAF, 0x2DAF}, {0x2DB7, 0x2DB7}, {0x2DBF, 0x2DBF}, {0x2DC7, 0x2DC7}, {0x2DCF, 0x2DCF}, {0x2DD7, 0x2DD7}, {0x2DDF, 0x2DDF},
|
||||||
|
{0x2E53, 0x2E7F}, {0x2E9A, 0x2E9A}, {0x2EF4, 0x2EFF}, {0x2FD6, 0x2FEF}, {0x2FFC, 0x2FFF}, {0x3040, 0x3040}, {0x3097, 0x3098}, {0x3100, 0x3104}, {0x3130, 0x3130}, {0x318F, 0x318F}, {0x31E4, 0x31EF},
|
||||||
|
{0x321F, 0x321F}, {0x9FFD, 0x9FFF}, {0xA48D, 0xA48F}, {0xA4C7, 0xA4CF}, {0xA62C, 0xA63F}, {0xA6F8, 0xA6FF}, {0xA7C0, 0xA7C1}, {0xA7CB, 0xA7F4}, {0xA82D, 0xA82F}, {0xA83A, 0xA83F}, {0xA878, 0xA87F},
|
||||||
|
{0xA8C6, 0xA8CD}, {0xA8DA, 0xA8DF}, {0xA954, 0xA95E}, {0xA97D, 0xA97F}, {0xA9CE, 0xA9CE}, {0xA9DA, 0xA9DD}, {0xA9FF, 0xA9FF}, {0xAA37, 0xAA3F}, {0xAA4E, 0xAA4F}, {0xAA5A, 0xAA5B}, {0xAAC3, 0xAADA},
|
||||||
|
{0xAAF7, 0xAB00}, {0xAB07, 0xAB08}, {0xAB0F, 0xAB10}, {0xAB17, 0xAB1F}, {0xAB27, 0xAB27}, {0xAB2F, 0xAB2F}, {0xAB6C, 0xAB6F}, {0xABEE, 0xABEF}, {0xABFA, 0xABFF}, {0xD7A4, 0xD7AF}, {0xD7C7, 0xD7CA},
|
||||||
|
{0xD7FC, 0xF8FF}, {0xFA6E, 0xFA6F}, {0xFADA, 0xFAFF}, {0xFB07, 0xFB12}, {0xFB18, 0xFB1C}, {0xFB37, 0xFB37}, {0xFB3D, 0xFB3D}, {0xFB3F, 0xFB3F}, {0xFB42, 0xFB42}, {0xFB45, 0xFB45}, {0xFBC2, 0xFBD2},
|
||||||
|
{0xFD40, 0xFD4F}, {0xFD90, 0xFD91}, {0xFDC8, 0xFDEF}, {0xFDFE, 0xFDFF}, {0xFE1A, 0xFE1F}, {0xFE53, 0xFE53}, {0xFE67, 0xFE67}, {0xFE6C, 0xFE6F}, {0xFE75, 0xFE75}, {0xFEFD, 0xFF00}, {0xFFBF, 0xFFC1},
|
||||||
|
{0xFFC8, 0xFFC9}, {0xFFD0, 0xFFD1}, {0xFFD8, 0xFFD9}, {0xFFDD, 0xFFDF}, {0xFFE7, 0xFFE7}, {0xFFEF, 0xFFFB}, {0xFFFE, 0xFFFF}, {0x1000C, 0x1000C}, {0x10027, 0x10027}, {0x1003B, 0x1003B},
|
||||||
|
{0x1003E, 0x1003E}, {0x1004E, 0x1004F}, {0x1005E, 0x1007F}, {0x100FB, 0x100FF}, {0x10103, 0x10106}, {0x10134, 0x10136}, {0x1018F, 0x1018F}, {0x1019D, 0x1019F}, {0x101A1, 0x101CF}, {0x101FE, 0x1027F},
|
||||||
|
{0x1029D, 0x1029F}, {0x102D1, 0x102DF}, {0x102FC, 0x102FF}, {0x10324, 0x1032C}, {0x1034B, 0x1034F}, {0x1037B, 0x1037F}, {0x1039E, 0x1039E}, {0x103C4, 0x103C7}, {0x103D6, 0x103FF}, {0x1049E, 0x1049F},
|
||||||
|
{0x104AA, 0x104AF}, {0x104D4, 0x104D7}, {0x104FC, 0x104FF}, {0x10528, 0x1052F}, {0x10564, 0x1056E}, {0x10570, 0x105FF}, {0x10737, 0x1073F}, {0x10756, 0x1075F}, {0x10768, 0x107FF}, {0x10806, 0x10807},
|
||||||
|
{0x10809, 0x10809}, {0x10836, 0x10836}, {0x10839, 0x1083B}, {0x1083D, 0x1083E}, {0x10856, 0x10856}, {0x1089F, 0x108A6}, {0x108B0, 0x108DF}, {0x108F3, 0x108F3}, {0x108F6, 0x108FA}, {0x1091C, 0x1091E},
|
||||||
|
{0x1093A, 0x1093E}, {0x10940, 0x1097F}, {0x109B8, 0x109BB}, {0x109D0, 0x109D1}, {0x10A04, 0x10A04}, {0x10A07, 0x10A0B}, {0x10A14, 0x10A14}, {0x10A18, 0x10A18}, {0x10A36, 0x10A37}, {0x10A3B, 0x10A3E},
|
||||||
|
{0x10A49, 0x10A4F}, {0x10A59, 0x10A5F}, {0x10AA0, 0x10ABF}, {0x10AE7, 0x10AEA}, {0x10AF7, 0x10AFF}, {0x10B36, 0x10B38}, {0x10B56, 0x10B57}, {0x10B73, 0x10B77}, {0x10B92, 0x10B98}, {0x10B9D, 0x10BA8},
|
||||||
|
{0x10BB0, 0x10BFF}, {0x10C49, 0x10C7F}, {0x10CB3, 0x10CBF}, {0x10CF3, 0x10CF9}, {0x10D28, 0x10D2F}, {0x10D3A, 0x10E5F}, {0x10E7F, 0x10E7F}, {0x10EAA, 0x10EAA}, {0x10EAE, 0x10EAF}, {0x10EB2, 0x10EFF},
|
||||||
|
{0x10F28, 0x10F2F}, {0x10F5A, 0x10FAF}, {0x10FCC, 0x10FDF}, {0x10FF7, 0x10FFF}, {0x1104E, 0x11051}, {0x11070, 0x1107E}, {0x110BD, 0x110BD}, {0x110C2, 0x110CF}, {0x110E9, 0x110EF}, {0x110FA, 0x110FF},
|
||||||
|
{0x11135, 0x11135}, {0x11148, 0x1114F}, {0x11177, 0x1117F}, {0x111E0, 0x111E0}, {0x111F5, 0x111FF}, {0x11212, 0x11212}, {0x1123F, 0x1127F}, {0x11287, 0x11287}, {0x11289, 0x11289}, {0x1128E, 0x1128E},
|
||||||
|
{0x1129E, 0x1129E}, {0x112AA, 0x112AF}, {0x112EB, 0x112EF}, {0x112FA, 0x112FF}, {0x11304, 0x11304}, {0x1130D, 0x1130E}, {0x11311, 0x11312}, {0x11329, 0x11329}, {0x11331, 0x11331}, {0x11334, 0x11334},
|
||||||
|
{0x1133A, 0x1133A}, {0x11345, 0x11346}, {0x11349, 0x1134A}, {0x1134E, 0x1134F}, {0x11351, 0x11356}, {0x11358, 0x1135C}, {0x11364, 0x11365}, {0x1136D, 0x1136F}, {0x11375, 0x113FF}, {0x1145C, 0x1145C},
|
||||||
|
{0x11462, 0x1147F}, {0x114C8, 0x114CF}, {0x114DA, 0x1157F}, {0x115B6, 0x115B7}, {0x115DE, 0x115FF}, {0x11645, 0x1164F}, {0x1165A, 0x1165F}, {0x1166D, 0x1167F}, {0x116B9, 0x116BF}, {0x116CA, 0x116FF},
|
||||||
|
{0x1171B, 0x1171C}, {0x1172C, 0x1172F}, {0x11740, 0x117FF}, {0x1183C, 0x1189F}, {0x118F3, 0x118FE}, {0x11907, 0x11908}, {0x1190A, 0x1190B}, {0x11914, 0x11914}, {0x11917, 0x11917}, {0x11936, 0x11936},
|
||||||
|
{0x11939, 0x1193A}, {0x11947, 0x1194F}, {0x1195A, 0x1199F}, {0x119A8, 0x119A9}, {0x119D8, 0x119D9}, {0x119E5, 0x119FF}, {0x11A48, 0x11A4F}, {0x11AA3, 0x11ABF}, {0x11AF9, 0x11BFF}, {0x11C09, 0x11C09},
|
||||||
|
{0x11C37, 0x11C37}, {0x11C46, 0x11C4F}, {0x11C6D, 0x11C6F}, {0x11C90, 0x11C91}, {0x11CA8, 0x11CA8}, {0x11CB7, 0x11CFF}, {0x11D07, 0x11D07}, {0x11D0A, 0x11D0A}, {0x11D37, 0x11D39}, {0x11D3B, 0x11D3B},
|
||||||
|
{0x11D3E, 0x11D3E}, {0x11D48, 0x11D4F}, {0x11D5A, 0x11D5F}, {0x11D66, 0x11D66}, {0x11D69, 0x11D69}, {0x11D8F, 0x11D8F}, {0x11D92, 0x11D92}, {0x11D99, 0x11D9F}, {0x11DAA, 0x11EDF}, {0x11EF9, 0x11FAF},
|
||||||
|
{0x11FB1, 0x11FBF}, {0x11FF2, 0x11FFE}, {0x1239A, 0x123FF}, {0x1246F, 0x1246F}, {0x12475, 0x1247F}, {0x12544, 0x12FFF}, {0x1342F, 0x143FF}, {0x14647, 0x167FF}, {0x16A39, 0x16A3F}, {0x16A5F, 0x16A5F},
|
||||||
|
{0x16A6A, 0x16A6D}, {0x16A70, 0x16ACF}, {0x16AEE, 0x16AEF}, {0x16AF6, 0x16AFF}, {0x16B46, 0x16B4F}, {0x16B5A, 0x16B5A}, {0x16B62, 0x16B62}, {0x16B78, 0x16B7C}, {0x16B90, 0x16E3F}, {0x16E9B, 0x16EFF},
|
||||||
|
{0x16F4B, 0x16F4E}, {0x16F88, 0x16F8E}, {0x16FA0, 0x16FDF}, {0x16FE5, 0x16FEF}, {0x16FF2, 0x16FFF}, {0x187F8, 0x187FF}, {0x18CD6, 0x18CFF}, {0x18D09, 0x1AFFF}, {0x1B11F, 0x1B14F}, {0x1B153, 0x1B163},
|
||||||
|
{0x1B168, 0x1B16F}, {0x1B2FC, 0x1BBFF}, {0x1BC6B, 0x1BC6F}, {0x1BC7D, 0x1BC7F}, {0x1BC89, 0x1BC8F}, {0x1BC9A, 0x1BC9B}, {0x1BCA0, 0x1CFFF}, {0x1D0F6, 0x1D0FF}, {0x1D127, 0x1D128}, {0x1D173, 0x1D17A},
|
||||||
|
{0x1D1E9, 0x1D1FF}, {0x1D246, 0x1D2DF}, {0x1D2F4, 0x1D2FF}, {0x1D357, 0x1D35F}, {0x1D379, 0x1D3FF}, {0x1D455, 0x1D455}, {0x1D49D, 0x1D49D}, {0x1D4A0, 0x1D4A1}, {0x1D4A3, 0x1D4A4}, {0x1D4A7, 0x1D4A8},
|
||||||
|
{0x1D4AD, 0x1D4AD}, {0x1D4BA, 0x1D4BA}, {0x1D4BC, 0x1D4BC}, {0x1D4C4, 0x1D4C4}, {0x1D506, 0x1D506}, {0x1D50B, 0x1D50C}, {0x1D515, 0x1D515}, {0x1D51D, 0x1D51D}, {0x1D53A, 0x1D53A}, {0x1D53F, 0x1D53F},
|
||||||
|
{0x1D545, 0x1D545}, {0x1D547, 0x1D549}, {0x1D551, 0x1D551}, {0x1D6A6, 0x1D6A7}, {0x1D7CC, 0x1D7CD}, {0x1DA8C, 0x1DA9A}, {0x1DAA0, 0x1DAA0}, {0x1DAB0, 0x1DFFF}, {0x1E007, 0x1E007}, {0x1E019, 0x1E01A},
|
||||||
|
{0x1E022, 0x1E022}, {0x1E025, 0x1E025}, {0x1E02B, 0x1E0FF}, {0x1E12D, 0x1E12F}, {0x1E13E, 0x1E13F}, {0x1E14A, 0x1E14D}, {0x1E150, 0x1E2BF}, {0x1E2FA, 0x1E2FE}, {0x1E300, 0x1E7FF}, {0x1E8C5, 0x1E8C6},
|
||||||
|
{0x1E8D7, 0x1E8FF}, {0x1E94C, 0x1E94F}, {0x1E95A, 0x1E95D}, {0x1E960, 0x1EC70}, {0x1ECB5, 0x1ED00}, {0x1ED3E, 0x1EDFF}, {0x1EE04, 0x1EE04}, {0x1EE20, 0x1EE20}, {0x1EE23, 0x1EE23}, {0x1EE25, 0x1EE26},
|
||||||
|
{0x1EE28, 0x1EE28}, {0x1EE33, 0x1EE33}, {0x1EE38, 0x1EE38}, {0x1EE3A, 0x1EE3A}, {0x1EE3C, 0x1EE41}, {0x1EE43, 0x1EE46}, {0x1EE48, 0x1EE48}, {0x1EE4A, 0x1EE4A}, {0x1EE4C, 0x1EE4C}, {0x1EE50, 0x1EE50},
|
||||||
|
{0x1EE53, 0x1EE53}, {0x1EE55, 0x1EE56}, {0x1EE58, 0x1EE58}, {0x1EE5A, 0x1EE5A}, {0x1EE5C, 0x1EE5C}, {0x1EE5E, 0x1EE5E}, {0x1EE60, 0x1EE60}, {0x1EE63, 0x1EE63}, {0x1EE65, 0x1EE66}, {0x1EE6B, 0x1EE6B},
|
||||||
|
{0x1EE73, 0x1EE73}, {0x1EE78, 0x1EE78}, {0x1EE7D, 0x1EE7D}, {0x1EE7F, 0x1EE7F}, {0x1EE8A, 0x1EE8A}, {0x1EE9C, 0x1EEA0}, {0x1EEA4, 0x1EEA4}, {0x1EEAA, 0x1EEAA}, {0x1EEBC, 0x1EEEF}, {0x1EEF2, 0x1EFFF},
|
||||||
|
{0x1F02C, 0x1F02F}, {0x1F094, 0x1F09F}, {0x1F0AF, 0x1F0B0}, {0x1F0C0, 0x1F0C0}, {0x1F0D0, 0x1F0D0}, {0x1F0F6, 0x1F0FF}, {0x1F1AE, 0x1F1E5}, {0x1F203, 0x1F20F}, {0x1F23C, 0x1F23F}, {0x1F249, 0x1F24F},
|
||||||
|
{0x1F252, 0x1F25F}, {0x1F266, 0x1F2FF}, {0x1F6D8, 0x1F6DF}, {0x1F6ED, 0x1F6EF}, {0x1F6FD, 0x1F6FF}, {0x1F774, 0x1F77F}, {0x1F7D9, 0x1F7DF}, {0x1F7EC, 0x1F7FF}, {0x1F80C, 0x1F80F}, {0x1F848, 0x1F84F},
|
||||||
|
{0x1F85A, 0x1F85F}, {0x1F888, 0x1F88F}, {0x1F8AE, 0x1F8AF}, {0x1F8B2, 0x1F8FF}, {0x1F979, 0x1F979}, {0x1F9CC, 0x1F9CC}, {0x1FA54, 0x1FA5F}, {0x1FA6E, 0x1FA6F}, {0x1FA75, 0x1FA77}, {0x1FA7B, 0x1FA7F},
|
||||||
|
{0x1FA87, 0x1FA8F}, {0x1FAA9, 0x1FAAF}, {0x1FAB7, 0x1FABF}, {0x1FAC3, 0x1FACF}, {0x1FAD7, 0x1FAFF}, {0x1FB93, 0x1FB93}, {0x1FBCB, 0x1FBEF}, {0x1FBFA, 0x1FFFF}, {0x2A6DE, 0x2A6FF}, {0x2B735, 0x2B73F},
|
||||||
|
{0x2B81E, 0x2B81F}, {0x2CEA2, 0x2CEAF}, {0x2EBE1, 0x2F7FF}, {0x2FA1E, 0x2FFFF}, {0x3134B, 0xE00FF}, {0xE01F0, 0x10FFFF},
|
||||||
|
};
|
||||||
|
|
||||||
|
static std::string codepoint_to_utf8(uint32_t cp) {
|
||||||
|
std::string result;
|
||||||
|
if (/* 0x00 <= cp && */ cp <= 0x7f) {
|
||||||
|
result.push_back(cp);
|
||||||
|
}
|
||||||
|
else if (0x80 <= cp && cp <= 0x7ff) {
|
||||||
|
result.push_back(0xc0 | ((cp >> 6) & 0x1f));
|
||||||
|
result.push_back(0x80 | (cp & 0x3f));
|
||||||
|
}
|
||||||
|
else if (0x800 <= cp && cp <= 0xffff) {
|
||||||
|
result.push_back(0xe0 | ((cp >> 12) & 0x0f));
|
||||||
|
result.push_back(0x80 | ((cp >> 6) & 0x3f));
|
||||||
|
result.push_back(0x80 | (cp & 0x3f));
|
||||||
|
}
|
||||||
|
else if (0x10000 <= cp && cp <= 0x10ffff) {
|
||||||
|
result.push_back(0xf0 | ((cp >> 18) & 0x07));
|
||||||
|
result.push_back(0x80 | ((cp >> 12) & 0x3f));
|
||||||
|
result.push_back(0x80 | ((cp >> 6) & 0x3f));
|
||||||
|
result.push_back(0x80 | (cp & 0x3f));
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
throw std::invalid_argument("invalid codepoint");
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::string codepoints_to_utf8(const std::vector<uint32_t> & cps) {
|
||||||
|
std::string result;
|
||||||
|
for (size_t i = 0; i < cps.size(); ++i) {
|
||||||
|
result.append(codepoint_to_utf8(cps[i]));
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
static uint32_t codepoint_from_utf8(const std::string & utf8, size_t & offset) {
|
||||||
|
assert(offset < utf8.size());
|
||||||
|
if (!(utf8[offset + 0] & 0x80)) {
|
||||||
|
auto result = utf8[offset + 0];
|
||||||
|
offset += 1;
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
else if (!(utf8[offset + 0] & 0x40)) {
|
||||||
|
throw std::invalid_argument("invalid character");
|
||||||
|
}
|
||||||
|
else if (!(utf8[offset + 0] & 0x20)) {
|
||||||
|
if (offset + 1 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80))
|
||||||
|
throw std::invalid_argument("invalid character");
|
||||||
|
auto result = ((utf8[offset + 0] & 0x1f) << 6) | (utf8[offset + 1] & 0x3f);
|
||||||
|
offset += 2;
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
else if (!(utf8[offset + 0] & 0x10)) {
|
||||||
|
if (offset + 2 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80))
|
||||||
|
throw std::invalid_argument("invalid character");
|
||||||
|
auto result = ((utf8[offset + 0] & 0x0f) << 12) | ((utf8[offset + 1] & 0x3f) << 6) | (utf8[offset + 2] & 0x3f);
|
||||||
|
offset += 3;
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
else if (!(utf8[offset + 0] & 0x08)) {
|
||||||
|
if (offset + 3 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80) || !((utf8[offset + 3] & 0xc0) == 0x80))
|
||||||
|
throw std::invalid_argument("invalid character");
|
||||||
|
auto result = ((utf8[offset + 0] & 0x07) << 18) | ((utf8[offset + 1] & 0x3f) << 12) | ((utf8[offset + 2] & 0x3f) << 6) | (utf8[offset + 3] & 0x3f);
|
||||||
|
offset += 4;
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
throw std::invalid_argument("invalid string");
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::vector<uint32_t> codepoints_from_utf8(const std::string & utf8) {
|
||||||
|
std::vector<uint32_t> result;
|
||||||
|
size_t offset = 0;
|
||||||
|
while (offset < utf8.size()) {
|
||||||
|
result.push_back(codepoint_from_utf8(utf8, offset));
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::vector<uint16_t> codepoint_to_utf16(uint32_t cp) {
|
||||||
|
std::vector<uint16_t> result;
|
||||||
|
if (/* 0x0000 <= cp && */ cp <= 0xffff) {
|
||||||
|
result.emplace_back(cp);
|
||||||
|
}
|
||||||
|
else if (0x10000 <= cp && cp <= 0x10ffff) {
|
||||||
|
result.emplace_back(0xd800 | ((cp - 0x10000) >> 10));
|
||||||
|
result.emplace_back(0xdc00 | ((cp - 0x10000) & 0x03ff));
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
throw std::invalid_argument("invalid codepoint");
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::vector<uint16_t> codepoints_to_utf16(const std::vector<uint32_t> & cps) {
|
||||||
|
std::vector<uint16_t> result;
|
||||||
|
for (size_t i = 0; i < cps.size(); ++i) {
|
||||||
|
auto temp = codepoint_to_utf16(cps[i]);
|
||||||
|
result.insert(result.end(), temp.begin(), temp.end());
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
static uint32_t codepoint_from_utf16(const std::vector<uint16_t> & utf16, size_t & offset) {
|
||||||
|
assert(offset < utf16.size());
|
||||||
|
if (((utf16[0] >> 10) << 10) != 0xd800) {
|
||||||
|
auto result = utf16[offset + 0];
|
||||||
|
offset += 1;
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
if (offset + 1 >= utf16.size() || !((utf16[1] & 0xdc00) == 0xdc00))
|
||||||
|
throw std::invalid_argument("invalid character");
|
||||||
|
auto result = 0x10000 + (((utf16[0] & 0x03ff) << 10) | (utf16[1] & 0x03ff));
|
||||||
|
offset += 2;
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
throw std::invalid_argument("invalid string");
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::vector<uint32_t> codepoints_from_utf16(const std::vector<uint16_t> & utf16) {
|
||||||
|
std::vector<uint32_t> result;
|
||||||
|
size_t offset = 0;
|
||||||
|
while (offset < utf16.size())
|
||||||
|
result.push_back(codepoint_from_utf16(utf16, offset));
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
#define CODEPOINT_TYPE_UNIDENTIFIED 0
|
||||||
|
#define CODEPOINT_TYPE_DIGIT 1
|
||||||
|
#define CODEPOINT_TYPE_LETTER 2
|
||||||
|
#define CODEPOINT_TYPE_WHITESPACE 3
|
||||||
|
#define CODEPOINT_TYPE_ACCENT_MARK 4
|
||||||
|
#define CODEPOINT_TYPE_PUNCTUATION 5
|
||||||
|
#define CODEPOINT_TYPE_SYMBOL 6
|
||||||
|
#define CODEPOINT_TYPE_CONTROL 7
|
||||||
|
|
||||||
|
static std::unordered_map<uint32_t, int> codepoint_type_map() {
|
||||||
|
std::unordered_map<uint32_t, int> codepoint_types;
|
||||||
|
for (auto p : digit_ranges) {
|
||||||
|
for(auto i = p.first; i <= p.second; ++ i)
|
||||||
|
codepoint_types[i] = CODEPOINT_TYPE_DIGIT;
|
||||||
|
}
|
||||||
|
for(auto p : letter_ranges) {
|
||||||
|
for(auto i = p.first; i <= p.second; ++ i)
|
||||||
|
codepoint_types[i] = CODEPOINT_TYPE_LETTER;
|
||||||
|
}
|
||||||
|
for(auto p : whitespace_ranges) {
|
||||||
|
for(auto i = p.first; i <= p.second; ++ i)
|
||||||
|
codepoint_types[i] = CODEPOINT_TYPE_WHITESPACE;
|
||||||
|
}
|
||||||
|
for(auto p : accent_mark_ranges) {
|
||||||
|
for(auto i = p.first; i <= p.second; ++ i)
|
||||||
|
codepoint_types[i] = CODEPOINT_TYPE_ACCENT_MARK;
|
||||||
|
}
|
||||||
|
for(auto p : punctuation_ranges) {
|
||||||
|
for(auto i = p.first; i <= p.second; ++ i)
|
||||||
|
codepoint_types[i] = CODEPOINT_TYPE_PUNCTUATION;
|
||||||
|
}
|
||||||
|
for (auto p : symbol_ranges) {
|
||||||
|
for (auto i = p.first; i <= p.second; ++i)
|
||||||
|
codepoint_types[i] = CODEPOINT_TYPE_SYMBOL;
|
||||||
|
}
|
||||||
|
for(auto p : control_ranges) {
|
||||||
|
for(auto i = p.first; i <= p.second; ++ i)
|
||||||
|
codepoint_types[i] = CODEPOINT_TYPE_CONTROL;
|
||||||
|
}
|
||||||
|
return codepoint_types;
|
||||||
|
}
|
||||||
|
|
||||||
|
static int codepoint_type(uint32_t cp) {
|
||||||
|
static std::unordered_map<uint32_t, int> codepoint_types = codepoint_type_map();
|
||||||
|
return codepoint_types[cp];
|
||||||
|
}
|
||||||
|
|
||||||
|
static int codepoint_type(const std::string & utf8) {
|
||||||
|
if (utf8.length() == 0)
|
||||||
|
return CODEPOINT_TYPE_UNIDENTIFIED;
|
||||||
|
size_t offset = 0;
|
||||||
|
return codepoint_type(codepoint_from_utf8(utf8, offset));
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::unordered_map<uint8_t, std::string> bytes_to_unicode_map_bpe() {
|
||||||
|
std::unordered_map<uint8_t, std::string> map;
|
||||||
|
for (int ch = u'!'; ch <= u'~'; ++ch) {
|
||||||
|
assert(0 <= ch && ch < 256);
|
||||||
|
map[ch] = codepoint_to_utf8(ch);
|
||||||
|
}
|
||||||
|
for (int ch = u'¡'; ch <= u'¬'; ++ch) {
|
||||||
|
assert(0 <= ch && ch < 256);
|
||||||
|
map[ch] = codepoint_to_utf8(ch);
|
||||||
|
}
|
||||||
|
for (int ch = u'®'; ch <= u'ÿ'; ++ch) {
|
||||||
|
assert(0 <= ch && ch < 256);
|
||||||
|
map[ch] = codepoint_to_utf8(ch);
|
||||||
|
}
|
||||||
|
auto n = 0;
|
||||||
|
for (int ch = 0; ch < 256; ++ch) {
|
||||||
|
if (map.find(ch) == map.end()) {
|
||||||
|
map[ch] = codepoint_to_utf8(256 + n);
|
||||||
|
++n;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return map;
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::string bytes_to_unicode_bpe(uint8_t byte) {
|
||||||
|
static std::unordered_map<uint8_t, std::string> map = bytes_to_unicode_map_bpe();
|
||||||
|
return map.at(byte);
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::unordered_map<std::string, uint8_t> unicode_to_bytes_map_bpe() {
|
||||||
|
std::unordered_map<std::string, uint8_t> map;
|
||||||
|
for (int ch = u'!'; ch <= u'~'; ++ch) {
|
||||||
|
assert(0 <= ch && ch < 256);
|
||||||
|
map[codepoint_to_utf8(ch)] = ch;
|
||||||
|
}
|
||||||
|
for (int ch = u'¡'; ch <= u'¬'; ++ch) {
|
||||||
|
assert(0 <= ch && ch < 256);
|
||||||
|
map[codepoint_to_utf8(ch)] = ch;
|
||||||
|
}
|
||||||
|
for (int ch = u'®'; ch <= u'ÿ'; ++ch) {
|
||||||
|
assert(0 <= ch && ch < 256);
|
||||||
|
map[codepoint_to_utf8(ch)] = ch;
|
||||||
|
}
|
||||||
|
auto n = 0;
|
||||||
|
for (int ch = 0; ch < 256; ++ch) {
|
||||||
|
if (map.find(codepoint_to_utf8(ch)) == map.end()) {
|
||||||
|
map[codepoint_to_utf8(256 + n)] = ch;
|
||||||
|
++n;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return map;
|
||||||
|
}
|
||||||
|
|
||||||
|
static uint8_t unicode_to_bytes_bpe(const std::string & utf8) {
|
||||||
|
static std::unordered_map<std::string, uint8_t> map = unicode_to_bytes_map_bpe();
|
||||||
|
return map.at(utf8);
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in New Issue
Block a user