Add an API example using server.cpp similar to OAI. (#2009)

* add api_like_OAI.py
* add evaluated token count to server
* add /v1/ endpoints binding
This commit is contained in:
jwj7140 2023-07-05 03:06:12 +09:00 committed by GitHub
parent 7ee76e45af
commit f257fd2550
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 244 additions and 5 deletions

View File

@ -190,3 +190,19 @@ Run with bash:
```sh ```sh
bash chat.sh bash chat.sh
``` ```
### API like OAI
API example using Python Flask: [api_like_OAI.py](api_like_OAI.py)
This example must be used with server.cpp
```sh
python api_like_OAI.py
```
After running the API server, you can use it in Python by setting the API base URL.
```python
openai.api_base = "http://<Your api-server IP>:port"
```
Then you can utilize llama.cpp as an OpenAI's **chat.completion** or **text_completion** API

219
examples/server/api_like_OAI.py Executable file
View File

@ -0,0 +1,219 @@
import argparse
from flask import Flask, jsonify, request, Response
import urllib.parse
import requests
import time
import json
app = Flask(__name__)
parser = argparse.ArgumentParser(description="An example of using server.cpp with a similar API to OAI. It must be used together with server.cpp.")
parser.add_argument("--chat-prompt", type=str, help="the top prompt in chat completions(default: 'A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n')", default='A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n')
parser.add_argument("--user-name", type=str, help="USER name in chat completions(default: '\\nUSER: ')", default="\\nUSER: ")
parser.add_argument("--ai-name", type=str, help="ASSISTANT name in chat completions(default: '\\nASSISTANT: ')", default="\\nASSISTANT: ")
parser.add_argument("--system-name", type=str, help="SYSTEM name in chat completions(default: '\\nASSISTANT's RULE: ')", default="\\nASSISTANT's RULE: ")
parser.add_argument("--stop", type=str, help="the end of response in chat completions(default: '</s>')", default="</s>")
parser.add_argument("--llama-api", type=str, help="Set the address of server.cpp in llama.cpp(default: http://127.0.0.1:8080)", default='http://127.0.0.1:8080')
parser.add_argument("--api-key", type=str, help="Set the api key to allow only few user(default: NULL)", default="")
parser.add_argument("--host", type=str, help="Set the ip address to listen.(default: 127.0.0.1)", default='127.0.0.1')
parser.add_argument("--port", type=int, help="Set the port to listen.(default: 8081)", default=8081)
args = parser.parse_args()
def is_present(json, key):
try:
buf = json[key]
except KeyError:
return False
return True
#convert chat to prompt
def convert_chat(messages):
prompt = "" + args.chat_prompt.replace("\\n", "\n")
system_n = args.system_name.replace("\\n", "\n")
user_n = args.user_name.replace("\\n", "\n")
ai_n = args.ai_name.replace("\\n", "\n")
stop = args.stop.replace("\\n", "\n")
for line in messages:
if (line["role"] == "system"):
prompt += f"{system_n}{line['content']}"
if (line["role"] == "user"):
prompt += f"{user_n}{line['content']}"
if (line["role"] == "assistant"):
prompt += f"{ai_n}{line['content']}{stop}"
prompt += ai_n.rstrip()
return prompt
def make_postData(body, chat=False, stream=False):
postData = {}
if (chat):
postData["prompt"] = convert_chat(body["messages"])
else:
postData["prompt"] = body["prompt"]
if(is_present(body, "temperature")): postData["temperature"] = body["temperature"]
if(is_present(body, "top_k")): postData["top_k"] = body["top_k"]
if(is_present(body, "top_p")): postData["top_p"] = body["top_p"]
if(is_present(body, "max_tokens")): postData["n_predict"] = body["max_tokens"]
if(is_present(body, "presence_penalty")): postData["presence_penalty"] = body["presence_penalty"]
if(is_present(body, "frequency_penalty")): postData["frequency_penalty"] = body["frequency_penalty"]
if(is_present(body, "repeat_penalty")): postData["repeat_penalty"] = body["repeat_penalty"]
if(is_present(body, "mirostat")): postData["mirostat"] = body["mirostat"]
if(is_present(body, "mirostat_tau")): postData["mirostat_tau"] = body["mirostat_tau"]
if(is_present(body, "mirostat_eta")): postData["mirostat_eta"] = body["mirostat_eta"]
if(is_present(body, "seed")): postData["seed"] = body["seed"]
if(is_present(body, "logit_bias")): postData["logit_bias"] = [[int(token), body["logit_bias"][token]] for token in body["logit_bias"].keys()]
if (args.stop != ""):
postData["stop"] = [args.stop]
else:
postData["stop"] = []
if(is_present(body, "stop")): postData["stop"] += body["stop"]
postData["n_keep"] = -1
postData["stream"] = stream
return postData
def make_resData(data, chat=False, promptToken=[]):
resData = {
"id": "chatcmpl" if (chat) else "cmpl",
"object": "chat.completion" if (chat) else "text_completion",
"created": int(time.time()),
"truncated": data["truncated"],
"model": "LLaMA_CPP",
"usage": {
"prompt_tokens": data["tokens_evaluated"],
"completion_tokens": data["tokens_predicted"],
"total_tokens": data["tokens_evaluated"] + data["tokens_predicted"]
}
}
if (len(promptToken) != 0):
resData["promptToken"] = promptToken
if (chat):
#only one choice is supported
resData["choices"] = [{
"index": 0,
"message": {
"role": "assistant",
"content": data["content"],
},
"finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
}]
else:
#only one choice is supported
resData["choices"] = [{
"text": data["content"],
"index": 0,
"logprobs": None,
"finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
}]
return resData
def make_resData_stream(data, chat=False, time_now = 0, start=False):
resData = {
"id": "chatcmpl" if (chat) else "cmpl",
"object": "chat.completion.chunk" if (chat) else "text_completion.chunk",
"created": time_now,
"model": "LLaMA_CPP",
"choices": [
{
"finish_reason": None,
"index": 0
}
]
}
if (chat):
if (start):
resData["choices"][0]["delta"] = {
"role": "assistant"
}
else:
resData["choices"][0]["delta"] = {
"content": data["content"]
}
if (data["stop"]):
resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
else:
resData["choices"][0]["text"] = data["content"]
if (data["stop"]):
resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length"
return resData
@app.route('/chat/completions', methods=['POST'])
@app.route('/v1/chat/completions', methods=['POST'])
def chat_completions():
if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
return Response(status=403)
body = request.get_json()
stream = False
tokenize = False
if(is_present(body, "stream")): stream = body["stream"]
if(is_present(body, "tokenize")): tokenize = body["tokenize"]
postData = make_postData(body, chat=True, stream=stream)
promptToken = []
if (tokenize):
tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json()
promptToken = tokenData["tokens"]
if (not stream):
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData))
print(data.json())
resData = make_resData(data.json(), chat=True, promptToken=promptToken)
return jsonify(resData)
else:
def generate():
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True)
time_now = int(time.time())
resData = make_resData_stream({}, chat=True, time_now=time_now, start=True)
yield 'data: {}\n'.format(json.dumps(resData))
for line in data.iter_lines():
if line:
decoded_line = line.decode('utf-8')
resData = make_resData_stream(json.loads(decoded_line[6:]), chat=True, time_now=time_now)
yield 'data: {}\n'.format(json.dumps(resData))
return Response(generate(), mimetype='text/event-stream')
@app.route('/completions', methods=['POST'])
@app.route('/v1/completions', methods=['POST'])
def completion():
if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key):
return Response(status=403)
body = request.get_json()
stream = False
tokenize = False
if(is_present(body, "stream")): stream = body["stream"]
if(is_present(body, "tokenize")): tokenize = body["tokenize"]
postData = make_postData(body, chat=False, stream=stream)
promptToken = []
if (tokenize):
tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json()
promptToken = tokenData["tokens"]
if (not stream):
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData))
print(data.json())
resData = make_resData(data.json(), chat=False, promptToken=promptToken)
return jsonify(resData)
else:
def generate():
data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True)
time_now = int(time.time())
for line in data.iter_lines():
if line:
decoded_line = line.decode('utf-8')
resData = make_resData_stream(json.loads(decoded_line[6:]), chat=False, time_now=time_now)
yield 'data: {}\n'.format(json.dumps(resData))
return Response(generate(), mimetype='text/event-stream')
if __name__ == '__main__':
app.run(args.host, port=args.port)

View File

@ -158,6 +158,7 @@ struct llama_server_context {
std::string generated_text; std::string generated_text;
std::vector<completion_token_output> generated_token_probs; std::vector<completion_token_output> generated_token_probs;
size_t num_prompt_tokens = 0;
size_t num_tokens_predicted = 0; size_t num_tokens_predicted = 0;
size_t n_past = 0; size_t n_past = 0;
size_t n_remain = 0; size_t n_remain = 0;
@ -195,6 +196,7 @@ struct llama_server_context {
void rewind() { void rewind() {
params.antiprompt.clear(); params.antiprompt.clear();
num_prompt_tokens = 0;
num_tokens_predicted = 0; num_tokens_predicted = 0;
generated_text = ""; generated_text = "";
generated_text.reserve(params.n_ctx); generated_text.reserve(params.n_ctx);
@ -226,17 +228,18 @@ struct llama_server_context {
void loadPrompt() { void loadPrompt() {
params.prompt.insert(0, 1, ' '); // always add a first space params.prompt.insert(0, 1, ' '); // always add a first space
std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, params.prompt, true); std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, params.prompt, true);
num_prompt_tokens = prompt_tokens.size();
if (params.n_keep < 0) { if (params.n_keep < 0) {
params.n_keep = (int)prompt_tokens.size(); params.n_keep = (int)num_prompt_tokens;
} }
params.n_keep = std::min(params.n_ctx - 4, params.n_keep); params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
// if input prompt is too big, truncate like normal // if input prompt is too big, truncate like normal
if (prompt_tokens.size() >= (size_t)params.n_ctx) { if (num_prompt_tokens>= (size_t)params.n_ctx) {
const int n_left = (params.n_ctx - params.n_keep) / 2; const int n_left = (params.n_ctx - params.n_keep) / 2;
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep); std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
const int erased_blocks = (prompt_tokens.size() - params.n_keep - n_left - 1) / n_left; const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end()); new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin()); std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
@ -250,7 +253,7 @@ struct llama_server_context {
truncated = true; truncated = true;
prompt_tokens = new_tokens; prompt_tokens = new_tokens;
} else { } else {
const size_t ps = prompt_tokens.size(); const size_t ps = num_prompt_tokens;
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0); std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps); std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
} }
@ -258,7 +261,7 @@ struct llama_server_context {
// compare the evaluated prompt with the new prompt // compare the evaluated prompt with the new prompt
n_past = common_part(embd, prompt_tokens); n_past = common_part(embd, prompt_tokens);
embd = prompt_tokens; embd = prompt_tokens;
if (n_past == prompt_tokens.size()) { if (n_past == num_prompt_tokens) {
// we have to evaluate at least 1 token to generate logits. // we have to evaluate at least 1 token to generate logits.
n_past--; n_past--;
} }
@ -763,6 +766,7 @@ static json format_final_response(llama_server_context & llama, const std::strin
{ "stop", true }, { "stop", true },
{ "model", llama.params.model_alias }, { "model", llama.params.model_alias },
{ "tokens_predicted", llama.num_tokens_predicted }, { "tokens_predicted", llama.num_tokens_predicted },
{ "tokens_evaluated", llama.num_prompt_tokens },
{ "generation_settings", format_generation_settings(llama) }, { "generation_settings", format_generation_settings(llama) },
{ "prompt", llama.params.prompt }, { "prompt", llama.params.prompt },
{ "truncated", llama.truncated }, { "truncated", llama.truncated },