mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 13:58:46 +01:00
all matrix multiplication backend
This commit is contained in:
parent
f8ec8877b7
commit
f3974cabac
270
ggml-blas.cpp
270
ggml-blas.cpp
@ -1,6 +1,8 @@
|
||||
#include "ggml-blas.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#include <atomic>
|
||||
#include <cassert>
|
||||
#include <future>
|
||||
#include <vector>
|
||||
|
||||
@ -22,6 +24,7 @@ struct ggml_backend_blas_context {
|
||||
#ifndef GGML_USE_OPENMP
|
||||
std::vector<std::future<void>> tasks;
|
||||
#endif
|
||||
std::atomic<int> current_chunk;
|
||||
};
|
||||
|
||||
// helper function to determine if it is better to use BLAS or not
|
||||
@ -48,6 +51,265 @@ static bool ggml_backend_blas_use_blas(const struct ggml_tensor * dst) {
|
||||
return false;
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_mul_mat_one_chunk(
|
||||
ggml_backend_blas_context * ctx,
|
||||
struct ggml_tensor * dst,
|
||||
const int64_t num_rows_per_vec_dot,
|
||||
const int64_t ir0_start,
|
||||
const int64_t ir0_end,
|
||||
const int64_t ir1_start,
|
||||
const int64_t ir1_end) {
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
|
||||
const bool src1_cont = ggml_is_contiguous(src1);
|
||||
|
||||
const ggml_type_traits_t * type_traits = ggml_internal_get_type_traits_ptr(type);
|
||||
|
||||
ggml_vec_dot_t const vec_dot = type_traits->vec_dot;
|
||||
enum ggml_type const vec_dot_type = type_traits->vec_dot_type;
|
||||
|
||||
// broadcast factors
|
||||
const int64_t r2 = ne12 / ne02;
|
||||
const int64_t r3 = ne13 / ne03;
|
||||
|
||||
//printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
|
||||
|
||||
// threads with no work simply yield (not sure if it helps)
|
||||
if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
|
||||
return;
|
||||
}
|
||||
|
||||
const void * wdata = (src1->type == vec_dot_type) ? src1->data : ctx->work_data.get();
|
||||
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
|
||||
|
||||
assert(ne12 % ne02 == 0);
|
||||
assert(ne13 % ne03 == 0);
|
||||
|
||||
// block-tiling attempt
|
||||
const int64_t blck_0 = 16;
|
||||
const int64_t blck_1 = 16;
|
||||
|
||||
const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
|
||||
|
||||
// attempt to reduce false-sharing (does not seem to make a difference)
|
||||
// 16 * 2, accounting for mmla kernels
|
||||
float tmp[32];
|
||||
|
||||
for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
|
||||
for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
|
||||
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
|
||||
const int64_t i13 = (ir1 / (ne12 * ne1));
|
||||
const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
|
||||
const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
|
||||
|
||||
// broadcast src0 into src1
|
||||
const int64_t i03 = i13 / r3;
|
||||
const int64_t i02 = i12 / r2;
|
||||
|
||||
const int64_t i1 = i11;
|
||||
const int64_t i2 = i12;
|
||||
const int64_t i3 = i13;
|
||||
|
||||
const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
|
||||
|
||||
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
|
||||
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
|
||||
// the original src1 data pointer, so we should index using the indices directly
|
||||
// TODO: this is a bit of a hack, we should probably have a better way to handle this
|
||||
const char * src1_col = (const char*)wdata +
|
||||
(src1_cont || src1->type != vec_dot_type
|
||||
? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
|
||||
: (i11 * nb11 + i12 * nb12 + i13 * nb13));
|
||||
float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
|
||||
|
||||
//for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
|
||||
// vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
|
||||
//}
|
||||
|
||||
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
|
||||
vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
|
||||
}
|
||||
|
||||
for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
|
||||
memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (std::min(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_mul_mat(
|
||||
ggml_backend_blas_context * ctx,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
|
||||
const ggml_type_traits_t * type_traits = ggml_internal_get_type_traits_ptr(type);
|
||||
const ggml_type_traits_t * type_traits_vec_dot = ggml_internal_get_type_traits_ptr(type_traits->vec_dot_type);
|
||||
enum ggml_type const vec_dot_type = type_traits->vec_dot_type;
|
||||
ggml_from_float_t const from_float_to_vec_dot = type_traits_vec_dot->from_float;
|
||||
int64_t const vec_dot_num_rows = type_traits->nrows;
|
||||
|
||||
GGML_ASSERT(ne0 == ne01);
|
||||
GGML_ASSERT(ne1 == ne11);
|
||||
GGML_ASSERT(ne2 == ne12);
|
||||
GGML_ASSERT(ne3 == ne13);
|
||||
|
||||
// we don't support permuted src0 or src1
|
||||
GGML_ASSERT(nb00 == ggml_type_size(type));
|
||||
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
|
||||
|
||||
// dst cannot be transposed or permuted
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
GGML_ASSERT(nb0 <= nb1);
|
||||
GGML_ASSERT(nb1 <= nb2);
|
||||
GGML_ASSERT(nb2 <= nb3);
|
||||
|
||||
// broadcast factors
|
||||
const int64_t r2 = ne12 / ne02;
|
||||
const int64_t r3 = ne13 / ne03;
|
||||
GGML_UNUSED(r2);
|
||||
GGML_UNUSED(r3);
|
||||
|
||||
// nb01 >= nb00 - src0 is not transposed
|
||||
// compute by src0 rows
|
||||
|
||||
if (src1->type != vec_dot_type) {
|
||||
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
|
||||
if (ctx->work_size < ne13*ne12*ne11*row_size) {
|
||||
ctx->work_data.reset(new char[ne13*ne12*ne11*row_size]);
|
||||
ctx->work_size = ne13*ne12*ne11*row_size;
|
||||
}
|
||||
char * wdata = ctx->work_data.get();
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
int block_size = ggml_blck_size(vec_dot_type);
|
||||
int type_size = ggml_type_size(vec_dot_type);
|
||||
|
||||
for (int64_t i13 = 0; i13 < ne13; ++i13) {
|
||||
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||||
for (int64_t i11 = 0; i11 < ne11; ++i11) {
|
||||
//from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
|
||||
//#pragma omp parallel num_threads(ctx->n_threads)
|
||||
{
|
||||
int nth = omp_get_num_threads();
|
||||
int ith = omp_get_thread_num();
|
||||
int blocks_per_thread = (ne10 + block_size - 1) / block_size / nth;
|
||||
int i10_start = ith * blocks_per_thread * block_size;
|
||||
int i10_end = std::min(i10_start + blocks_per_thread * block_size, (int)ne10);
|
||||
//printf("thread %d/%d: i10_start = %d, i10_end = %d\n", ith, nth, i10_start, i10_end);
|
||||
from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10_start*nb10),
|
||||
(void *) ((char *) wdata + (type_size*i10_start/block_size)),
|
||||
i10_end - i10_start);
|
||||
|
||||
}
|
||||
|
||||
wdata += row_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
|
||||
const int64_t nr0 = ne0;
|
||||
|
||||
// This is the size of the rest of the dimensions of the result
|
||||
const int64_t nr1 = ne1 * ne2 * ne3;
|
||||
|
||||
// dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
|
||||
int64_t num_rows_per_vec_dot = vec_dot_num_rows;
|
||||
// TODO: currently the mmla kernels support only even numbered rows/cols.
|
||||
// this check can be removed once they are extended to support odd numbered rows/cols too
|
||||
if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
|
||||
num_rows_per_vec_dot = 1;
|
||||
}
|
||||
|
||||
// Now select a reasonable chunk size.
|
||||
int chunk_size = 16;
|
||||
|
||||
// We need to step up the size if it's small
|
||||
if (nr0 == 1 || nr1 == 1) {
|
||||
chunk_size = 64;
|
||||
}
|
||||
|
||||
// distribute the work across the inner or outer loop based on which one is larger
|
||||
// The number of chunks in the 0/1 dim.
|
||||
// CEIL(nr0/chunk_size)
|
||||
int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
|
||||
int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
|
||||
|
||||
// If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
|
||||
// Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
|
||||
// In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
|
||||
|
||||
//const int ith = 0; // params->ith;
|
||||
const int nth = ctx->n_threads;
|
||||
|
||||
// Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
|
||||
ctx->current_chunk.store(nth);
|
||||
|
||||
if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
|
||||
// distribute the thread work across the inner or outer loop based on which one is larger
|
||||
nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
|
||||
nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
|
||||
}
|
||||
|
||||
// The number of elements in each chunk
|
||||
const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
|
||||
const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
|
||||
|
||||
//if (ith == 0)
|
||||
// printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
|
||||
|
||||
// The first chunk comes from our thread_id, the rest will get auto-assigned.
|
||||
if (nth > 1) {
|
||||
#pragma omp parallel num_threads(nth)
|
||||
{
|
||||
int current_chunk = omp_get_thread_num();
|
||||
|
||||
while (current_chunk < nchunk0 * nchunk1) {
|
||||
const int64_t ith0 = current_chunk % nchunk0;
|
||||
const int64_t ith1 = current_chunk / nchunk0;
|
||||
|
||||
const int64_t ir0_start = dr0 * ith0;
|
||||
const int64_t ir0_end = std::min(ir0_start + dr0, nr0);
|
||||
|
||||
const int64_t ir1_start = dr1 * ith1;
|
||||
const int64_t ir1_end = std::min(ir1_start + dr1, nr1);
|
||||
|
||||
ggml_compute_forward_mul_mat_one_chunk(ctx, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
|
||||
|
||||
if (nth >= nchunk0 * nchunk1) {
|
||||
break;
|
||||
}
|
||||
|
||||
current_chunk = ctx->current_chunk.fetch_add(1);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
ggml_compute_forward_mul_mat_one_chunk(ctx, dst, num_rows_per_vec_dot, 0, nr0, 0, nr1);
|
||||
}
|
||||
|
||||
#ifdef GGML_PERF
|
||||
// These numbers are useful when trying to measure how well the threading scheduling works.
|
||||
//int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
|
||||
//float time = (ggml_perf_time_us() - t0);
|
||||
//printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
@ -255,7 +517,8 @@ GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t
|
||||
|
||||
switch (node->op) {
|
||||
case GGML_OP_MUL_MAT:
|
||||
ggml_backend_blas_mul_mat(ctx, node);
|
||||
//ggml_backend_blas_mul_mat(ctx, node);
|
||||
ggml_compute_forward_mul_mat(ctx, node);
|
||||
break;
|
||||
|
||||
case GGML_OP_OUT_PROD:
|
||||
@ -281,6 +544,10 @@ GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
|
||||
return op->op == GGML_OP_MUL_MAT || op->op == GGML_OP_OUT_PROD;
|
||||
|
||||
/*
|
||||
const struct ggml_tensor * src0 = op->src[0];
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
@ -291,6 +558,7 @@ GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, cons
|
||||
ggml_is_matrix(src1) &&
|
||||
ggml_is_contiguous(src0) &&
|
||||
(ggml_is_contiguous(src1) || ggml_is_transposed(src1)));
|
||||
*/
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
5
ggml.c
5
ggml.c
@ -911,6 +911,11 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
|
||||
return type_traits[type];
|
||||
}
|
||||
|
||||
const ggml_type_traits_t * ggml_internal_get_type_traits_ptr(enum ggml_type type) {
|
||||
GGML_ASSERT(type < GGML_TYPE_COUNT);
|
||||
return &type_traits[type];
|
||||
}
|
||||
|
||||
//
|
||||
// simd mappings
|
||||
//
|
||||
|
Loading…
Reference in New Issue
Block a user