mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-04 01:57:53 +01:00
server : some style changes
This commit is contained in:
parent
e1516709f2
commit
f25308be5c
@ -383,9 +383,9 @@ struct llama_client_slot
|
|||||||
bool stopped_eos = false;
|
bool stopped_eos = false;
|
||||||
bool stopped_word = false;
|
bool stopped_word = false;
|
||||||
bool stopped_limit = false;
|
bool stopped_limit = false;
|
||||||
|
|
||||||
bool oaicompat = false;
|
bool oaicompat = false;
|
||||||
std::string oaicompat_model = "";
|
std::string oaicompat_model;
|
||||||
|
|
||||||
std::string stopping_word;
|
std::string stopping_word;
|
||||||
|
|
||||||
@ -486,7 +486,7 @@ struct llama_client_slot
|
|||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
void print_timings() {
|
void print_timings() const {
|
||||||
LOG_TEE("\n");
|
LOG_TEE("\n");
|
||||||
LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
|
LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
|
||||||
__func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
|
__func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
|
||||||
@ -685,7 +685,7 @@ struct llama_server_context
|
|||||||
bool launch_slot_with_data(llama_client_slot* &slot, json data) {
|
bool launch_slot_with_data(llama_client_slot* &slot, json data) {
|
||||||
slot_params default_params;
|
slot_params default_params;
|
||||||
llama_sampling_params default_sparams;
|
llama_sampling_params default_sparams;
|
||||||
|
|
||||||
if (data.count("__oaicompat") != 0) {
|
if (data.count("__oaicompat") != 0) {
|
||||||
slot->oaicompat = true;
|
slot->oaicompat = true;
|
||||||
slot->oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
|
slot->oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
|
||||||
@ -693,7 +693,7 @@ struct llama_server_context
|
|||||||
slot->oaicompat = false;
|
slot->oaicompat = false;
|
||||||
slot->oaicompat_model = "";
|
slot->oaicompat_model = "";
|
||||||
}
|
}
|
||||||
|
|
||||||
slot->params.stream = json_value(data, "stream", false);
|
slot->params.stream = json_value(data, "stream", false);
|
||||||
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
|
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
|
||||||
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
|
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
|
||||||
@ -1284,7 +1284,7 @@ struct llama_server_context
|
|||||||
std::lock_guard<std::mutex> lock(mutex_tasks);
|
std::lock_guard<std::mutex> lock(mutex_tasks);
|
||||||
task_server task;
|
task_server task;
|
||||||
task.id = id_gen++;
|
task.id = id_gen++;
|
||||||
task.data = data;
|
task.data = std::move(data);
|
||||||
task.infill_mode = infill;
|
task.infill_mode = infill;
|
||||||
task.embedding_mode = embedding;
|
task.embedding_mode = embedding;
|
||||||
task.type = COMPLETION_TASK;
|
task.type = COMPLETION_TASK;
|
||||||
@ -2252,29 +2252,27 @@ json oaicompat_completion_params_parse(
|
|||||||
llama_params["__oaicompat"] = true;
|
llama_params["__oaicompat"] = true;
|
||||||
|
|
||||||
// Map OpenAI parameters to llama.cpp parameters
|
// Map OpenAI parameters to llama.cpp parameters
|
||||||
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
|
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
|
||||||
llama_params["temperature"] = json_value(body, "temperature", 0.8);
|
llama_params["temperature"] = json_value(body, "temperature", 0.8);
|
||||||
llama_params["top_k"] = json_value(body, "max_tokens", 40);
|
llama_params["top_k"] = json_value(body, "top_k", 40);
|
||||||
llama_params["top_p"] = json_value(body, "top_p", 0.95);
|
llama_params["top_p"] = json_value(body, "top_p", 0.95);
|
||||||
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
|
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
|
||||||
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
|
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
|
||||||
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
|
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
|
||||||
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
|
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
|
||||||
llama_params["seed"] = json_value(body, "seed", 0);
|
llama_params["seed"] = json_value(body, "seed", 0);
|
||||||
llama_params["stream"] =json_value(body, "stream", false);
|
llama_params["stream"] = json_value(body, "stream", false);
|
||||||
llama_params["mirostat"] = json_value(body, "mirostat", false);
|
llama_params["mirostat"] = json_value(body, "mirostat", false);
|
||||||
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", 0.0);
|
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", 0.0);
|
||||||
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", 0.0);
|
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", 0.0);
|
||||||
llama_params["penalize_nl"] = json_value(body, "penalize_nl", false);
|
llama_params["penalize_nl"] = json_value(body, "penalize_nl", false);
|
||||||
llama_params["typical_p"] = json_value(body, "typical_p", 0.0);
|
llama_params["typical_p"] = json_value(body, "typical_p", 0.0);
|
||||||
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", 0);
|
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", 0);
|
||||||
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
|
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
|
||||||
llama_params["tfs_z"] = json_value(body, "tfs_z", 0.0);
|
llama_params["tfs_z"] = json_value(body, "tfs_z", 0.0);
|
||||||
|
|
||||||
if (llama_params.count("grammar") != 0) {
|
if (llama_params.count("grammar") != 0) {
|
||||||
llama_params["grammar"] = json_value(
|
llama_params["grammar"] = json_value(body, "grammar", json::object());
|
||||||
body, "grammar",
|
|
||||||
json::object());
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Handle 'stop' field
|
// Handle 'stop' field
|
||||||
@ -2287,23 +2285,22 @@ json oaicompat_completion_params_parse(
|
|||||||
body, "stop",
|
body, "stop",
|
||||||
json::array());
|
json::array());
|
||||||
}
|
}
|
||||||
|
|
||||||
// Ensure there is ChatML-specific end sequence among stop words
|
// Ensure there is ChatML-specific end sequence among stop words
|
||||||
llama_params["stop"].push_back("<|im_end|>");
|
llama_params["stop"].push_back("<|im_end|>");
|
||||||
|
|
||||||
return llama_params;
|
return llama_params;
|
||||||
}
|
}
|
||||||
|
|
||||||
static json format_final_response_oaicompat(json request, task_result response,
|
static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
|
||||||
bool streaming = false)
|
|
||||||
{
|
{
|
||||||
json result = response.result_json;
|
json result = response.result_json;
|
||||||
|
|
||||||
bool stopped_word = result.count("stopped_word") != 0;
|
bool stopped_word = result.count("stopped_word") != 0;
|
||||||
bool stopped_eos = json_value(result, "stopped_eos", false);
|
bool stopped_eos = json_value(result, "stopped_eos", false);
|
||||||
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
|
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
|
||||||
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
|
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
|
||||||
std::string content = json_value(result, "content", std::string(""));
|
std::string content = json_value(result, "content", std::string(""));
|
||||||
|
|
||||||
std::string finish_reason = "length";
|
std::string finish_reason = "length";
|
||||||
if (stopped_word || stopped_eos) {
|
if (stopped_word || stopped_eos) {
|
||||||
@ -2314,10 +2311,10 @@ static json format_final_response_oaicompat(json request, task_result response,
|
|||||||
streaming ? json::array({json{{"finish_reason", finish_reason},
|
streaming ? json::array({json{{"finish_reason", finish_reason},
|
||||||
{"index", 0},
|
{"index", 0},
|
||||||
{"delta", json::object()}}})
|
{"delta", json::object()}}})
|
||||||
: json::array({json{{"finish_reason", finish_reason},
|
: json::array({json{{"finish_reason", finish_reason},
|
||||||
{"index", 0},
|
{"index", 0},
|
||||||
{"message", json{{"content", content},
|
{"message", json{{"content", content},
|
||||||
{"role", "assistant"}}}}});
|
{"role", "assistant"}}}}});
|
||||||
|
|
||||||
std::time_t t = std::time(0);
|
std::time_t t = std::time(0);
|
||||||
|
|
||||||
@ -2345,7 +2342,7 @@ static json format_final_response_oaicompat(json request, task_result response,
|
|||||||
}
|
}
|
||||||
|
|
||||||
// return value is vector as there is one case where we might need to generate two responses
|
// return value is vector as there is one case where we might need to generate two responses
|
||||||
static std::vector<json> format_partial_response_oaicompat(task_result response) {
|
static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
|
||||||
json result = response.result_json;
|
json result = response.result_json;
|
||||||
|
|
||||||
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
|
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
|
||||||
@ -2353,15 +2350,14 @@ static std::vector<json> format_partial_response_oaicompat(task_result response)
|
|||||||
}
|
}
|
||||||
|
|
||||||
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
|
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
|
||||||
std::string modelname =
|
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
|
||||||
json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
|
|
||||||
|
|
||||||
bool stopped_word = json_value(result, "stopped_word", false);
|
bool stopped_word = json_value(result, "stopped_word", false);
|
||||||
bool stopped_eos = json_value(result, "stopped_eos", false);
|
bool stopped_eos = json_value(result, "stopped_eos", false);
|
||||||
bool stopped_limit = json_value(result, "stopped_limit", false);
|
bool stopped_limit = json_value(result, "stopped_limit", false);
|
||||||
std::string content = json_value(result, "content", std::string(""));
|
std::string content = json_value(result, "content", std::string(""));
|
||||||
|
|
||||||
std::string finish_reason = "";
|
std::string finish_reason;
|
||||||
if (stopped_word || stopped_eos) {
|
if (stopped_word || stopped_eos) {
|
||||||
finish_reason = "stop";
|
finish_reason = "stop";
|
||||||
}
|
}
|
||||||
@ -2383,7 +2379,7 @@ static std::vector<json> format_partial_response_oaicompat(task_result response)
|
|||||||
choices = json::array({json{{"finish_reason", nullptr},
|
choices = json::array({json{{"finish_reason", nullptr},
|
||||||
{"index", 0},
|
{"index", 0},
|
||||||
{"delta", json{{"role", "assistant"}}}}});
|
{"delta", json{{"role", "assistant"}}}}});
|
||||||
} else {
|
} else {
|
||||||
// We have to send this as two updates to conform to openai behavior
|
// We have to send this as two updates to conform to openai behavior
|
||||||
json initial_ret = json{{"choices", json::array({json{
|
json initial_ret = json{{"choices", json::array({json{
|
||||||
{"finish_reason", nullptr},
|
{"finish_reason", nullptr},
|
||||||
@ -2400,13 +2396,13 @@ static std::vector<json> format_partial_response_oaicompat(task_result response)
|
|||||||
{"choices", json::array({json{{"finish_reason", nullptr},
|
{"choices", json::array({json{{"finish_reason", nullptr},
|
||||||
{"index", 0},
|
{"index", 0},
|
||||||
{"delta", json{
|
{"delta", json{
|
||||||
{"content", content}}}
|
{"content", content}}}
|
||||||
}})},
|
}})},
|
||||||
{"created", t},
|
{"created", t},
|
||||||
{"id", gen_chatcmplid()},
|
{"id", gen_chatcmplid()},
|
||||||
{"model", modelname},
|
{"model", modelname},
|
||||||
{"object", "chat.completion.chunk"}};
|
{"object", "chat.completion.chunk"}};
|
||||||
|
|
||||||
return std::vector<json>({initial_ret, second_ret});
|
return std::vector<json>({initial_ret, second_ret});
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
@ -2612,9 +2608,9 @@ int main(int argc, char **argv)
|
|||||||
task_result result = llama.next_result(task_id);
|
task_result result = llama.next_result(task_id);
|
||||||
if (!result.error) {
|
if (!result.error) {
|
||||||
const std::string str =
|
const std::string str =
|
||||||
"data: " +
|
"data: " +
|
||||||
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
|
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
|
||||||
"\n\n";
|
"\n\n";
|
||||||
LOG_VERBOSE("data stream", {
|
LOG_VERBOSE("data stream", {
|
||||||
{ "to_send", str }
|
{ "to_send", str }
|
||||||
});
|
});
|
||||||
@ -2627,9 +2623,9 @@ int main(int argc, char **argv)
|
|||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
const std::string str =
|
const std::string str =
|
||||||
"error: " +
|
"error: " +
|
||||||
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
|
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
|
||||||
"\n\n";
|
"\n\n";
|
||||||
LOG_VERBOSE("data stream", {
|
LOG_VERBOSE("data stream", {
|
||||||
{ "to_send", str }
|
{ "to_send", str }
|
||||||
});
|
});
|
||||||
@ -2655,13 +2651,13 @@ int main(int argc, char **argv)
|
|||||||
});
|
});
|
||||||
|
|
||||||
|
|
||||||
svr.Post("/v1/chat/completions", [&llama](const httplib::Request &req,
|
// TODO: add mount point without "/v1" prefix -- how?
|
||||||
httplib::Response &res)
|
svr.Post("/v1/chat/completions", [&llama](const httplib::Request &req, httplib::Response &res)
|
||||||
{
|
{
|
||||||
json data = oaicompat_completion_params_parse(json::parse(req.body));
|
json data = oaicompat_completion_params_parse(json::parse(req.body));
|
||||||
|
|
||||||
const int task_id = llama.request_completion(data, false, false);
|
const int task_id = llama.request_completion(data, false, false);
|
||||||
|
|
||||||
if (!json_value(data, "stream", false)) {
|
if (!json_value(data, "stream", false)) {
|
||||||
std::string completion_text;
|
std::string completion_text;
|
||||||
task_result result = llama.next_result(task_id);
|
task_result result = llama.next_result(task_id);
|
||||||
@ -2683,7 +2679,7 @@ int main(int argc, char **argv)
|
|||||||
task_result llama_result = llama.next_result(task_id);
|
task_result llama_result = llama.next_result(task_id);
|
||||||
if (!llama_result.error) {
|
if (!llama_result.error) {
|
||||||
std::vector<json> result_array = format_partial_response_oaicompat( llama_result);
|
std::vector<json> result_array = format_partial_response_oaicompat( llama_result);
|
||||||
|
|
||||||
for (auto it = result_array.begin(); it != result_array.end(); ++it)
|
for (auto it = result_array.begin(); it != result_array.end(); ++it)
|
||||||
{
|
{
|
||||||
if (!it->empty()) {
|
if (!it->empty()) {
|
||||||
@ -2725,7 +2721,7 @@ int main(int argc, char **argv)
|
|||||||
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
svr.Post("/infill", [&llama](const httplib::Request &req, httplib::Response &res)
|
svr.Post("/infill", [&llama](const httplib::Request &req, httplib::Response &res)
|
||||||
{
|
{
|
||||||
json data = json::parse(req.body);
|
json data = json::parse(req.body);
|
||||||
|
Loading…
Reference in New Issue
Block a user