mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-02-05 08:00:42 +01:00
SYCL: Add gated linear attention kernel (#11175)
* SYCL: Add Gated Linear attention kernel * glahpp: add a space at the end of file * gla: Put the barrier inside the main logic loop
This commit is contained in:
parent
b4d92a59a2
commit
f446c2cf6a
@ -29,5 +29,6 @@
|
||||
#include "wkv6.hpp"
|
||||
#include "outprod.hpp"
|
||||
#include "element_wise.hpp"
|
||||
#include "gla.hpp"
|
||||
|
||||
#endif // GGML_SYCL_BACKEND_HPP
|
||||
|
@ -4040,6 +4040,9 @@ bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tens
|
||||
case GGML_OP_RWKV_WKV6:
|
||||
ggml_sycl_op_rwkv_wkv6(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_GATED_LINEAR_ATTN:
|
||||
ggml_sycl_op_gated_linear_attn(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
@ -4507,6 +4510,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_RWKV_WKV6:
|
||||
case GGML_OP_GATED_LINEAR_ATTN:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
|
105
ggml/src/ggml-sycl/gla.cpp
Normal file
105
ggml/src/ggml-sycl/gla.cpp
Normal file
@ -0,0 +1,105 @@
|
||||
#include <sycl/sycl.hpp>
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
template <u_int HEAD_SIZE>
|
||||
static void gated_linear_attn_f32_kernel(const dpct::queue_ptr stream, u_int B, u_int T, u_int C, u_int H, float scale,
|
||||
const float * k, const float * v, const float * r, const float * td,
|
||||
const float * s, float * dst) {
|
||||
const u_int head_size = HEAD_SIZE;
|
||||
const u_int state_size = C * head_size;
|
||||
const u_int n_seq_tokens = T / B;
|
||||
sycl::range<1> block_dims((C / H));
|
||||
sycl::range<1> grid_dims((B * H));
|
||||
stream->submit([&](sycl::handler & cgh) {
|
||||
/* local memory accessors*/
|
||||
auto _k = sycl::local_accessor<float, 1>(sycl::range<1>(head_size), cgh);
|
||||
auto _r = sycl::local_accessor<float, 1>(sycl::range<1>(head_size), cgh);
|
||||
auto _td = sycl::local_accessor<float, 1>(sycl::range<1>(head_size), cgh);
|
||||
|
||||
cgh.parallel_for(sycl::nd_range<1>(grid_dims * block_dims, block_dims), [=](sycl::nd_item<1> item) {
|
||||
u_int tid = item.get_local_id(0);
|
||||
u_int bid = item.get_group(0);
|
||||
|
||||
u_int batch_i = bid / H;
|
||||
u_int head_i = bid % H;
|
||||
|
||||
float state[head_size];
|
||||
|
||||
#pragma unroll
|
||||
for (u_int i = 0; i < head_size; i++) {
|
||||
state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
|
||||
}
|
||||
|
||||
for (u_int t = batch_i * n_seq_tokens * C + head_i * head_size + tid;
|
||||
t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) {
|
||||
|
||||
item.barrier(sycl::access::fence_space::local_space); //sync threads
|
||||
_k[tid] = k[t];
|
||||
_r[tid] = r[t];
|
||||
_td[tid] = td[t];
|
||||
item.barrier(sycl::access::fence_space::local_space); //sync threads
|
||||
|
||||
const float _v = v[t];
|
||||
float y = 0;
|
||||
|
||||
for (u_int j = 0; j < head_size; j += 4) {
|
||||
const sycl::float4 & k = (sycl::float4 &) (_k[j]);
|
||||
const sycl::float4 & r = (sycl::float4 &) (_r[j]);
|
||||
const sycl::float4 & td = (sycl::float4 &) (_td[j]);
|
||||
sycl::float4 & s = (sycl::float4 &) (state[j]);
|
||||
sycl::float4 kv;
|
||||
|
||||
kv.x() = k.x() * _v;
|
||||
kv.y() = k.y() * _v;
|
||||
kv.z() = k.z() * _v;
|
||||
kv.w() = k.w() * _v;
|
||||
|
||||
s.x() = s.x() * td.x() + kv.x();
|
||||
s.y() = s.y() * td.y() + kv.y();
|
||||
s.z() = s.z() * td.z() + kv.z();
|
||||
s.w() = s.w() * td.w() + kv.w();
|
||||
|
||||
y += r.x() * s.x();
|
||||
y += r.y() * s.y();
|
||||
y += r.z() * s.z();
|
||||
y += r.w() * s.w();
|
||||
}
|
||||
dst[t] = y * scale;
|
||||
}
|
||||
#pragma unroll
|
||||
for (u_int i = 0; i < head_size; i++) {
|
||||
dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
void ggml_sycl_op_gated_linear_attn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
const float * k_d = static_cast<const float *>(dst->src[0]->data);
|
||||
const float * v_d = static_cast<const float *>(dst->src[1]->data);
|
||||
const float * r_d = static_cast<const float *>(dst->src[2]->data);
|
||||
const float * td_d = static_cast<const float *>(dst->src[3]->data);
|
||||
const float * s_d = static_cast<const float *>(dst->src[4]->data);
|
||||
|
||||
const int64_t B = dst->src[4]->ne[1];
|
||||
const int64_t T = dst->src[0]->ne[2];
|
||||
const int64_t C = dst->ne[0];
|
||||
const int64_t H = dst->src[0]->ne[1];
|
||||
|
||||
dpct::queue_ptr stream = ctx.stream();
|
||||
GGML_ASSERT(dst->src[4]->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(C % H == 0);
|
||||
GGML_ASSERT(C / H == 64 || C / H == 128);
|
||||
|
||||
float scale;
|
||||
memcpy(&scale, dst->op_params, sizeof(float));
|
||||
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
if (C / H == 64) {
|
||||
gated_linear_attn_f32_kernel<64>(stream, B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d);
|
||||
} else {
|
||||
gated_linear_attn_f32_kernel<128>(stream, B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d);
|
||||
}
|
||||
}
|
8
ggml/src/ggml-sycl/gla.hpp
Normal file
8
ggml/src/ggml-sycl/gla.hpp
Normal file
@ -0,0 +1,8 @@
|
||||
#ifndef GGML_SYCL_GLA_HPP
|
||||
#define GGML_SYCL_GLA_HPP
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
void ggml_sycl_op_gated_linear_attn(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
|
||||
#endif // GGML_SYCL_GLA_HPP
|
Loading…
Reference in New Issue
Block a user