mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 13:28:50 +01:00
move BLAS to a separate backend (#6210)
* move BLAS to a separate backend * rename GGML_USE_OPENBLAS to GGML_USE_BLAS * alloc : reuse same buffer when the same buffer type if used multiple times * set number of threads automatically for openblas and blis * sched : print assignments when GGML_SCHED_DEBUG env variable is set * sched : allow ops with weights on an incompatible buffer type This will cause the weight to be copied to a backend that supports the op, which is very costly. The weight should have been stored in a buffer of a backend that can run the op, but llama.cpp cannot do this automatically at the moment. --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
1c641e6aac
commit
f578b86b21
@ -39,8 +39,12 @@ endif()
|
||||
|
||||
if (APPLE)
|
||||
set(LLAMA_METAL_DEFAULT ON)
|
||||
set(LLAMA_BLAS_DEFAULT ON)
|
||||
set(LLAMA_BLAS_VENDOR_DEFAULT "Apple")
|
||||
else()
|
||||
set(LLAMA_METAL_DEFAULT OFF)
|
||||
set(LLAMA_BLAS_DEFAULT OFF)
|
||||
set(LLAMA_BLAS_VENDOR_DEFAULT "Generic")
|
||||
endif()
|
||||
|
||||
set(LLAMA_LLAMAFILE_DEFAULT ON)
|
||||
@ -91,9 +95,10 @@ endif()
|
||||
|
||||
# 3rd party libs
|
||||
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
|
||||
option(LLAMA_BLAS "llama: use BLAS" OFF)
|
||||
option(LLAMA_BLAS "llama: use BLAS" ${LLAMA_BLAS_DEFAULT})
|
||||
set(LLAMA_BLAS_VENDOR ${LLAMA_BLAS_VENDOR_DEFAULT} CACHE STRING
|
||||
"llama: BLAS library vendor")
|
||||
option(LLAMA_LLAMAFILE "llama: use llamafile SGEMM" ${LLAMA_LLAMAFILE_DEFAULT})
|
||||
set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
|
||||
option(LLAMA_CUDA "llama: use CUDA" OFF)
|
||||
option(LLAMA_CUBLAS "llama: use CUDA (deprecated, use LLAMA_CUDA)" OFF)
|
||||
option(LLAMA_CUDA_FORCE_DMMV "llama: use dmmv instead of mmvq CUDA kernels" OFF)
|
||||
@ -311,9 +316,9 @@ if (LLAMA_BLAS)
|
||||
if (LLAMA_STATIC)
|
||||
set(BLA_STATIC ON)
|
||||
endif()
|
||||
if (CMAKE_VERSION VERSION_GREATER_EQUAL 3.22)
|
||||
set(BLA_SIZEOF_INTEGER 8)
|
||||
endif()
|
||||
#if (CMAKE_VERSION VERSION_GREATER_EQUAL 3.22)
|
||||
# set(BLA_SIZEOF_INTEGER 8)
|
||||
#endif()
|
||||
|
||||
set(BLA_VENDOR ${LLAMA_BLAS_VENDOR})
|
||||
find_package(BLAS)
|
||||
@ -321,7 +326,7 @@ if (LLAMA_BLAS)
|
||||
if (BLAS_FOUND)
|
||||
message(STATUS "BLAS found, Libraries: ${BLAS_LIBRARIES}")
|
||||
|
||||
if ("${BLAS_INCLUDE_DIRS}" STREQUAL "")
|
||||
if (("${BLAS_INCLUDE_DIRS}" STREQUAL "") AND NOT (${LLAMA_BLAS_VENDOR} MATCHES "Apple"))
|
||||
# BLAS_INCLUDE_DIRS is missing in FindBLAS.cmake.
|
||||
# see https://gitlab.kitware.com/cmake/cmake/-/issues/20268
|
||||
find_package(PkgConfig REQUIRED)
|
||||
@ -374,12 +379,15 @@ if (LLAMA_BLAS)
|
||||
|
||||
add_compile_options(${BLAS_LINKER_FLAGS})
|
||||
|
||||
add_compile_definitions(GGML_USE_OPENBLAS)
|
||||
add_compile_definitions(GGML_USE_BLAS)
|
||||
|
||||
if (${BLAS_INCLUDE_DIRS} MATCHES "mkl" AND (${LLAMA_BLAS_VENDOR} MATCHES "Generic" OR ${LLAMA_BLAS_VENDOR} MATCHES "Intel"))
|
||||
add_compile_definitions(GGML_BLAS_USE_MKL)
|
||||
endif()
|
||||
|
||||
set(GGML_HEADERS_BLAS ggml-blas.h)
|
||||
set(GGML_SOURCES_BLAS ggml-blas.cpp)
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${BLAS_LIBRARIES})
|
||||
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${BLAS_INCLUDE_DIRS})
|
||||
else()
|
||||
@ -1258,6 +1266,7 @@ add_library(ggml OBJECT
|
||||
${GGML_SOURCES_KOMPUTE} ${GGML_HEADERS_KOMPUTE}
|
||||
${GGML_SOURCES_VULKAN} ${GGML_HEADERS_VULKAN}
|
||||
${GGML_SOURCES_ROCM} ${GGML_HEADERS_ROCM}
|
||||
${GGML_SOURCES_BLAS} ${GGML_HEADERS_BLAS}
|
||||
${GGML_SOURCES_LLAMAFILE} ${GGML_HEADERS_LLAMAFILE}
|
||||
)
|
||||
|
||||
|
27
Makefile
27
Makefile
@ -440,10 +440,11 @@ ifndef LLAMA_NO_ACCELERATE
|
||||
# Mac OS - include Accelerate framework.
|
||||
# `-framework Accelerate` works both with Apple Silicon and Mac Intel
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
MK_CPPFLAGS += -DGGML_USE_ACCELERATE
|
||||
MK_CPPFLAGS += -DGGML_USE_ACCELERATE -DGGML_USE_BLAS
|
||||
MK_CPPFLAGS += -DACCELERATE_NEW_LAPACK
|
||||
MK_CPPFLAGS += -DACCELERATE_LAPACK_ILP64
|
||||
MK_LDFLAGS += -framework Accelerate
|
||||
OBJS += ggml-blas.o
|
||||
endif
|
||||
endif # LLAMA_NO_ACCELERATE
|
||||
|
||||
@ -454,21 +455,30 @@ ifndef LLAMA_NO_OPENMP
|
||||
endif # LLAMA_NO_OPENMP
|
||||
|
||||
ifdef LLAMA_OPENBLAS
|
||||
MK_CPPFLAGS += -DGGML_USE_OPENBLAS $(shell pkg-config --cflags-only-I openblas)
|
||||
MK_CPPFLAGS += -DGGML_USE_BLAS $(shell pkg-config --cflags-only-I openblas)
|
||||
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas)
|
||||
MK_LDFLAGS += $(shell pkg-config --libs openblas)
|
||||
OBJS += ggml-blas.o
|
||||
endif # LLAMA_OPENBLAS
|
||||
|
||||
ifdef LLAMA_OPENBLAS64
|
||||
MK_CPPFLAGS += -DGGML_USE_BLAS $(shell pkg-config --cflags-only-I openblas64)
|
||||
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas64)
|
||||
MK_LDFLAGS += $(shell pkg-config --libs openblas64)
|
||||
OBJS += ggml-blas.o
|
||||
endif # LLAMA_OPENBLAS64
|
||||
|
||||
ifdef LLAMA_BLIS
|
||||
MK_CPPFLAGS += -DGGML_USE_BLAS -I/usr/local/include/blis -I/usr/include/blis
|
||||
MK_LDFLAGS += -lblis -L/usr/local/lib
|
||||
OBJS += ggml-blas.o
|
||||
endif # LLAMA_BLIS
|
||||
|
||||
ifndef LLAMA_NO_LLAMAFILE
|
||||
MK_CPPFLAGS += -DGGML_USE_LLAMAFILE
|
||||
OBJS += sgemm.o
|
||||
endif
|
||||
|
||||
ifdef LLAMA_BLIS
|
||||
MK_CPPFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
|
||||
MK_LDFLAGS += -lblis -L/usr/local/lib
|
||||
endif # LLAMA_BLIS
|
||||
|
||||
ifdef LLAMA_RPC
|
||||
MK_CPPFLAGS += -DGGML_USE_RPC
|
||||
OBJS += ggml-rpc.o
|
||||
@ -776,6 +786,9 @@ ggml-backend.o: ggml-backend.c ggml.h ggml-backend.h
|
||||
ggml-quants.o: ggml-quants.c ggml.h ggml-quants.h ggml-common.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
ggml-blas.o: ggml-blas.cpp ggml-blas.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
unicode.o: unicode.cpp unicode.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
|
@ -293,6 +293,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
||||
params.output_format = cmd_params_defaults.output_format;
|
||||
params.output_format_stderr = cmd_params_defaults.output_format_stderr;
|
||||
params.reps = cmd_params_defaults.reps;
|
||||
params.numa = cmd_params_defaults.numa;
|
||||
|
||||
for (int i = 1; i < argc; i++) {
|
||||
arg = argv[i];
|
||||
|
98
ggml-alloc.c
98
ggml-alloc.c
@ -339,6 +339,7 @@ struct hash_node {
|
||||
};
|
||||
|
||||
struct tensor_alloc {
|
||||
int buffer_id;
|
||||
size_t offset;
|
||||
size_t size_max; // 0 = pre-allocated, unused, or view
|
||||
};
|
||||
@ -349,7 +350,6 @@ struct leaf_alloc {
|
||||
};
|
||||
|
||||
struct node_alloc {
|
||||
int buffer_id;
|
||||
struct tensor_alloc dst;
|
||||
struct tensor_alloc src[GGML_MAX_SRC];
|
||||
};
|
||||
@ -386,8 +386,19 @@ ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs
|
||||
for (int i = 0; i < n_bufs; i++) {
|
||||
galloc->bufts[i] = bufts[i];
|
||||
galloc->buffers[i] = NULL;
|
||||
size_t alignment = ggml_backend_buft_get_alignment(bufts[i]);
|
||||
galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment);
|
||||
|
||||
// check if the same buffer type is used multiple times and reuse the same allocator
|
||||
for (int j = 0; j < i; j++) {
|
||||
if (bufts[i] == bufts[j]) {
|
||||
galloc->buf_tallocs[i] = galloc->buf_tallocs[j];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (galloc->buf_tallocs[i] == NULL) {
|
||||
size_t alignment = ggml_backend_buft_get_alignment(bufts[i]);
|
||||
galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment);
|
||||
}
|
||||
}
|
||||
galloc->n_buffers = n_bufs;
|
||||
|
||||
@ -405,10 +416,30 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
|
||||
|
||||
for (int i = 0; i < galloc->n_buffers; i++) {
|
||||
if (galloc->buffers != NULL) {
|
||||
ggml_backend_buffer_free(galloc->buffers[i]);
|
||||
// skip if already freed
|
||||
bool freed = false;
|
||||
for (int j = 0; j < i; j++) {
|
||||
if (galloc->buffers[j] == galloc->buffers[i]) {
|
||||
freed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!freed) {
|
||||
ggml_backend_buffer_free(galloc->buffers[i]);
|
||||
}
|
||||
}
|
||||
if (galloc->buf_tallocs != NULL) {
|
||||
ggml_dyn_tallocr_free(galloc->buf_tallocs[i]);
|
||||
// skip if already freed
|
||||
bool freed = false;
|
||||
for (int j = 0; j < i; j++) {
|
||||
if (galloc->buf_tallocs[j] == galloc->buf_tallocs[i]) {
|
||||
freed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!freed) {
|
||||
ggml_dyn_tallocr_free(galloc->buf_tallocs[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -511,17 +542,18 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) {
|
||||
static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
|
||||
// graph outputs are never freed
|
||||
if (node->flags & GGML_TENSOR_FLAG_OUTPUT) {
|
||||
AT_PRINTF("not freeing output %s\n", node->name);
|
||||
return;
|
||||
}
|
||||
|
||||
struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
|
||||
ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
|
||||
size_t offset = hn->offset;
|
||||
int buffer_id = hn->buffer_id;
|
||||
struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
|
||||
ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
|
||||
size_t size = ggml_backend_buft_get_alloc_size(buft, node);
|
||||
ggml_dyn_tallocr_free_tensor(alloc, offset, size, node);
|
||||
hn->allocated = false;
|
||||
@ -626,11 +658,11 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
|
||||
AT_PRINTF("view_src %s: %d children, %d views\n",
|
||||
view_src->name, view_src_hn->n_children, view_src_hn->n_views);
|
||||
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src_hn->allocated) {
|
||||
ggml_gallocr_free_node(galloc, view_src, buffer_id);
|
||||
ggml_gallocr_free_node(galloc, view_src);
|
||||
}
|
||||
}
|
||||
else if (p_hn->allocated) {
|
||||
ggml_gallocr_free_node(galloc, parent, buffer_id);
|
||||
ggml_gallocr_free_node(galloc, parent);
|
||||
}
|
||||
}
|
||||
AT_PRINTF("\n");
|
||||
@ -674,22 +706,25 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
struct node_alloc * node_alloc = &galloc->node_allocs[i];
|
||||
node_alloc->buffer_id = get_node_buffer_id(node_buffer_ids, i);
|
||||
if (node->view_src || node->data) {
|
||||
node_alloc->dst.buffer_id = -1;
|
||||
node_alloc->dst.offset = SIZE_MAX;
|
||||
node_alloc->dst.size_max = 0;
|
||||
} else {
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
|
||||
node_alloc->dst.offset = hn->offset;
|
||||
node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
|
||||
node_alloc->dst.buffer_id = hn->buffer_id;
|
||||
node_alloc->dst.offset = hn->offset;
|
||||
node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
|
||||
}
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (!src || src->view_src || src->data) {
|
||||
node_alloc->src[j].buffer_id = -1;
|
||||
node_alloc->src[j].offset = SIZE_MAX;
|
||||
node_alloc->src[j].size_max = 0;
|
||||
} else {
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, src);
|
||||
node_alloc->src[j].buffer_id = hn->buffer_id;
|
||||
node_alloc->src[j].offset = hn->offset;
|
||||
node_alloc->src[j].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src);
|
||||
}
|
||||
@ -706,9 +741,11 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
|
||||
galloc->leaf_allocs[i].buffer_id = hn->buffer_id;
|
||||
if (leaf->view_src || leaf->data) {
|
||||
galloc->leaf_allocs[i].leaf.buffer_id = -1;
|
||||
galloc->leaf_allocs[i].leaf.offset = SIZE_MAX;
|
||||
galloc->leaf_allocs[i].leaf.size_max = 0;
|
||||
} else {
|
||||
galloc->leaf_allocs[i].leaf.buffer_id = hn->buffer_id;
|
||||
galloc->leaf_allocs[i].leaf.offset = hn->offset;
|
||||
galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
|
||||
}
|
||||
@ -716,6 +753,14 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
|
||||
// reallocate buffers if needed
|
||||
for (int i = 0; i < galloc->n_buffers; i++) {
|
||||
// if the buffer type is used multiple times, we reuse the same buffer
|
||||
for (int j = 0; j < i; j++) {
|
||||
if (galloc->buf_tallocs[j] == galloc->buf_tallocs[i]) {
|
||||
galloc->buffers[i] = galloc->buffers[j];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0;
|
||||
size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
|
||||
|
||||
@ -724,6 +769,7 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
|
||||
#endif
|
||||
|
||||
ggml_backend_buffer_free(galloc->buffers[i]);
|
||||
galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size);
|
||||
if (galloc->buffers[i] == NULL) {
|
||||
@ -740,7 +786,8 @@ bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
|
||||
return ggml_gallocr_reserve_n(galloc, graph, NULL, NULL);
|
||||
}
|
||||
|
||||
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, int buffer_id, struct tensor_alloc * tensor_alloc) {
|
||||
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, struct tensor_alloc * tensor_alloc) {
|
||||
int buffer_id = tensor_alloc->buffer_id;
|
||||
assert(tensor->data || tensor->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
|
||||
|
||||
if (tensor->view_src != NULL) {
|
||||
@ -768,8 +815,8 @@ static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor *
|
||||
}
|
||||
}
|
||||
|
||||
static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct node_alloc * nalloc, struct tensor_alloc * talloc) {
|
||||
ggml_backend_buffer_type_t buft = galloc->bufts[nalloc->buffer_id];
|
||||
static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct tensor_alloc * talloc) {
|
||||
ggml_backend_buffer_type_t buft = talloc->buffer_id != -1 ? galloc->bufts[talloc->buffer_id] : NULL;
|
||||
size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(buft, node);
|
||||
return talloc->size_max >= node_size;
|
||||
}
|
||||
@ -793,7 +840,7 @@ static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
struct node_alloc * node_alloc = &galloc->node_allocs[i];
|
||||
|
||||
if (!ggml_gallocr_node_needs_realloc(galloc, node, node_alloc, &node_alloc->dst)) {
|
||||
if (!ggml_gallocr_node_needs_realloc(galloc, node, &node_alloc->dst)) {
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: node %s is not valid\n", __func__, node->name);
|
||||
#endif
|
||||
@ -805,7 +852,7 @@ static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph
|
||||
if (src == NULL) {
|
||||
continue;
|
||||
}
|
||||
if (!ggml_gallocr_node_needs_realloc(galloc, src, node_alloc, &node_alloc->src[j])) {
|
||||
if (!ggml_gallocr_node_needs_realloc(galloc, src, &node_alloc->src[j])) {
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: src %d (%s) of node %s is not valid\n", __func__, j, src->name, node->name);
|
||||
#endif
|
||||
@ -846,7 +893,7 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
|
||||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
struct ggml_tensor * leaf = graph->leafs[i];
|
||||
struct leaf_alloc * leaf_alloc = &galloc->leaf_allocs[i];
|
||||
ggml_gallocr_init_tensor(galloc, leaf, leaf_alloc->buffer_id, &leaf_alloc->leaf);
|
||||
ggml_gallocr_init_tensor(galloc, leaf, &leaf_alloc->leaf);
|
||||
}
|
||||
// nodes
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
@ -857,9 +904,9 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
|
||||
if (src == NULL) {
|
||||
continue;
|
||||
}
|
||||
ggml_gallocr_init_tensor(galloc, src, node_alloc->buffer_id, &node_alloc->src[j]);
|
||||
ggml_gallocr_init_tensor(galloc, src, &node_alloc->src[j]);
|
||||
}
|
||||
ggml_gallocr_init_tensor(galloc, node, node_alloc->buffer_id, &node_alloc->dst);
|
||||
ggml_gallocr_init_tensor(galloc, node, &node_alloc->dst);
|
||||
}
|
||||
|
||||
return true;
|
||||
@ -871,6 +918,15 @@ size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
|
||||
if (galloc->buffers[buffer_id] == NULL) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
for (int i = 0; i < buffer_id; i++) {
|
||||
if (galloc->buffers[i] == galloc->buffers[buffer_id]) {
|
||||
// this buffer is the same as a previous one due to the same buffer type being used multiple times
|
||||
// only return the buffer size the first time it appears to avoid double counting
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
|
||||
}
|
||||
|
||||
|
@ -17,13 +17,15 @@ extern "C" {
|
||||
|
||||
struct ggml_backend_buffer_type_i {
|
||||
const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft);
|
||||
// allocate a buffer of this type
|
||||
ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
|
||||
size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
|
||||
size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft); // allocation max size
|
||||
size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
|
||||
bool (*GGML_CALL supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
|
||||
// tensor alignment
|
||||
size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft);
|
||||
// max buffer size that can be allocated
|
||||
size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft);
|
||||
// data size needed to allocate the tensor, including padding
|
||||
size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
|
||||
// check if tensor data is in host memory
|
||||
// should be equivalent to supports_backend(buft, ggml_backend_cpu_init())
|
||||
bool (*GGML_CALL is_host) (ggml_backend_buffer_type_t buft);
|
||||
};
|
||||
|
||||
@ -92,27 +94,37 @@ extern "C" {
|
||||
void (*GGML_CALL synchronize)(ggml_backend_t backend);
|
||||
|
||||
// compute graph with a plan (not used currently)
|
||||
// create a new plan for a graph
|
||||
ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
|
||||
void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
// update the plan with a new graph - this should be faster than creating a new plan when the graph has the same topology
|
||||
void (*GGML_CALL graph_plan_update) (ggml_backend_t backend, ggml_backend_graph_plan_t plan, const struct ggml_cgraph * cgraph);
|
||||
// compute the graph with the plan
|
||||
enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
|
||||
// compute graph with a plan
|
||||
enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
// compute graph without a plan (async)
|
||||
enum ggml_status (*GGML_CALL graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
|
||||
// check if the backend supports an operation
|
||||
// check if the backend can compute an operation
|
||||
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
|
||||
// check if the backend can use tensors allocated in a buffer type
|
||||
bool (*GGML_CALL supports_buft)(ggml_backend_t backend, ggml_backend_buffer_type_t buft);
|
||||
|
||||
// check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
|
||||
// these should be expensive operations with large batch sizes that may benefit from running on this backend
|
||||
// even if the weight has to be copied from the CPU temporarily
|
||||
bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
|
||||
// (optional) event synchronization
|
||||
// create a new event that can record events on this backend instance
|
||||
ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
|
||||
void (*GGML_CALL event_free) (ggml_backend_event_t event);
|
||||
// record an event on the backend instance that created it
|
||||
void (*GGML_CALL event_record) (ggml_backend_event_t event);
|
||||
// wait for an event on on a different backend instance
|
||||
void (*GGML_CALL event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
|
||||
// block until an event is recorded
|
||||
void (*GGML_CALL event_synchronize) (ggml_backend_event_t event);
|
||||
};
|
||||
|
||||
|
242
ggml-backend.c
242
ggml-backend.c
@ -44,10 +44,6 @@ GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buf
|
||||
return ggml_nbytes(tensor);
|
||||
}
|
||||
|
||||
bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
return buft->iface.supports_backend(buft, backend);
|
||||
}
|
||||
|
||||
bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
|
||||
if (buft->iface.is_host) {
|
||||
return buft->iface.is_host(buft);
|
||||
@ -286,6 +282,10 @@ bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor *
|
||||
return backend->iface.supports_op(backend, op);
|
||||
}
|
||||
|
||||
bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
return backend->iface.supports_buft(backend, buft);
|
||||
}
|
||||
|
||||
bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
if (backend->iface.offload_op != NULL) {
|
||||
return backend->iface.offload_op(backend, op);
|
||||
@ -639,12 +639,6 @@ GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
return ggml_backend_is_cpu(backend);
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
return true;
|
||||
|
||||
@ -659,7 +653,6 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
|
||||
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
|
||||
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
|
||||
},
|
||||
/* .context = */ NULL,
|
||||
@ -715,7 +708,6 @@ ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
|
||||
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
|
||||
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
|
||||
},
|
||||
/* .context = */ NULL,
|
||||
@ -836,6 +828,12 @@ GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cpu_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
return ggml_backend_buft_is_host(buft);
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static struct ggml_backend_i cpu_backend_i = {
|
||||
/* .get_name = */ ggml_backend_cpu_name,
|
||||
/* .free = */ ggml_backend_cpu_free,
|
||||
@ -846,9 +844,11 @@ static struct ggml_backend_i cpu_backend_i = {
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
|
||||
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
|
||||
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_cpu_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_cpu_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
@ -1055,6 +1055,9 @@ struct ggml_backend_sched {
|
||||
int * node_backend_ids; // [graph_size]
|
||||
int * leaf_backend_ids; // [graph_size]
|
||||
|
||||
int * prev_node_backend_ids; // [graph_size]
|
||||
int * prev_leaf_backend_ids; // [graph_size]
|
||||
|
||||
// copy of the graph with modified inputs
|
||||
struct ggml_cgraph * graph;
|
||||
|
||||
@ -1075,6 +1078,8 @@ struct ggml_backend_sched {
|
||||
ggml_backend_sched_eval_callback callback_eval;
|
||||
void * callback_eval_user_data;
|
||||
|
||||
bool debug;
|
||||
|
||||
// align context_buffer to GGML_MEM_ALIGN
|
||||
#ifdef _MSC_VER
|
||||
__declspec(align(GGML_MEM_ALIGN))
|
||||
@ -1097,22 +1102,24 @@ static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backen
|
||||
return -1;
|
||||
}
|
||||
|
||||
static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor) {
|
||||
static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
|
||||
ggml_backend_buffer_t buffer = tensor->buffer;
|
||||
if (buffer == NULL) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
// find highest prio backend that supports the buffer type
|
||||
// find highest prio backend that supports the buffer type and the op
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
|
||||
if (ggml_backend_supports_buft(sched->backends[i], buffer->buft) &&
|
||||
ggml_backend_supports_op(sched->backends[i], op)) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: error: no backend supports buffer type %s used in tensor %s\n",
|
||||
__func__, ggml_backend_buffer_name(buffer), tensor->name);
|
||||
GGML_ASSERT(false);
|
||||
#ifndef NDEBUG
|
||||
fprintf(stderr, "%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n",
|
||||
__func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name);
|
||||
#endif
|
||||
|
||||
return -1;
|
||||
}
|
||||
@ -1131,7 +1138,7 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
|
||||
// TODO: use supports_op to check if the backend supports the op
|
||||
|
||||
// assign pre-allocated nodes to their backend
|
||||
int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor);
|
||||
int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
|
||||
if (cur_backend_id != -1) {
|
||||
SET_CAUSE(tensor, "1.dst");
|
||||
return cur_backend_id;
|
||||
@ -1139,7 +1146,7 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
|
||||
|
||||
// view_src
|
||||
if (tensor->view_src != NULL) {
|
||||
cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
|
||||
cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src, tensor);
|
||||
if (cur_backend_id != -1) {
|
||||
SET_CAUSE(tensor, "1.vsrc");
|
||||
return cur_backend_id;
|
||||
@ -1161,7 +1168,7 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
|
||||
continue;
|
||||
}
|
||||
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
||||
int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src);
|
||||
int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
|
||||
// check if a backend with higher prio wants to offload the op
|
||||
if (src_backend_id == sched->n_backends - 1) {
|
||||
for (int b = 0; b < src_backend_id; b++) {
|
||||
@ -1223,10 +1230,33 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str
|
||||
}
|
||||
}
|
||||
|
||||
//#define DEBUG_PASS1
|
||||
//#define DEBUG_PASS2
|
||||
//#define DEBUG_PASS3
|
||||
//#define DEBUG_PASS4
|
||||
static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) {
|
||||
ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer;
|
||||
ggml_backend_buffer_type_t buft = NULL;
|
||||
|
||||
if (buf) {
|
||||
// the tensor is already allocated
|
||||
buft = buf->buft;
|
||||
} else {
|
||||
// see if the tensor already has a backend assigned, and use the buffer type of that backend
|
||||
int tensor_backend_id = tensor_backend_id(t);
|
||||
if (tensor_backend_id == -1 && t->view_src) {
|
||||
tensor_backend_id = tensor_backend_id(t->view_src);
|
||||
}
|
||||
if (tensor_backend_id != -1) {
|
||||
buft = sched->bufts[tensor_backend_id];
|
||||
}
|
||||
}
|
||||
|
||||
return buft != NULL && ggml_backend_supports_buft(sched->backends[backend_id], buft);
|
||||
}
|
||||
|
||||
static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) {
|
||||
if (ggml_backend_supports_op(sched->backends[cur_backend_id], node)) {
|
||||
*node_backend_id = cur_backend_id;
|
||||
SET_CAUSE(node, "2.sup");
|
||||
}
|
||||
}
|
||||
|
||||
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
|
||||
static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
@ -1280,17 +1310,13 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
}
|
||||
}
|
||||
}
|
||||
#ifdef DEBUG_PASS1
|
||||
fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
|
||||
#endif
|
||||
|
||||
// pass 2: expand current backend assignments
|
||||
// assign the same backend to adjacent nodes
|
||||
// expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
|
||||
// thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
|
||||
|
||||
|
||||
// pass 2.2 expand gpu down
|
||||
// ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known
|
||||
// expand gpu down
|
||||
{
|
||||
int cur_backend_id = -1;
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
@ -1306,13 +1332,12 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
} else {
|
||||
cur_backend_id = *node_backend_id;
|
||||
}
|
||||
} else {
|
||||
*node_backend_id = cur_backend_id;
|
||||
SET_CAUSE(node, "2.2");
|
||||
} else if (cur_backend_id != -1) {
|
||||
ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
// pass 2.1 expand gpu up
|
||||
// expand gpu up
|
||||
{
|
||||
int cur_backend_id = -1;
|
||||
for (int i = graph->n_nodes - 1; i >= 0; i--) {
|
||||
@ -1328,13 +1353,12 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
} else {
|
||||
cur_backend_id = *node_backend_id;
|
||||
}
|
||||
} else {
|
||||
*node_backend_id = cur_backend_id;
|
||||
SET_CAUSE(node, "2.1");
|
||||
} else if (cur_backend_id != -1) {
|
||||
ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
// pass 2.4 expand rest down
|
||||
// expand rest down
|
||||
{
|
||||
int cur_backend_id = -1;
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
@ -1345,13 +1369,12 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
int * node_backend_id = &tensor_backend_id(node);
|
||||
if (*node_backend_id != -1) {
|
||||
cur_backend_id = *node_backend_id;
|
||||
} else {
|
||||
*node_backend_id = cur_backend_id;
|
||||
SET_CAUSE(node, "2.4");
|
||||
} else if (cur_backend_id != -1) {
|
||||
ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
// pass 2.3 expand rest up
|
||||
// expand rest up
|
||||
{
|
||||
int cur_backend_id = -1;
|
||||
for (int i = graph->n_nodes - 1; i >= 0; i--) {
|
||||
@ -1362,24 +1385,80 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
int * node_backend_id = &tensor_backend_id(node);
|
||||
if (*node_backend_id != -1) {
|
||||
cur_backend_id = *node_backend_id;
|
||||
} else {
|
||||
*node_backend_id = cur_backend_id;
|
||||
SET_CAUSE(node, "2.3");
|
||||
} else if (cur_backend_id != -1) {
|
||||
ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DEBUG_PASS2
|
||||
fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
|
||||
#endif
|
||||
// pass 3: upgrade nodes to higher prio backends with compatible buffer types
|
||||
// if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there
|
||||
// however, we also need to verify that the sources are in compatible buffer types
|
||||
// (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph
|
||||
// however, this is slow to verify, so we have a more strict requirement that the buffer type is the same
|
||||
// this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU)
|
||||
// additionally, set remaining unassigned nodes to the backend with the most supported inputs
|
||||
// only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
int * node_backend_id = &tensor_backend_id(node);
|
||||
if (*node_backend_id == -1) {
|
||||
// unassigned node: find the backend with the most supported inputs
|
||||
int n_supported_best = -1;
|
||||
for (int b = 0; b < sched->n_backends; b++) {
|
||||
if (ggml_backend_supports_op(sched->backends[b], node)) {
|
||||
int n_supported = 0;
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
continue;
|
||||
}
|
||||
if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, src, b)) {
|
||||
n_supported++;
|
||||
}
|
||||
}
|
||||
if (n_supported > n_supported_best) {
|
||||
n_supported_best = n_supported;
|
||||
*node_backend_id = b;
|
||||
SET_CAUSE(node, "3.best");
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// assigned node: upgrade to higher prio backend if possible
|
||||
for (int b = 0; b < *node_backend_id; b++) {
|
||||
if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(sched->backends[b], node)) {
|
||||
bool supported = true;
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
continue;
|
||||
}
|
||||
if (!ggml_backend_sched_buffer_supported(sched, src, b)) {
|
||||
supported = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (supported) {
|
||||
*node_backend_id = b;
|
||||
SET_CAUSE(node, "3.upg");
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// pass 3: assign backends to remaining src from dst and view_src
|
||||
// pass 4: assign backends to remaining src from dst and view_src
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
int * cur_backend_id = &tensor_backend_id(node);
|
||||
if (node->view_src != NULL && *cur_backend_id == -1) {
|
||||
*cur_backend_id = tensor_backend_id(node->view_src);
|
||||
SET_CAUSE(node, "3.vsrc");
|
||||
SET_CAUSE(node, "4.vsrc");
|
||||
}
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
@ -1391,17 +1470,14 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
if (src->view_src != NULL) {
|
||||
// views are always on the same backend as the source
|
||||
*src_backend_id = tensor_backend_id(src->view_src);
|
||||
SET_CAUSE(src, "3.vsrc");
|
||||
SET_CAUSE(src, "4.vsrc");
|
||||
} else {
|
||||
*src_backend_id = *cur_backend_id;
|
||||
SET_CAUSE(src, "3.cur");
|
||||
SET_CAUSE(src, "4.cur");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#ifdef DEBUG_PASS3
|
||||
fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
|
||||
#endif
|
||||
|
||||
// pass 4: split graph, find tensors that need to be copied
|
||||
{
|
||||
@ -1448,10 +1524,12 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
}
|
||||
}
|
||||
// check if the split has too many inputs
|
||||
// FIXME: count the number of inputs instead of only checking when full
|
||||
if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
|
||||
const size_t id = hash_id(src);
|
||||
int src_backend_id = sched->tensor_backend_id[id];
|
||||
if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) {
|
||||
bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
|
||||
if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL && !supported) {
|
||||
//printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
|
||||
need_new_split = true;
|
||||
break;
|
||||
@ -1486,7 +1564,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
const int src_backend_id = tensor_backend_id(src);
|
||||
assert(src_backend_id != -1); // all inputs should be assigned by now
|
||||
|
||||
if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
|
||||
if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
|
||||
size_t id = hash_id(src);
|
||||
if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
|
||||
ggml_backend_t backend = sched->backends[src_backend_id];
|
||||
@ -1511,7 +1589,8 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
}
|
||||
}
|
||||
|
||||
if (src_backend_id != node_backend_id) {
|
||||
bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
|
||||
if (src_backend_id != cur_backend_id && !supported) {
|
||||
// create a copy of the input in the split's backend
|
||||
const size_t id = hash_id(src);
|
||||
if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
|
||||
@ -1537,9 +1616,21 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
split->i_end = graph->n_nodes;
|
||||
sched->n_splits = i_split + 1;
|
||||
}
|
||||
#ifdef DEBUG_PASS4
|
||||
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
|
||||
#endif
|
||||
|
||||
if (sched->debug) {
|
||||
ggml_backend_sched_print_assignments(sched, graph);
|
||||
}
|
||||
|
||||
// swap node_backend_ids and leaf_backend_ids and prevs
|
||||
{
|
||||
int * tmp = sched->node_backend_ids;
|
||||
sched->node_backend_ids = sched->prev_node_backend_ids;
|
||||
sched->prev_node_backend_ids = tmp;
|
||||
|
||||
tmp = sched->leaf_backend_ids;
|
||||
sched->leaf_backend_ids = sched->prev_leaf_backend_ids;
|
||||
sched->prev_leaf_backend_ids = tmp;
|
||||
}
|
||||
|
||||
// create copies of the graph for each split
|
||||
// TODO: avoid this copy
|
||||
@ -1613,8 +1704,24 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
}
|
||||
|
||||
static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
|
||||
bool backend_ids_changed = false;
|
||||
for (int i = 0; i < sched->graph->n_nodes; i++) {
|
||||
if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i]) {
|
||||
backend_ids_changed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!backend_ids_changed) {
|
||||
for (int i = 0; i < sched->graph->n_leafs; i++) {
|
||||
if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i]) {
|
||||
backend_ids_changed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// allocate graph
|
||||
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
|
||||
if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
|
||||
// the re-allocation may cause the split inputs to be moved to a different address
|
||||
ggml_backend_sched_synchronize(sched);
|
||||
#ifndef NDEBUG
|
||||
@ -1727,6 +1834,8 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
|
||||
struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
|
||||
|
||||
sched->debug = getenv("GGML_SCHED_DEBUG") != NULL;
|
||||
|
||||
// initialize hash table
|
||||
sched->hash_set = ggml_hash_set_new(graph_size);
|
||||
sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0]));
|
||||
@ -1735,6 +1844,8 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
|
||||
sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
|
||||
sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
|
||||
sched->prev_node_backend_ids = calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
|
||||
sched->prev_leaf_backend_ids = calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
|
||||
|
||||
sched->n_backends = n_backends;
|
||||
|
||||
@ -1747,7 +1858,7 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
for (int b = 0; b < n_backends; b++) {
|
||||
sched->backends[b] = backends[b];
|
||||
sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
|
||||
GGML_ASSERT(ggml_backend_buft_supports_backend(sched->bufts[b], backends[b]));
|
||||
GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));
|
||||
if (sched->n_copies > 1) {
|
||||
for (int c = 0; c < sched->n_copies; c++) {
|
||||
sched->events[b][c] = ggml_backend_event_new(backends[b]);
|
||||
@ -1779,6 +1890,8 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
||||
free(sched->tensor_copies);
|
||||
free(sched->node_backend_ids);
|
||||
free(sched->leaf_backend_ids);
|
||||
free(sched->prev_node_backend_ids);
|
||||
free(sched->prev_leaf_backend_ids);
|
||||
free(sched);
|
||||
}
|
||||
|
||||
@ -1875,6 +1988,7 @@ void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct gg
|
||||
int backend_index = ggml_backend_sched_backend_id(sched, backend);
|
||||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
tensor_backend_id(node) = backend_index;
|
||||
SET_CAUSE(node, "usr");
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
|
||||
|
@ -23,7 +23,6 @@ extern "C" {
|
||||
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
|
||||
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
|
||||
GGML_API GGML_CALL size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
|
||||
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
|
||||
|
||||
// buffer
|
||||
@ -74,6 +73,7 @@ extern "C" {
|
||||
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
GGML_API bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft);
|
||||
GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
|
||||
// tensor copy between different backends
|
||||
@ -90,7 +90,7 @@ extern "C" {
|
||||
GGML_API void ggml_backend_event_free (ggml_backend_event_t event);
|
||||
GGML_API void ggml_backend_event_record (ggml_backend_event_t event);
|
||||
GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event);
|
||||
GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event); // wait async on event
|
||||
GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event);
|
||||
|
||||
//
|
||||
// CPU backend
|
||||
@ -119,7 +119,7 @@ extern "C" {
|
||||
|
||||
GGML_API size_t ggml_backend_reg_get_count(void);
|
||||
GGML_API size_t ggml_backend_reg_find_by_name(const char * name);
|
||||
GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is name[:params]
|
||||
GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is backend_name:params (params is optional)
|
||||
GGML_API const char * ggml_backend_reg_get_name(size_t i);
|
||||
GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i);
|
||||
|
363
ggml-blas.cpp
Normal file
363
ggml-blas.cpp
Normal file
@ -0,0 +1,363 @@
|
||||
#include "ggml-blas.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#include <future>
|
||||
#include <vector>
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE)
|
||||
# include <Accelerate/Accelerate.h>
|
||||
#elif defined(GGML_BLAS_USE_MKL)
|
||||
# include <mkl.h>
|
||||
#else
|
||||
# include <cblas.h>
|
||||
# ifdef BLIS_ENABLE_CBLAS
|
||||
# include <blis.h>
|
||||
# endif
|
||||
#endif
|
||||
|
||||
struct ggml_backend_blas_context {
|
||||
int n_threads = GGML_DEFAULT_N_THREADS;
|
||||
std::unique_ptr<char[]> work_data;
|
||||
size_t work_size = 0;
|
||||
#ifndef GGML_USE_OPENMP
|
||||
std::vector<std::future<void>> tasks;
|
||||
#endif
|
||||
};
|
||||
|
||||
// helper function to determine if it is better to use BLAS or not
|
||||
// for large matrices, BLAS is faster
|
||||
static bool ggml_backend_blas_use_blas(const struct ggml_tensor * dst) {
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
const int64_t ne1 = dst->ne[1];
|
||||
|
||||
// TODO: find the optimal values for these
|
||||
if (ggml_is_contiguous(src0) &&
|
||||
ggml_is_contiguous(src1) &&
|
||||
src1->type == GGML_TYPE_F32 &&
|
||||
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
|
||||
|
||||
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
|
||||
GGML_ASSERT(ne0 == ne01);
|
||||
GGML_ASSERT(ne1 == ne11);
|
||||
GGML_ASSERT(ne2 == ne12);
|
||||
GGML_ASSERT(ne3 == ne13);
|
||||
|
||||
// we don't support permuted src0 or src1
|
||||
GGML_ASSERT(nb00 == ggml_type_size(type));
|
||||
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
|
||||
|
||||
// dst cannot be transposed or permuted
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
GGML_ASSERT(nb0 <= nb1);
|
||||
GGML_ASSERT(nb1 <= nb2);
|
||||
GGML_ASSERT(nb2 <= nb3);
|
||||
|
||||
// broadcast factors
|
||||
const int64_t r2 = ne12/ne02;
|
||||
const int64_t r3 = ne13/ne03;
|
||||
|
||||
const int64_t ne_plane = ne01*ne00;
|
||||
const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);
|
||||
|
||||
if (ctx->work_size < desired_wsize) {
|
||||
ctx->work_data.reset(new char[desired_wsize]);
|
||||
ctx->work_size = desired_wsize;
|
||||
}
|
||||
void * wdata = ctx->work_data.get();
|
||||
|
||||
// convert src0 to float
|
||||
if (type != GGML_TYPE_F32) {
|
||||
ggml_type_traits_t type_traits = ggml_internal_get_type_traits(type);
|
||||
ggml_to_float_t const to_float = type_traits.to_float;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
|
||||
float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
|
||||
|
||||
const int min_cols_per_thread = 4096;
|
||||
const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
|
||||
const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);
|
||||
|
||||
#ifdef GGML_USE_OPENMP
|
||||
#pragma omp parallel for num_threads(n_threads)
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
||||
}
|
||||
#else
|
||||
for (int i = 1; i < n_threads; i++) {
|
||||
const int64_t start = i*ne01/n_threads;
|
||||
const int64_t end = (i + 1)*ne01/n_threads;
|
||||
if (start < end) {
|
||||
ctx->tasks.push_back(std::async(std::launch::async, [=]() {
|
||||
for (int64_t i01 = start; i01 < end; i01++) {
|
||||
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
||||
}
|
||||
}));
|
||||
}
|
||||
}
|
||||
{
|
||||
// reuse the current thread for the first task
|
||||
const int64_t start = 0;
|
||||
const int64_t end = ne01/n_threads;
|
||||
for (int64_t i01 = start; i01 < end; i01++) {
|
||||
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef GGML_USE_OPENMP
|
||||
// wait for all tasks to finish
|
||||
for (auto & task : ctx->tasks) {
|
||||
task.get();
|
||||
}
|
||||
ctx->tasks.clear();
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined(OPENBLAS_VERSION)
|
||||
openblas_set_num_threads(ctx->n_threads);
|
||||
#endif
|
||||
|
||||
#if defined(BLIS_ENABLE_CBLAS)
|
||||
bli_thread_set_num_threads(ctx->n_threads);
|
||||
#endif
|
||||
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||
const int64_t i03 = i13/r3;
|
||||
const int64_t i02 = i12/r2;
|
||||
|
||||
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
|
||||
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
|
||||
if (type != GGML_TYPE_F32) {
|
||||
x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
|
||||
}
|
||||
|
||||
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
||||
ne1, ne01, ne10,
|
||||
1.0f, y, ne10,
|
||||
x, ne00,
|
||||
0.0f, d, ne01);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(ne0 == ne00);
|
||||
GGML_ASSERT(ne1 == ne10);
|
||||
GGML_ASSERT(ne2 == ne02);
|
||||
GGML_ASSERT(ne02 == ne12);
|
||||
GGML_ASSERT(ne3 == ne13);
|
||||
GGML_ASSERT(ne03 == ne13);
|
||||
|
||||
// we don't support permuted src0 or src1
|
||||
GGML_ASSERT(nb00 == sizeof(float));
|
||||
|
||||
// dst cannot be transposed or permuted
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
// GGML_ASSERT(nb0 <= nb1);
|
||||
// GGML_ASSERT(nb1 <= nb2);
|
||||
// GGML_ASSERT(nb2 <= nb3);
|
||||
|
||||
// Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
|
||||
// src0: (k,n)
|
||||
// src1: (k,m)
|
||||
// dst: (m,n)
|
||||
//
|
||||
// Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
|
||||
// Also expressed as (major,minor)
|
||||
// a: (m,k): so src1 transposed
|
||||
// b: (k,n): so src0
|
||||
// c: (m,n)
|
||||
//
|
||||
// However, if ggml_is_transposed(src1) is true, then
|
||||
// src1->data already contains a transposed version, so sgemm mustn't
|
||||
// transpose it further.
|
||||
|
||||
int n = src0->ne[0];
|
||||
int k = src0->ne[1];
|
||||
int m = src1->ne[0];
|
||||
|
||||
CBLAS_TRANSPOSE transposeA;
|
||||
int lda;
|
||||
|
||||
if (!ggml_is_transposed(src1)) {
|
||||
transposeA = CblasTrans;
|
||||
lda = m;
|
||||
} else {
|
||||
transposeA = CblasNoTrans;
|
||||
lda = k;
|
||||
}
|
||||
|
||||
float * a = (float *) ((char *) src1->data);
|
||||
float * b = (float *) ((char *) src0->data);
|
||||
float * c = (float *) ((char *) dst->data);
|
||||
|
||||
cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
|
||||
|
||||
GGML_UNUSED(ctx);
|
||||
}
|
||||
|
||||
// backend interface
|
||||
|
||||
GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) {
|
||||
return "BLAS";
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) {
|
||||
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
|
||||
delete ctx;
|
||||
delete backend;
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
|
||||
return ggml_backend_cpu_buffer_type();
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
switch (node->op) {
|
||||
case GGML_OP_MUL_MAT:
|
||||
ggml_backend_blas_mul_mat(ctx, node);
|
||||
break;
|
||||
|
||||
case GGML_OP_OUT_PROD:
|
||||
ggml_backend_blas_out_prod(ctx, node);
|
||||
break;
|
||||
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
break;
|
||||
|
||||
default:
|
||||
fprintf(stderr, "%s: unsupported op %s\n", __func__, ggml_op_desc(node));
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
return GGML_STATUS_SUCCESS;
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
const struct ggml_tensor * src0 = op->src[0];
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
return (op->op == GGML_OP_MUL_MAT && ggml_backend_blas_use_blas(op)) ||
|
||||
(op->op == GGML_OP_OUT_PROD && op->src[0]->type == GGML_TYPE_F32 &&
|
||||
op->src[1]->type == GGML_TYPE_F32 &&
|
||||
ggml_is_matrix(src0) &&
|
||||
ggml_is_matrix(src1) &&
|
||||
ggml_is_contiguous(src0) &&
|
||||
(ggml_is_contiguous(src1) || ggml_is_transposed(src1)));
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
return ggml_backend_buft_is_host(buft);
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static struct ggml_backend_i blas_backend_i = {
|
||||
/* .get_name = */ ggml_backend_blas_name,
|
||||
/* .free = */ ggml_backend_blas_free,
|
||||
/* .get_default_buffer_type = */ ggml_backend_blas_get_default_buffer_type,
|
||||
/* .set_tensor_async = */ NULL,
|
||||
/* .get_tensor_async = */ NULL,
|
||||
/* .cpy_tensor_async = */ NULL,
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_blas_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_blas_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_blas_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_blas_guid(void) {
|
||||
static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_blas_init(void) {
|
||||
ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
|
||||
|
||||
ggml_backend_t backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_blas_guid(),
|
||||
/* .interface = */ blas_backend_i,
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
#if !defined(NDEBUG) && defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
|
||||
if (openblas_get_parallel() != OPENBLAS_OPENMP) {
|
||||
fprintf(stderr, "%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(NDEBUG) && defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP)
|
||||
fprintf(stderr, "%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
|
||||
#endif
|
||||
|
||||
return backend;
|
||||
}
|
||||
|
||||
GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) {
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
|
||||
}
|
||||
|
||||
void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
|
||||
GGML_ASSERT(ggml_backend_is_blas(backend_blas));
|
||||
|
||||
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
|
||||
ctx->n_threads = n_threads;
|
||||
}
|
23
ggml-blas.h
Normal file
23
ggml-blas.h
Normal file
@ -0,0 +1,23 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// backend API
|
||||
GGML_API GGML_CALL ggml_backend_t ggml_backend_blas_init(void);
|
||||
|
||||
GGML_API GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend);
|
||||
|
||||
// number of threads used for conversion to float
|
||||
// for openblas and blis, this will also set the number of threads used for blas operations
|
||||
GGML_API GGML_CALL void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
44
ggml-cuda.cu
44
ggml-cuda.cu
@ -543,6 +543,10 @@ GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_bu
|
||||
return ctx->name.c_str();
|
||||
}
|
||||
|
||||
static bool ggml_backend_buft_is_cuda(ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name == ggml_backend_cuda_buffer_type_name;
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
|
||||
|
||||
@ -585,24 +589,12 @@ GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backen
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
if (!ggml_backend_is_cuda(backend)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
return buft_ctx->device == cuda_ctx->device;
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
|
||||
/* .get_name = */ ggml_backend_cuda_buffer_type_name,
|
||||
/* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
|
||||
/* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
|
||||
/* .is_host = */ NULL,
|
||||
};
|
||||
|
||||
@ -863,6 +855,10 @@ GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_back
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static bool ggml_backend_buft_is_cuda_split(ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name == ggml_backend_cuda_split_buffer_type_name;
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
// since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
|
||||
// instead, we allocate them for each tensor separately in init_tensor
|
||||
@ -906,12 +902,6 @@ GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_
|
||||
return total_size;
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
return ggml_backend_is_cuda(backend);
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
return false;
|
||||
|
||||
@ -924,7 +914,6 @@ static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface
|
||||
/* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
|
||||
/* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend,
|
||||
/* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
|
||||
};
|
||||
|
||||
@ -1024,7 +1013,6 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
|
||||
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
||||
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
|
||||
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
||||
},
|
||||
/* .context = */ nullptr,
|
||||
@ -2879,6 +2867,20 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cuda_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
if (ggml_backend_buft_is_cuda_split(buft)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (ggml_backend_buft_is_cuda(buft)) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
|
||||
return buft_ctx->device == cuda_ctx->device;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
const int min_batch_size = 32;
|
||||
|
||||
@ -2951,9 +2953,11 @@ static ggml_backend_i ggml_backend_cuda_interface = {
|
||||
/* .synchronize = */ ggml_backend_cuda_synchronize,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_cuda_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_cuda_supports_buft,
|
||||
/* .offload_op = */ ggml_backend_cuda_offload_op,
|
||||
/* .event_new = */ ggml_backend_cuda_event_new,
|
||||
/* .event_free = */ ggml_backend_cuda_event_free,
|
||||
|
@ -1902,18 +1902,12 @@ static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_
|
||||
return ctx->max_alloc;
|
||||
}
|
||||
|
||||
static bool ggml_backend_kompute_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
GGML_UNUSED(buft);
|
||||
return ggml_backend_is_kompute(backend);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = {
|
||||
/* .get_name = */ ggml_backend_kompute_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_kompute_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_kompute_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size,
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .supports_backend = */ ggml_backend_kompute_buffer_type_supports_backend,
|
||||
/* .is_host = */ NULL,
|
||||
};
|
||||
|
||||
@ -1973,6 +1967,11 @@ static bool ggml_backend_kompute_supports_op(ggml_backend_t backend, const struc
|
||||
return ggml_vk_supports_op(op);
|
||||
}
|
||||
|
||||
static bool ggml_backend_kompute_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
GGML_UNUSED(backend);
|
||||
return buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name;
|
||||
}
|
||||
|
||||
static struct ggml_backend_i kompute_backend_i = {
|
||||
/* .get_name = */ ggml_backend_kompute_name,
|
||||
/* .free = */ ggml_backend_kompute_free,
|
||||
@ -1983,9 +1982,11 @@ static struct ggml_backend_i kompute_backend_i = {
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_kompute_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_kompute_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_kompute_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
|
15
ggml-metal.m
15
ggml-metal.m
@ -3044,12 +3044,6 @@ GGML_CALL static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_metal_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
return ggml_backend_is_metal(backend) || ggml_backend_is_cpu(backend);
|
||||
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
return true;
|
||||
|
||||
@ -3064,7 +3058,6 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
|
||||
/* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_metal_buffer_type_get_max_size,
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .supports_backend = */ ggml_backend_metal_buffer_type_supports_backend,
|
||||
/* .is_host = */ ggml_backend_metal_buffer_type_is_host,
|
||||
},
|
||||
/* .context = */ NULL,
|
||||
@ -3179,6 +3172,12 @@ GGML_CALL static bool ggml_backend_metal_supports_op(ggml_backend_t backend, con
|
||||
return ggml_metal_supports_op(metal_ctx, op);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_metal_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name == ggml_backend_metal_buffer_type_get_name;
|
||||
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
static struct ggml_backend_i ggml_backend_metal_i = {
|
||||
/* .get_name = */ ggml_backend_metal_name,
|
||||
/* .free = */ ggml_backend_metal_free,
|
||||
@ -3189,9 +3188,11 @@ static struct ggml_backend_i ggml_backend_metal_i = {
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_metal_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_metal_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_metal_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
|
21
ggml-rpc.cpp
21
ggml-rpc.cpp
@ -540,22 +540,12 @@ GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend
|
||||
return ggml_nbytes(tensor);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_rpc_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
if (!ggml_backend_is_rpc(backend)) {
|
||||
return false;
|
||||
}
|
||||
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
|
||||
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
|
||||
return buft_ctx->endpoint == rpc_ctx->endpoint;
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
|
||||
/* .get_name = */ ggml_backend_rpc_buffer_type_name,
|
||||
/* .alloc_buffer = */ ggml_backend_rpc_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_rpc_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_rpc_get_max_size,
|
||||
/* .get_alloc_size = */ ggml_backend_rpc_buffer_type_get_alloc_size,
|
||||
/* .supports_backend = */ ggml_backend_rpc_buffer_type_supports_backend,
|
||||
/* .is_host = */ NULL,
|
||||
};
|
||||
|
||||
@ -638,6 +628,15 @@ GGML_CALL static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_rpc_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
if (buft->iface.get_name == ggml_backend_rpc_buffer_type_name) {
|
||||
return false;
|
||||
}
|
||||
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
|
||||
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
|
||||
return buft_ctx->endpoint == rpc_ctx->endpoint;
|
||||
}
|
||||
|
||||
static ggml_backend_i ggml_backend_rpc_interface = {
|
||||
/* .get_name = */ ggml_backend_rpc_name,
|
||||
/* .free = */ ggml_backend_rpc_free,
|
||||
@ -648,9 +647,11 @@ static ggml_backend_i ggml_backend_rpc_interface = {
|
||||
/* .synchronize = */ ggml_backend_rpc_synchronize,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_rpc_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_rpc_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_rpc_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
|
@ -16575,22 +16575,12 @@ GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backen
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_sycl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
if (!ggml_backend_is_sycl(backend)) {
|
||||
return false;
|
||||
}
|
||||
ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
|
||||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||||
return buft_ctx->device == sycl_ctx->device;
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_i ggml_backend_sycl_buffer_type_interface = {
|
||||
/* .get_name = */ ggml_backend_sycl_buffer_type_name,
|
||||
/* .alloc_buffer = */ ggml_backend_sycl_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_sycl_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_sycl_buffer_type_get_max_size,
|
||||
/* .get_alloc_size = */ ggml_backend_sycl_buffer_type_get_alloc_size,
|
||||
/* .supports_backend = */ ggml_backend_sycl_buffer_type_supports_backend,
|
||||
/* .is_host = */ nullptr,
|
||||
};
|
||||
|
||||
@ -16942,12 +16932,6 @@ GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_
|
||||
return total_size;
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_sycl_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
return ggml_backend_is_sycl(backend);
|
||||
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_sycl_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
return false;
|
||||
|
||||
@ -16960,7 +16944,6 @@ static ggml_backend_buffer_type_i ggml_backend_sycl_split_buffer_type_interface
|
||||
/* .get_alignment = */ ggml_backend_sycl_split_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ ggml_backend_sycl_split_buffer_type_get_alloc_size,
|
||||
/* .supports_backend = */ ggml_backend_sycl_split_buffer_type_supports_backend,
|
||||
/* .is_host = */ ggml_backend_sycl_split_buffer_type_is_host,
|
||||
};
|
||||
|
||||
@ -17046,7 +17029,6 @@ ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type() {
|
||||
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
|
||||
/* .get_max_size = */ NULL, // TODO: return device.maxBufferLength
|
||||
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
||||
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
|
||||
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
||||
},
|
||||
/* .context = */ nullptr,
|
||||
@ -17311,6 +17293,14 @@ GGML_CALL static bool ggml_backend_sycl_offload_op(ggml_backend_t backend, const
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_sycl_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
if (buft->iface.get_name != ggml_backend_sycl_buffer_type_name) {
|
||||
return false;
|
||||
}
|
||||
ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
|
||||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||||
return buft_ctx->device == sycl_ctx->device;
|
||||
}
|
||||
|
||||
static ggml_backend_i ggml_backend_sycl_interface = {
|
||||
/* .get_name = */ ggml_backend_sycl_name,
|
||||
@ -17322,9 +17312,11 @@ static ggml_backend_i ggml_backend_sycl_interface = {
|
||||
/* .synchronize = */ ggml_backend_sycl_synchronize,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_sycl_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_sycl_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_sycl_supports_buft,
|
||||
/* .offload_op = */ ggml_backend_sycl_offload_op,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
|
@ -6142,24 +6142,12 @@ GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_vk_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
if (!ggml_backend_is_vk(backend)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml_backend_vk_buffer_type_context * buft_ctx = (ggml_backend_vk_buffer_type_context *)buft->context;
|
||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||
|
||||
return buft_ctx->ctx->idx == ctx->idx;
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = {
|
||||
/* .get_name = */ ggml_backend_vk_buffer_type_name,
|
||||
/* .alloc_buffer = */ ggml_backend_vk_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_vk_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size,
|
||||
/* .get_alloc_size = */ ggml_backend_vk_buffer_type_get_alloc_size,
|
||||
/* .supports_backend = */ ggml_backend_vk_buffer_type_supports_backend,
|
||||
/* .is_host = */ NULL,
|
||||
};
|
||||
|
||||
@ -6235,7 +6223,6 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() {
|
||||
/* .get_alignment = */ ggml_backend_vk_host_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
||||
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
|
||||
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
||||
},
|
||||
/* .context = */ nullptr,
|
||||
@ -6551,6 +6538,17 @@ GGML_CALL static bool ggml_backend_vk_offload_op(ggml_backend_t backend, const g
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_vk_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
if (buft->iface.get_name != ggml_backend_vk_buffer_type_name) {
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml_backend_vk_buffer_type_context * buft_ctx = (ggml_backend_vk_buffer_type_context *)buft->context;
|
||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||
|
||||
return buft_ctx->ctx->idx == ctx->idx;
|
||||
}
|
||||
|
||||
// TODO: enable async and synchronize
|
||||
static ggml_backend_i ggml_backend_vk_interface = {
|
||||
/* .get_name = */ ggml_backend_vk_name,
|
||||
@ -6562,9 +6560,11 @@ static ggml_backend_i ggml_backend_vk_interface = {
|
||||
/* .synchronize = */ NULL, // ggml_backend_vk_synchronize,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_vk_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_vk_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_vk_supports_buft,
|
||||
/* .offload_op = */ ggml_backend_vk_offload_op,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
|
205
ggml.c
205
ggml.c
@ -297,12 +297,6 @@ inline static void * ggml_calloc(size_t num, size_t size) {
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE)
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#elif defined(GGML_USE_OPENBLAS)
|
||||
#if defined(GGML_BLAS_USE_MKL)
|
||||
#include <mkl.h>
|
||||
#else
|
||||
#include <cblas.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// floating point type used to accumulate sums
|
||||
@ -12179,39 +12173,6 @@ static void ggml_compute_forward_group_norm(
|
||||
|
||||
// ggml_compute_forward_mul_mat
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
// helper function to determine if it is better to use BLAS or not
|
||||
// for large matrices, BLAS is faster
|
||||
static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
//const int64_t ne00 = src0->ne[0];
|
||||
//const int64_t ne01 = src0->ne[1];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
const int64_t ne1 = dst->ne[1];
|
||||
|
||||
// NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
|
||||
// all the experts for each batch element and the processing would become incredibly slow
|
||||
// TODO: find the optimal values for these
|
||||
if (dst->op != GGML_OP_MUL_MAT_ID &&
|
||||
ggml_is_contiguous(src0) &&
|
||||
ggml_is_contiguous(src1) &&
|
||||
//src0->type == GGML_TYPE_F32 &&
|
||||
src1->type == GGML_TYPE_F32 &&
|
||||
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
|
||||
|
||||
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
static void ggml_compute_forward_mul_mat_one_chunk(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst,
|
||||
@ -12349,73 +12310,6 @@ static void ggml_compute_forward_mul_mat(
|
||||
// nb01 >= nb00 - src0 is not transposed
|
||||
// compute by src0 rows
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
if (ggml_compute_forward_mul_mat_use_blas(dst)) {
|
||||
const int64_t ne_plane = ne01*ne00;
|
||||
const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
|
||||
UNUSED(desired_wsize);
|
||||
|
||||
if (params->type == GGML_TASK_TYPE_INIT) {
|
||||
if (type != GGML_TYPE_F32) {
|
||||
assert(params->wsize >= desired_wsize);
|
||||
// parallelize by src0 rows
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||
// broadcast src0 into src1 across 2nd,3rd dimension
|
||||
const int64_t i03 = i13/r3;
|
||||
const int64_t i02 = i12/r2;
|
||||
|
||||
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
|
||||
float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
|
||||
ggml_to_float_t const to_float = type_traits[type].to_float;
|
||||
|
||||
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
|
||||
to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (params->type == GGML_TASK_TYPE_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
// perform sgemm, parallelization controlled by blas lib
|
||||
if (ith != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
//const int64_t tgemm0 = ggml_perf_time_us();
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||
const int64_t i03 = i13/r3;
|
||||
const int64_t i02 = i12/r2;
|
||||
|
||||
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
|
||||
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
|
||||
if (type != GGML_TYPE_F32) {
|
||||
x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
|
||||
}
|
||||
|
||||
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
||||
ne1, ne01, ne10,
|
||||
1.0f, y, ne10,
|
||||
x, ne00,
|
||||
0.0f, d, ne01);
|
||||
}
|
||||
}
|
||||
//printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
|
||||
|
||||
//printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
|
||||
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if GGML_USE_LLAMAFILE
|
||||
const bool src1_cont = ggml_is_contiguous(src1);
|
||||
|
||||
@ -12796,19 +12690,7 @@ static void ggml_compute_forward_out_prod_f32(
|
||||
// nb01 >= nb00 - src0 is not transposed
|
||||
// compute by src0 rows
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
bool use_blas = ggml_is_matrix(src0) &&
|
||||
ggml_is_matrix(src1) &&
|
||||
ggml_is_contiguous(src0) &&
|
||||
(ggml_is_contiguous(src1) || ggml_is_transposed(src1));
|
||||
#endif
|
||||
|
||||
if (params->type == GGML_TASK_TYPE_INIT) {
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
|
||||
if (use_blas) {
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
if (ith != 0) {
|
||||
return;
|
||||
}
|
||||
@ -12820,50 +12702,6 @@ static void ggml_compute_forward_out_prod_f32(
|
||||
return;
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
if (use_blas) {
|
||||
if (params->ith != 0) { // All threads other than the first do no work.
|
||||
return;
|
||||
}
|
||||
// Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
|
||||
// src0: (k,n)
|
||||
// src1: (k,m)
|
||||
// dst: (m,n)
|
||||
//
|
||||
// Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
|
||||
// Also expressed as (major,minor)
|
||||
// a: (m,k): so src1 transposed
|
||||
// b: (k,n): so src0
|
||||
// c: (m,n)
|
||||
//
|
||||
// However, if ggml_is_transposed(src1) is true, then
|
||||
// src1->data already contains a transposed version, so sgemm mustn't
|
||||
// transpose it further.
|
||||
|
||||
int n = src0->ne[0];
|
||||
int k = src0->ne[1];
|
||||
int m = src1->ne[0];
|
||||
|
||||
int transposeA, lda;
|
||||
|
||||
if (!ggml_is_transposed(src1)) {
|
||||
transposeA = CblasTrans;
|
||||
lda = m;
|
||||
} else {
|
||||
transposeA = CblasNoTrans;
|
||||
lda = k;
|
||||
}
|
||||
|
||||
float * a = (float *) ((char *) src1->data);
|
||||
float * b = (float *) ((char *) src0->data);
|
||||
float * c = (float *) ((char *) dst->data);
|
||||
|
||||
cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
|
||||
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
// dst[:,:,:,:] = 0
|
||||
// for i2,i3:
|
||||
// for i1:
|
||||
@ -12993,8 +12831,6 @@ static void ggml_compute_forward_out_prod_q_f32(
|
||||
// nb01 >= nb00 - src0 is not transposed
|
||||
// compute by src0 rows
|
||||
|
||||
// TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
|
||||
if (params->type == GGML_TASK_TYPE_INIT) {
|
||||
if (ith != 0) {
|
||||
return;
|
||||
@ -13391,6 +13227,8 @@ static void ggml_compute_forward_get_rows_q(
|
||||
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
|
||||
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||||
|
||||
assert(i01 >= 0 && i01 < ne01);
|
||||
|
||||
dequantize_row_q(
|
||||
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
|
||||
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
|
||||
@ -13434,6 +13272,8 @@ static void ggml_compute_forward_get_rows_f16(
|
||||
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
|
||||
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||||
|
||||
assert(i01 >= 0 && i01 < ne01);
|
||||
|
||||
ggml_fp16_to_fp32_row(
|
||||
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
|
||||
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
|
||||
@ -13477,7 +13317,9 @@ static void ggml_compute_forward_get_rows_bf16(
|
||||
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
|
||||
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||||
|
||||
ggml_bf16_to_fp32_row(
|
||||
assert(i01 >= 0 && i01 < ne01);
|
||||
|
||||
ggml_bf16_to_fp32_row(
|
||||
(const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
|
||||
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
|
||||
}
|
||||
@ -13520,6 +13362,8 @@ static void ggml_compute_forward_get_rows_f32(
|
||||
const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
|
||||
const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
|
||||
|
||||
assert(i01 >= 0 && i01 < ne01);
|
||||
|
||||
ggml_vec_cpy_f32(nc,
|
||||
(float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
|
||||
(float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
|
||||
@ -18893,6 +18737,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_
|
||||
switch (node->op) {
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_ADD1:
|
||||
case GGML_OP_ACC:
|
||||
@ -18977,7 +18822,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_
|
||||
} break;
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_SET:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
@ -19137,8 +18981,11 @@ static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_comput
|
||||
sched_yield();
|
||||
}
|
||||
|
||||
* node_n = atomic_load(&state->shared->node_n);
|
||||
if (* node_n != last_node_n) break;
|
||||
*node_n = atomic_load(&state->shared->node_n);
|
||||
if (*node_n != last_node_n) {
|
||||
break;
|
||||
}
|
||||
|
||||
#if defined(__SSE3__)
|
||||
// Tell the processor we're spinning. It's a processor hint for spinlocks.
|
||||
_mm_pause();
|
||||
@ -19148,15 +18995,18 @@ static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_comput
|
||||
|
||||
static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
|
||||
// wait for other threads to finish
|
||||
const int last_task_phase = * task_phase;
|
||||
const int last_task_phase = *task_phase;
|
||||
|
||||
while (true) {
|
||||
if (do_yield) {
|
||||
sched_yield();
|
||||
}
|
||||
|
||||
* task_phase = atomic_load(&state->shared->node_task);
|
||||
if (* task_phase != last_task_phase) break;
|
||||
*task_phase = atomic_load(&state->shared->node_task);
|
||||
if (*task_phase != last_task_phase) {
|
||||
break;
|
||||
}
|
||||
|
||||
#if defined(__SSE3__)
|
||||
// Tell the processor we're spinning. It's a processor hint for spinlocks.
|
||||
_mm_pause();
|
||||
@ -19356,17 +19206,6 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
|
||||
{
|
||||
const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
if (ggml_compute_forward_mul_mat_use_blas(node)) {
|
||||
if (node->src[0]->type != GGML_TYPE_F32) {
|
||||
// here we need memory for fully dequantized matrix from src0
|
||||
// take into account that src0 can be broadcasted into src1[2,3]
|
||||
cur = ggml_type_size(GGML_TYPE_F32)
|
||||
* node->src[0]->ne[0]*node->src[0]->ne[1]
|
||||
* node->src[1]->ne[2]*node->src[1]->ne[3];
|
||||
}
|
||||
} else
|
||||
#endif
|
||||
if (node->src[1]->type != vec_dot_type) {
|
||||
cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
|
||||
}
|
||||
@ -22664,7 +22503,7 @@ int ggml_cpu_has_wasm_simd(void) {
|
||||
}
|
||||
|
||||
int ggml_cpu_has_blas(void) {
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
|
||||
#if defined(GGML_USE_BLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
|
37
llama.cpp
37
llama.cpp
@ -21,6 +21,10 @@
|
||||
# include "ggml-kompute.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_BLAS
|
||||
# include "ggml-blas.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
# include "ggml-metal.h"
|
||||
#endif
|
||||
@ -2299,9 +2303,13 @@ struct llama_context {
|
||||
std::vector<ggml_backend_t> backends;
|
||||
#ifdef GGML_USE_METAL
|
||||
ggml_backend_t backend_metal = nullptr;
|
||||
#endif
|
||||
#ifdef GGML_USE_BLAS
|
||||
ggml_backend_t backend_blas = nullptr;
|
||||
#endif
|
||||
ggml_backend_t backend_cpu = nullptr;
|
||||
|
||||
|
||||
const llama_model & model;
|
||||
|
||||
// key + value cache for the self attention
|
||||
@ -11529,7 +11537,8 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
if (batch.n_tokens < 32 || full_offload) {
|
||||
if (il != -1 && strcmp(name, "norm") == 0) {
|
||||
for (auto * backend : lctx.backends) {
|
||||
if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
|
||||
if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft) &&
|
||||
(ggml_backend_supports_op(backend, cur) || ggml_backend_offload_op(backend, cur))) {
|
||||
ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
|
||||
break;
|
||||
}
|
||||
@ -12026,6 +12035,11 @@ static void llama_graph_compute(
|
||||
ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
|
||||
ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
|
||||
}
|
||||
#ifdef GGML_USE_BLAS
|
||||
if (lctx.backend_blas != nullptr) {
|
||||
ggml_backend_blas_set_n_threads(lctx.backend_blas, n_threads);
|
||||
}
|
||||
#endif
|
||||
|
||||
ggml_backend_sched_graph_compute_async(lctx.sched, gf);
|
||||
|
||||
@ -12248,17 +12262,6 @@ static int llama_decode_internal(
|
||||
}
|
||||
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
|
||||
|
||||
// for big prompts, if BLAS is enabled, it is better to use only one thread
|
||||
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
|
||||
// TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
|
||||
// we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
|
||||
// with the BLAS calls. need a better solution
|
||||
// MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
|
||||
// being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
|
||||
if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
|
||||
n_threads = std::min(4, n_threads);
|
||||
}
|
||||
|
||||
ggml_backend_sched_alloc_graph(lctx.sched, gf);
|
||||
|
||||
llama_set_inputs(lctx, u_batch);
|
||||
@ -16251,6 +16254,16 @@ struct llama_context * llama_new_context_with_model(
|
||||
ctx->backends.push_back(backend);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_BLAS
|
||||
ctx->backend_blas = ggml_backend_blas_init();
|
||||
if (ctx->backend_blas == nullptr) {
|
||||
LLAMA_LOG_WARN("%s: failed to initialize BLAS backend\n", __func__);
|
||||
} else {
|
||||
ctx->backends.push_back(ctx->backend_blas);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(GGML_USE_RPC)
|
||||
if (model->n_gpu_layers > 0) {
|
||||
for (const auto & endpoint : model->rpc_servers) {
|
||||
|
Loading…
Reference in New Issue
Block a user