mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 13:28:50 +01:00
llama : fix data units
ggml-ci
This commit is contained in:
parent
8da46278e1
commit
f5feac831f
@ -5841,7 +5841,7 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
|
||||
}
|
||||
#ifdef DEBUG_CUDA_MALLOC
|
||||
fprintf(stderr, "%s: %d buffers, max_size = %u MB, tot_size = %u MB, requested %u MB\n", __func__, nnz,
|
||||
(uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024));
|
||||
(uint32_t)(max_size/1e6), (uint32_t)(tot_size/1e6), (uint32_t)(size/1e6));
|
||||
#endif
|
||||
void * ptr;
|
||||
size_t look_ahead_size = (size_t) (1.05 * size);
|
||||
@ -5979,7 +5979,7 @@ void * ggml_cuda_host_malloc(size_t size) {
|
||||
// This can fixed the OOM error in WSL.
|
||||
cudaGetLastError();
|
||||
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
|
||||
size/1024.0/1024.0, cudaGetErrorString(err));
|
||||
size/1e6, cudaGetErrorString(err));
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
|
18
ggml-metal.m
18
ggml-metal.m
@ -346,9 +346,9 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
}
|
||||
|
||||
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
||||
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1e6);
|
||||
if (ctx->device.maxTransferRate != 0) {
|
||||
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
|
||||
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1e6);
|
||||
} else {
|
||||
GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__);
|
||||
}
|
||||
@ -541,11 +541,11 @@ bool ggml_metal_add_buffer(
|
||||
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
||||
|
||||
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
|
||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1e6);
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0);
|
||||
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1e6);
|
||||
|
||||
++ctx->n_buffers;
|
||||
} else {
|
||||
@ -565,11 +565,11 @@ bool ggml_metal_add_buffer(
|
||||
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
||||
|
||||
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
|
||||
GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1e6);
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
|
||||
GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1e6, i);
|
||||
if (i + size_step < size) {
|
||||
GGML_METAL_LOG_INFO("\n");
|
||||
}
|
||||
@ -580,8 +580,8 @@ bool ggml_metal_add_buffer(
|
||||
|
||||
#if TARGET_OS_OSX
|
||||
GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)",
|
||||
ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
|
||||
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||
ctx->device.currentAllocatedSize / 1e6,
|
||||
ctx->device.recommendedMaxWorkingSetSize / 1e6);
|
||||
|
||||
if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) {
|
||||
GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
|
||||
@ -589,7 +589,7 @@ bool ggml_metal_add_buffer(
|
||||
GGML_METAL_LOG_INFO("\n");
|
||||
}
|
||||
#else
|
||||
GGML_METAL_LOG_INFO(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1024.0 / 1024.0);
|
||||
GGML_METAL_LOG_INFO(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1e6);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
40
llama.cpp
40
llama.cpp
@ -1083,9 +1083,9 @@ enum e_model {
|
||||
MODEL_70B,
|
||||
};
|
||||
|
||||
static const size_t kB = 1024;
|
||||
static const size_t MB = 1024*kB;
|
||||
static const size_t GB = 1024*MB;
|
||||
static const size_t kB = 1000;
|
||||
static const size_t MB = 1000*kB;
|
||||
static const size_t GB = 1000*MB;
|
||||
|
||||
struct llama_hparams {
|
||||
bool vocab_only;
|
||||
@ -1481,7 +1481,7 @@ static bool llama_kv_cache_init(
|
||||
vram_kv_cache += ggml_nbytes(cache.k);
|
||||
}
|
||||
if (vram_kv_cache > 0) {
|
||||
LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
|
||||
LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1e6);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
@ -2520,9 +2520,9 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
||||
LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
|
||||
LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
|
||||
if (ml.n_bytes < GB) {
|
||||
LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
|
||||
LLAMA_LOG_INFO("%s: model size = %.2f MB (%.2f BPW) \n", __func__, ml.n_bytes/1e6, ml.n_bytes*8.0/ml.n_elements);
|
||||
} else {
|
||||
LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
|
||||
LLAMA_LOG_INFO("%s: model size = %.2f GB (%.2f BPW) \n", __func__, ml.n_bytes/1e9, ml.n_bytes*8.0/ml.n_elements);
|
||||
}
|
||||
|
||||
// general kv
|
||||
@ -2558,7 +2558,7 @@ static void llm_load_tensors(
|
||||
|
||||
ml.calc_sizes(ctx_size, mmapped_size);
|
||||
|
||||
LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
|
||||
LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1e6);
|
||||
|
||||
// create the ggml context
|
||||
{
|
||||
@ -3207,7 +3207,7 @@ static void llm_load_tensors(
|
||||
ctx_size +
|
||||
mmapped_size - vram_weights; // weights in VRAM not in memory
|
||||
|
||||
LLAMA_LOG_INFO("%s: mem required = %7.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
|
||||
LLAMA_LOG_INFO("%s: mem required = %7.2f MB\n", __func__, mem_required / 1e6);
|
||||
|
||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
||||
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
|
||||
@ -3226,7 +3226,7 @@ static void llm_load_tensors(
|
||||
#endif // GGML_USE_CUBLAS
|
||||
|
||||
LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
|
||||
LLAMA_LOG_INFO("%s: VRAM used: %.2f MB\n", __func__, vram_weights / 1024.0 / 1024.0);
|
||||
LLAMA_LOG_INFO("%s: VRAM used: %.2f MB\n", __func__, vram_weights / 1e6);
|
||||
#else
|
||||
(void) n_gpu_layers;
|
||||
#endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
||||
@ -7878,7 +7878,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
new_type = tensor->type;
|
||||
new_data = tensor->data;
|
||||
new_size = ggml_nbytes(tensor);
|
||||
LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
|
||||
LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1e6);
|
||||
} else {
|
||||
const size_t nelements = ggml_nelements(tensor);
|
||||
|
||||
@ -7938,7 +7938,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
workers.clear();
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
||||
LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1e6, new_size/1e6);
|
||||
int64_t tot_count = 0;
|
||||
for (size_t i = 0; i < hist_cur.size(); i++) {
|
||||
hist_all[i] += hist_cur[i];
|
||||
@ -7976,8 +7976,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
|
||||
gguf_free(ctx_out);
|
||||
|
||||
LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
|
||||
LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
|
||||
LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1e6);
|
||||
LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1e6);
|
||||
|
||||
// print histogram for all tensors
|
||||
{
|
||||
@ -8478,7 +8478,7 @@ struct llama_context * llama_new_context_with_model(
|
||||
|
||||
{
|
||||
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
|
||||
LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
|
||||
LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1e6);
|
||||
}
|
||||
|
||||
// resized during inference
|
||||
@ -8523,7 +8523,7 @@ struct llama_context * llama_new_context_with_model(
|
||||
// measure memory requirements for the graph
|
||||
size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
|
||||
|
||||
LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
|
||||
LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1e6);
|
||||
|
||||
// recreate allocator with exact memory requirements
|
||||
ggml_allocr_free(ctx->alloc);
|
||||
@ -8537,7 +8537,7 @@ struct llama_context * llama_new_context_with_model(
|
||||
#endif
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
ggml_cuda_set_scratch_size(alloc_size);
|
||||
LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0);
|
||||
LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1e6);
|
||||
|
||||
// calculate total VRAM usage
|
||||
auto add_tensor = [](const ggml_tensor * t, size_t & size) {
|
||||
@ -8558,9 +8558,9 @@ struct llama_context * llama_new_context_with_model(
|
||||
size_t total_vram_size = model_vram_size + ctx_vram_size;
|
||||
|
||||
LLAMA_LOG_INFO("%s: total VRAM used: %.2f MB (model: %.2f MB, context: %.2f MB)\n", __func__,
|
||||
total_vram_size / 1024.0 / 1024.0,
|
||||
model_vram_size / 1024.0 / 1024.0,
|
||||
ctx_vram_size / 1024.0 / 1024.0);
|
||||
total_vram_size / 1e6,
|
||||
model_vram_size / 1e6,
|
||||
ctx_vram_size / 1e6);
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -8581,7 +8581,7 @@ struct llama_context * llama_new_context_with_model(
|
||||
|
||||
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
|
||||
|
||||
LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
|
||||
LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1e6);
|
||||
|
||||
#define LLAMA_METAL_CHECK_BUF(result) \
|
||||
if (!(result)) { \
|
||||
|
Loading…
Reference in New Issue
Block a user