server : some style changes

This commit is contained in:
Georgi Gerganov 2023-11-24 10:49:08 +02:00
parent e1516709f2
commit f25308be5c
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735

View File

@ -383,9 +383,9 @@ struct llama_client_slot
bool stopped_eos = false;
bool stopped_word = false;
bool stopped_limit = false;
bool oaicompat = false;
std::string oaicompat_model = "";
std::string oaicompat_model;
std::string stopping_word;
@ -486,7 +486,7 @@ struct llama_client_slot
};
}
void print_timings() {
void print_timings() const {
LOG_TEE("\n");
LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
@ -685,7 +685,7 @@ struct llama_server_context
bool launch_slot_with_data(llama_client_slot* &slot, json data) {
slot_params default_params;
llama_sampling_params default_sparams;
if (data.count("__oaicompat") != 0) {
slot->oaicompat = true;
slot->oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
@ -693,7 +693,7 @@ struct llama_server_context
slot->oaicompat = false;
slot->oaicompat_model = "";
}
slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
@ -1284,7 +1284,7 @@ struct llama_server_context
std::lock_guard<std::mutex> lock(mutex_tasks);
task_server task;
task.id = id_gen++;
task.data = data;
task.data = std::move(data);
task.infill_mode = infill;
task.embedding_mode = embedding;
task.type = COMPLETION_TASK;
@ -2252,29 +2252,27 @@ json oaicompat_completion_params_parse(
llama_params["__oaicompat"] = true;
// Map OpenAI parameters to llama.cpp parameters
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
llama_params["temperature"] = json_value(body, "temperature", 0.8);
llama_params["top_k"] = json_value(body, "max_tokens", 40);
llama_params["top_p"] = json_value(body, "top_p", 0.95);
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
llama_params["temperature"] = json_value(body, "temperature", 0.8);
llama_params["top_k"] = json_value(body, "top_k", 40);
llama_params["top_p"] = json_value(body, "top_p", 0.95);
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
llama_params["seed"] = json_value(body, "seed", 0);
llama_params["stream"] =json_value(body, "stream", false);
llama_params["mirostat"] = json_value(body, "mirostat", false);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", 0.0);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", 0.0);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", false);
llama_params["typical_p"] = json_value(body, "typical_p", 0.0);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", 0);
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", 0.0);
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
llama_params["seed"] = json_value(body, "seed", 0);
llama_params["stream"] = json_value(body, "stream", false);
llama_params["mirostat"] = json_value(body, "mirostat", false);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", 0.0);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", 0.0);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", false);
llama_params["typical_p"] = json_value(body, "typical_p", 0.0);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", 0);
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", 0.0);
if (llama_params.count("grammar") != 0) {
llama_params["grammar"] = json_value(
body, "grammar",
json::object());
llama_params["grammar"] = json_value(body, "grammar", json::object());
}
// Handle 'stop' field
@ -2287,23 +2285,22 @@ json oaicompat_completion_params_parse(
body, "stop",
json::array());
}
// Ensure there is ChatML-specific end sequence among stop words
llama_params["stop"].push_back("<|im_end|>");
return llama_params;
}
static json format_final_response_oaicompat(json request, task_result response,
bool streaming = false)
static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
{
json result = response.result_json;
bool stopped_word = result.count("stopped_word") != 0;
bool stopped_eos = json_value(result, "stopped_eos", false);
bool stopped_word = result.count("stopped_word") != 0;
bool stopped_eos = json_value(result, "stopped_eos", false);
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
std::string content = json_value(result, "content", std::string(""));
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason = "length";
if (stopped_word || stopped_eos) {
@ -2314,10 +2311,10 @@ static json format_final_response_oaicompat(json request, task_result response,
streaming ? json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"delta", json::object()}}})
: json::array({json{{"finish_reason", finish_reason},
: json::array({json{{"finish_reason", finish_reason},
{"index", 0},
{"message", json{{"content", content},
{"role", "assistant"}}}}});
{"role", "assistant"}}}}});
std::time_t t = std::time(0);
@ -2345,7 +2342,7 @@ static json format_final_response_oaicompat(json request, task_result response,
}
// return value is vector as there is one case where we might need to generate two responses
static std::vector<json> format_partial_response_oaicompat(task_result response) {
static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
json result = response.result_json;
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
@ -2353,15 +2350,14 @@ static std::vector<json> format_partial_response_oaicompat(task_result response)
}
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
std::string modelname =
json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
bool stopped_word = json_value(result, "stopped_word", false);
bool stopped_eos = json_value(result, "stopped_eos", false);
bool stopped_limit = json_value(result, "stopped_limit", false);
bool stopped_word = json_value(result, "stopped_word", false);
bool stopped_eos = json_value(result, "stopped_eos", false);
bool stopped_limit = json_value(result, "stopped_limit", false);
std::string content = json_value(result, "content", std::string(""));
std::string finish_reason = "";
std::string finish_reason;
if (stopped_word || stopped_eos) {
finish_reason = "stop";
}
@ -2383,7 +2379,7 @@ static std::vector<json> format_partial_response_oaicompat(task_result response)
choices = json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{{"role", "assistant"}}}}});
} else {
} else {
// We have to send this as two updates to conform to openai behavior
json initial_ret = json{{"choices", json::array({json{
{"finish_reason", nullptr},
@ -2400,13 +2396,13 @@ static std::vector<json> format_partial_response_oaicompat(task_result response)
{"choices", json::array({json{{"finish_reason", nullptr},
{"index", 0},
{"delta", json{
{"content", content}}}
{"content", content}}}
}})},
{"created", t},
{"id", gen_chatcmplid()},
{"model", modelname},
{"object", "chat.completion.chunk"}};
return std::vector<json>({initial_ret, second_ret});
}
} else {
@ -2612,9 +2608,9 @@ int main(int argc, char **argv)
task_result result = llama.next_result(task_id);
if (!result.error) {
const std::string str =
"data: " +
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
"data: " +
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {
{ "to_send", str }
});
@ -2627,9 +2623,9 @@ int main(int argc, char **argv)
}
} else {
const std::string str =
"error: " +
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
"error: " +
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {
{ "to_send", str }
});
@ -2655,13 +2651,13 @@ int main(int argc, char **argv)
});
svr.Post("/v1/chat/completions", [&llama](const httplib::Request &req,
httplib::Response &res)
// TODO: add mount point without "/v1" prefix -- how?
svr.Post("/v1/chat/completions", [&llama](const httplib::Request &req, httplib::Response &res)
{
json data = oaicompat_completion_params_parse(json::parse(req.body));
const int task_id = llama.request_completion(data, false, false);
if (!json_value(data, "stream", false)) {
std::string completion_text;
task_result result = llama.next_result(task_id);
@ -2683,7 +2679,7 @@ int main(int argc, char **argv)
task_result llama_result = llama.next_result(task_id);
if (!llama_result.error) {
std::vector<json> result_array = format_partial_response_oaicompat( llama_result);
for (auto it = result_array.begin(); it != result_array.end(); ++it)
{
if (!it->empty()) {
@ -2725,7 +2721,7 @@ int main(int argc, char **argv)
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
}
});
svr.Post("/infill", [&llama](const httplib::Request &req, httplib::Response &res)
{
json data = json::parse(req.body);