mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-01 00:39:00 +01:00
llama : better express the KV cache dependencies in the graph
This commit is contained in:
parent
60c2ef6d92
commit
f3a84b2e0d
2
ggml.c
2
ggml.c
@ -5213,6 +5213,8 @@ struct ggml_tensor * ggml_view_tensor(
|
|||||||
result->nb[i] = src->nb[i];
|
result->nb[i] = src->nb[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
result->op = GGML_OP_VIEW;
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
70
llama.cpp
70
llama.cpp
@ -2341,45 +2341,53 @@ static struct ggml_cgraph * llm_build_llama(
|
|||||||
// compute Q and K and RoPE them
|
// compute Q and K and RoPE them
|
||||||
struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
||||||
offload_func_kq(tmpk);
|
offload_func_kq(tmpk);
|
||||||
ggml_set_name(tmpk, "tmpk");
|
ggml_set_name (tmpk, "tmpk");
|
||||||
|
|
||||||
struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
||||||
offload_func_kq(tmpq);
|
offload_func_kq(tmpq);
|
||||||
ggml_set_name(tmpq, "tmpq");
|
ggml_set_name (tmpq, "tmpq");
|
||||||
|
|
||||||
|
struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
||||||
|
offload_func_v(tmpv);
|
||||||
|
ggml_set_name (tmpv, "tmpv");
|
||||||
|
|
||||||
struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
|
struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
|
||||||
offload_func_kq(Kcur);
|
offload_func_kq(Kcur);
|
||||||
ggml_set_name(Kcur, "Kcur");
|
ggml_set_name (Kcur, "Kcur");
|
||||||
|
|
||||||
struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
|
struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
|
||||||
offload_func_kq(Qcur);
|
offload_func_kq(Qcur);
|
||||||
ggml_set_name(Qcur, "Qcur");
|
ggml_set_name (Qcur, "Qcur");
|
||||||
|
|
||||||
|
// compute the transposed [N, n_embd] V matrix
|
||||||
|
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, N));
|
||||||
|
offload_func_v(Vcur);
|
||||||
|
ggml_set_name (Vcur, "Vcur");
|
||||||
|
|
||||||
|
struct ggml_tensor * k;
|
||||||
|
struct ggml_tensor * v;
|
||||||
|
|
||||||
// store key and value to memory
|
// store key and value to memory
|
||||||
{
|
{
|
||||||
// compute the transposed [N, n_embd] V matrix
|
struct ggml_tensor * k_view = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
|
||||||
|
offload_func_kq(k_view);
|
||||||
|
ggml_set_name (k_view, "k_view");
|
||||||
|
|
||||||
struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
struct ggml_tensor * v_view = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
|
||||||
offload_func_v(tmpv);
|
|
||||||
ggml_set_name(tmpv, "tmpv");
|
|
||||||
|
|
||||||
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, N));
|
|
||||||
offload_func_v(Vcur);
|
|
||||||
ggml_set_name(Vcur, "Vcur");
|
|
||||||
|
|
||||||
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
|
|
||||||
offload_func_kq(k);
|
|
||||||
ggml_set_name(k, "k");
|
|
||||||
|
|
||||||
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
|
|
||||||
( n_ctx)*ggml_element_size(kv_self.v),
|
( n_ctx)*ggml_element_size(kv_self.v),
|
||||||
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
|
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
|
||||||
offload_func_v(v);
|
offload_func_v(v_view);
|
||||||
ggml_set_name(v, "v");
|
ggml_set_name (v_view, "v_view");
|
||||||
|
|
||||||
// important: storing RoPE-ed version of K in the KV cache!
|
// important: storing RoPE-ed version of K in the KV cache!
|
||||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
|
struct ggml_tensor * k_cpy = ggml_cpy(ctx0, Kcur, k_view);
|
||||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
|
struct ggml_tensor * v_cpy = ggml_cpy(ctx0, Vcur, v_view);
|
||||||
|
|
||||||
|
// TODO: replace with ggml_dependency / ggml_depends_on
|
||||||
|
k = ggml_view_tensor(ctx0, kv_self.k);
|
||||||
|
v = ggml_view_tensor(ctx0, kv_self.v);
|
||||||
|
k->src[0] = k_cpy;
|
||||||
|
v->src[0] = v_cpy;
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
||||||
@ -2387,11 +2395,11 @@ static struct ggml_cgraph * llm_build_llama(
|
|||||||
ggml_set_name(Q, "Q");
|
ggml_set_name(Q, "Q");
|
||||||
|
|
||||||
struct ggml_tensor * K =
|
struct ggml_tensor * K =
|
||||||
ggml_view_3d(ctx0, kv_self.k,
|
ggml_view_3d(ctx0, k,
|
||||||
n_embd_head, n_past + N, n_head_kv,
|
n_embd_head, n_past + N, n_head_kv,
|
||||||
ggml_element_size(kv_self.k)*n_embd_gqa,
|
ggml_element_size(k)*n_embd_gqa,
|
||||||
ggml_element_size(kv_self.k)*n_embd_head,
|
ggml_element_size(k)*n_embd_head,
|
||||||
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
|
ggml_element_size(k)*n_embd_gqa*n_ctx*il);
|
||||||
offload_func_kq(K);
|
offload_func_kq(K);
|
||||||
ggml_set_name(K, "K");
|
ggml_set_name(K, "K");
|
||||||
|
|
||||||
@ -2418,11 +2426,11 @@ static struct ggml_cgraph * llm_build_llama(
|
|||||||
|
|
||||||
// split cached V into n_head heads
|
// split cached V into n_head heads
|
||||||
struct ggml_tensor * V =
|
struct ggml_tensor * V =
|
||||||
ggml_cont(ctx0, ggml_view_3d(ctx0, kv_self.v,
|
ggml_view_3d(ctx0, v,
|
||||||
n_past + N, n_embd_head, n_head_kv,
|
n_past + N, n_embd_head, n_head_kv,
|
||||||
ggml_element_size(kv_self.v)*n_ctx,
|
ggml_element_size(v)*n_ctx,
|
||||||
ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
|
ggml_element_size(v)*n_ctx*n_embd_head,
|
||||||
ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il));
|
ggml_element_size(v)*n_ctx*n_embd_gqa*il);
|
||||||
offload_func_v(V);
|
offload_func_v(V);
|
||||||
ggml_set_name(V, "V");
|
ggml_set_name(V, "V");
|
||||||
|
|
||||||
@ -2434,7 +2442,7 @@ static struct ggml_cgraph * llm_build_llama(
|
|||||||
// make V contiguous in memory to speed up the matmul, however we waste time on the copy
|
// make V contiguous in memory to speed up the matmul, however we waste time on the copy
|
||||||
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
|
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
|
||||||
// is there a better way?
|
// is there a better way?
|
||||||
struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd_head, n_head));
|
struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, v->type, n_past + N, n_embd_head, n_head));
|
||||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user