diff --git a/llama.cpp b/llama.cpp index 53793eeeb..dac32e609 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1,3 +1,7 @@ +// TODO: move to context params +bool offload_k = true; +bool offload_v = true; + #define LLAMA_API_INTERNAL #include "llama.h" @@ -1035,9 +1039,9 @@ struct llama_kv_cache { struct ggml_tensor * k = NULL; struct ggml_tensor * v = NULL; - std::vector k_l; // per layer - std::vector v_l; + std::vector k_l; // per layer + std::vector v_l; struct ggml_context * ctx = NULL; @@ -1259,11 +1263,6 @@ static bool llama_kv_cache_init( return false; } - // cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); - // cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); - // ggml_set_name(cache.k, "cache_k"); - // ggml_set_name(cache.v, "cache_v"); - cache.k_l.reserve(n_layer); cache.v_l.reserve(n_layer); @@ -1278,13 +1277,14 @@ static bool llama_kv_cache_init( cache.v_l.push_back(v); #ifdef GGML_USE_CUBLAS if ((int)i >= i_gpu_start) { - ggml_cuda_assign_buffers_no_scratch(k); - LLAMA_LOG_INFO("%s: offloading k[%d] cache to GPU\n", __func__, i); - vram_kv_cache += ggml_nbytes(k); - - ggml_cuda_assign_buffers_no_scratch(v); - LLAMA_LOG_INFO("%s: offloading v[%d] cache to GPU\n", __func__, i); - vram_kv_cache += ggml_nbytes(v); + if (offload_k) { + ggml_cuda_assign_buffers_no_scratch(k); + vram_kv_cache += ggml_nbytes(k); + } + if (offload_v) { + ggml_cuda_assign_buffers_no_scratch(v); + vram_kv_cache += ggml_nbytes(v); + } } #endif // GGML_USE_CUBLAS } @@ -2659,10 +2659,10 @@ static struct ggml_cgraph * llm_build_llama( if (n_gpu_layers > n_layer) { offload_func_nr = ggml_cuda_assign_buffers_no_alloc; } - if (n_gpu_layers > 0) { + if (n_gpu_layers > 0 && offload_v) { offload_func_v = ggml_cuda_assign_buffers_no_alloc; } - if (n_gpu_layers > 0) { + if (n_gpu_layers > 0 && offload_k) { offload_func_kq = ggml_cuda_assign_buffers_no_alloc; } #endif // GGML_USE_CUBLAS @@ -2676,69 +2676,45 @@ static struct ggml_cgraph * llm_build_llama( } // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask_gpu = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + ggml_set_name(KQ_mask, "KQ_mask"); + ggml_allocr_alloc(lctx.alloc, KQ_mask); + if (!ggml_allocr_is_measure(lctx.alloc)) { + float * data = (float *) KQ_mask->data; + memset(data, 0, ggml_nbytes(KQ_mask)); + + for (int h = 0; h < 1; ++h) { + for (int j = 0; j < n_tokens; ++j) { + const llama_pos pos = batch.pos[j]; + const llama_seq_id seq_id = batch.seq_id[j]; + + for (int i = 0; i < n_kv; ++i) { + if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { + data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; + } + } + } + } + } + + struct ggml_tensor * KQ_mask_gpu = ggml_view_tensor(ctx0, KQ_mask); offload_func_kq(KQ_mask_gpu); ggml_set_name(KQ_mask_gpu, "KQ_mask_gpu"); - ggml_allocr_alloc(lctx.alloc, KQ_mask_gpu); - if (!ggml_allocr_is_measure(lctx.alloc)) { - float * data = (float *) KQ_mask_gpu->data; - memset(data, 0, ggml_nbytes(KQ_mask_gpu)); - - for (int h = 0; h < 1; ++h) { - for (int j = 0; j < n_tokens; ++j) { - const llama_pos pos = batch.pos[j]; - const llama_seq_id seq_id = batch.seq_id[j]; - - for (int i = 0; i < n_kv; ++i) { - if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { - data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; - } - } - } - } - } - - struct ggml_tensor * KQ_mask_cpu = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); - ggml_set_name(KQ_mask_cpu, "KQ_mask_cpu"); - ggml_allocr_alloc(lctx.alloc, KQ_mask_cpu); - if (!ggml_allocr_is_measure(lctx.alloc)) { - float * data = (float *) KQ_mask_cpu->data; - memset(data, 0, ggml_nbytes(KQ_mask_cpu)); - - for (int h = 0; h < 1; ++h) { - for (int j = 0; j < n_tokens; ++j) { - const llama_pos pos = batch.pos[j]; - const llama_seq_id seq_id = batch.seq_id[j]; - - for (int i = 0; i < n_kv; ++i) { - if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { - data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; - } - } - } - } - } // KQ_pos - contains the positions - struct ggml_tensor * KQ_pos_gpu = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + ggml_set_name(KQ_pos, "KQ_pos"); + ggml_allocr_alloc(lctx.alloc, KQ_pos); + if (!ggml_allocr_is_measure(lctx.alloc)) { + int * data = (int *) KQ_pos->data; + for (int i = 0; i < n_tokens; ++i) { + data[i] = batch.pos[i]; + } + } + + struct ggml_tensor * KQ_pos_gpu = ggml_view_tensor(ctx0, KQ_pos); offload_func_kq(KQ_pos_gpu); ggml_set_name(KQ_pos_gpu, "KQ_pos_gpu"); - ggml_allocr_alloc(lctx.alloc, KQ_pos_gpu); - if (!ggml_allocr_is_measure(lctx.alloc)) { - int * data = (int *) KQ_pos_gpu->data; - for (int i = 0; i < n_tokens; ++i) { - data[i] = batch.pos[i]; - } - } - struct ggml_tensor * KQ_pos_cpu = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); - ggml_set_name(KQ_pos_cpu, "KQ_pos_cpu"); - ggml_allocr_alloc(lctx.alloc, KQ_pos_cpu); - if (!ggml_allocr_is_measure(lctx.alloc)) { - int * data = (int *) KQ_pos_cpu->data; - for (int i = 0; i < n_tokens; ++i) { - data[i] = batch.pos[i]; - } - } // shift the entire K-cache if needed if (do_rope_shift) { @@ -2776,17 +2752,20 @@ static struct ggml_cgraph * llm_build_llama( offload_func_v = llama_nop; offload_func_kq = llama_nop; - struct ggml_tensor * KQ_mask = KQ_mask_cpu; - struct ggml_tensor * KQ_pos = KQ_pos_cpu; - + struct ggml_tensor * KQ_mask_l = KQ_mask; + struct ggml_tensor * KQ_pos_l = KQ_pos; #ifdef GGML_USE_CUBLAS if (il >= i_gpu_start) { - KQ_mask = KQ_mask_gpu; - KQ_pos = KQ_pos_gpu; - offload_func = ggml_cuda_assign_buffers_no_alloc; - offload_func_v = ggml_cuda_assign_buffers_no_alloc; - offload_func_kq = ggml_cuda_assign_buffers_no_alloc; + offload_func = ggml_cuda_assign_buffers_no_alloc; + if (offload_k) { + KQ_mask_l = KQ_mask_gpu; + KQ_pos_l = KQ_pos_gpu; + offload_func_kq = ggml_cuda_assign_buffers_no_alloc; + } + if (offload_v) { + offload_func_v = ggml_cuda_assign_buffers_no_alloc; + } } #endif // GGML_USE_CUBLAS @@ -2815,11 +2794,11 @@ static struct ggml_cgraph * llm_build_llama( offload_func_kq(tmpq); ggml_set_name(tmpq, "tmpq"); - struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale); + struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos_l, n_embd_head, 0, 0, freq_base, freq_scale); offload_func_kq(Kcur); ggml_format_name(Kcur, "Kcur%d", il); - struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale); + struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos_l, n_embd_head, 0, 0, freq_base, freq_scale); offload_func_kq(Qcur); ggml_format_name(Qcur, "Qcur%d", il); @@ -2875,7 +2854,7 @@ static struct ggml_cgraph * llm_build_llama( ggml_set_name(KQ_scaled, "KQ_scaled"); // KQ_masked = mask_past(KQ_scaled) - struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask); + struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask_l); offload_func_kq(KQ_masked); ggml_format_name(KQ_masked, "KQ_masked%d", il);