Merge branch 'ggerganov:master' into master

This commit is contained in:
Jianlin Shi 2025-01-25 16:45:20 -07:00 committed by GitHub
commit f7ac792442
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
72 changed files with 5059 additions and 796 deletions

View File

@ -2,6 +2,10 @@ ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION AS build
ARG TARGETARCH
ARG GGML_CPU_ARM_ARCH=armv8-a
RUN apt-get update && \
apt-get install -y build-essential git cmake libcurl4-openssl-dev
@ -9,7 +13,14 @@ WORKDIR /app
COPY . .
RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \
RUN if [ "$TARGETARCH" = "amd64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
elif [ "$TARGETARCH" = "arm64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
else \
echo "Unsupported architecture"; \
exit 1; \
fi && \
cmake --build build -j $(nproc)
RUN mkdir -p /app/lib && \

View File

@ -56,6 +56,7 @@ jobs:
mkdir build
cd build
cmake .. \
-DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=ON \
-DGGML_METAL_USE_BF16=ON \
@ -120,6 +121,7 @@ jobs:
# Metal is disabled due to intermittent failures with Github runners not having a GPU:
# https://github.com/ggerganov/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
cmake -B build \
-DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=ON \
-DGGML_METAL=OFF \
@ -160,8 +162,8 @@ jobs:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip
name: llama-bin-macos-x64.zip
ubuntu-latest-cmake:
runs-on: ubuntu-latest
ubuntu-cpu-cmake:
runs-on: ubuntu-22.04
steps:
- name: Clone
@ -181,7 +183,10 @@ jobs:
run: |
mkdir build
cd build
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON -DGGML_RPC=ON
cmake .. \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=ON \
-DGGML_RPC=ON
cmake --build . --config Release -j $(nproc)
- name: Test
@ -256,7 +261,10 @@ jobs:
run: |
mkdir build
cd build
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
cmake .. \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
cmake --build . --config ${{ matrix.build_type }} -j $(nproc)
- name: Build (no OpenMP)
@ -265,7 +273,11 @@ jobs:
run: |
mkdir build
cd build
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} -DGGML_OPENMP=OFF
cmake .. \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DGGML_OPENMP=OFF
cmake --build . --config ${{ matrix.build_type }} -j $(nproc)
- name: Test
@ -295,7 +307,8 @@ jobs:
run: |
mkdir build
cd build
cmake -DGGML_RPC=ON ..
cmake .. \
-DGGML_RPC=ON
cmake --build . --config Release -j $(nproc)
- name: Test
@ -325,7 +338,8 @@ jobs:
run: |
mkdir build
cd build
cmake -DGGML_VULKAN=ON ..
cmake .. \
-DGGML_VULKAN=ON
cmake --build . --config Release -j $(nproc)
- name: Test
@ -352,13 +366,18 @@ jobs:
- name: Build with native CMake HIP support
id: cmake_build
run: |
cmake -B build -S . -DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" -DGGML_HIP=ON
cmake -B build -S . \
-DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" \
-DGGML_HIP=ON
cmake --build build --config Release -j $(nproc)
- name: Build with legacy HIP support
id: cmake_build_legacy_hip
run: |
cmake -B build2 -S . -DCMAKE_C_COMPILER=hipcc -DCMAKE_CXX_COMPILER=hipcc -DGGML_HIP=ON
cmake -B build2 -S . \
-DCMAKE_C_COMPILER=hipcc \
-DCMAKE_CXX_COMPILER=hipcc \
-DGGML_HIP=ON
cmake --build build2 --config Release -j $(nproc)
ubuntu-22-cmake-musa:
@ -379,7 +398,8 @@ jobs:
- name: Build with native CMake MUSA support
id: cmake_build
run: |
cmake -B build -S . -DGGML_MUSA=ON
cmake -B build -S . \
-DGGML_MUSA=ON
cmake --build build --config Release -j $(nproc)
ubuntu-22-cmake-sycl:
@ -420,7 +440,10 @@ jobs:
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
cmake .. \
-DGGML_SYCL=ON \
-DCMAKE_C_COMPILER=icx \
-DCMAKE_CXX_COMPILER=icpx
cmake --build . --config Release -j $(nproc)
ubuntu-22-cmake-sycl-fp16:
@ -461,42 +484,13 @@ jobs:
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON ..
cmake .. \
-DGGML_SYCL=ON \
-DCMAKE_C_COMPILER=icx \
-DCMAKE_CXX_COMPILER=icpx \
-DGGML_SYCL_F16=ON
cmake --build . --config Release -j $(nproc)
# TODO: build with GGML_METAL=OFF because test-backend-ops fail on "Apple Paravirtual device" and I don't know
# how to debug it.
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7132125951/job/19422043567?pr=4359#step:5:6584
# would be great if we fix these
macOS-latest-cmake:
runs-on: macos-latest
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build
id: cmake_build
run: |
sysctl -a
mkdir build
cd build
cmake -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL=OFF ..
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose --timeout 900
macOS-latest-cmake-ios:
runs-on: macos-latest
@ -827,7 +821,13 @@ jobs:
- name: Build with CMake
run: |
cmake -S . -B build -G Ninja -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=89-real -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined -DLLAMA_FATAL_WARNINGS=ON
cmake -S . -B build -G Ninja \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_CUDA_ARCHITECTURES=89-real \
-DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined \
-DLLAMA_FATAL_WARNINGS=ON \
-DGGML_NATIVE=OFF \
-DGGML_CUDA=ON
cmake --build build
windows-2019-cmake-cuda:
@ -916,7 +916,11 @@ jobs:
shell: cmd
run: |
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
cmake -S . -B build -G "Ninja Multi-Config" -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DGGML_RPC=ON
cmake -S . -B build -G "Ninja Multi-Config" ^
-DLLAMA_BUILD_SERVER=ON ^
-DGGML_NATIVE=OFF ^
-DGGML_CUDA=ON ^
-DGGML_RPC=ON
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
cmake --build build --config Release
@ -1069,7 +1073,12 @@ jobs:
run: |
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIP=ON -DCMAKE_BUILD_TYPE=Release -DGGML_RPC=ON
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_BUILD_TYPE=Release `
-DGGML_HIP=ON `
-DGGML_RPC=ON
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
windows-latest-cmake-hip-release:
@ -1107,7 +1116,13 @@ jobs:
run: |
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIP=ON -DCMAKE_BUILD_TYPE=Release -DAMDGPU_TARGETS=${{ matrix.gpu_target }} -DGGML_RPC=ON
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_BUILD_TYPE=Release `
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
-DGGML_HIP=ON `
-DGGML_RPC=ON
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
md "build\bin\rocblas\library\"
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
@ -1201,8 +1216,7 @@ jobs:
runs-on: ubuntu-latest
needs:
- ubuntu-latest-cmake
- macOS-latest-cmake
- ubuntu-cpu-cmake
- windows-latest-cmake
- windows-2019-cmake-cuda
- windows-latest-cmake-hip-release
@ -1461,3 +1475,37 @@ jobs:
# popd
# emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
# make
openEuler-latest-cmake-cann:
if: ${{ github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'Ascend NPU') }}
defaults:
run:
shell: bash -el {0}
runs-on: ubuntu-24.04-arm
strategy:
matrix:
cann:
- '8.0.rc3.beta1-910b-openeuler22.03-py3.10'
device:
- 'ascend910b3'
build:
- 'Release'
container: ascendai/cann:${{ matrix.cann }}
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Dependencies
run: |
yum update -y
yum install -y git gcc gcc-c++ make cmake
- name: Build
run: |
export LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/$(uname -m)-linux/devlib/:${LD_LIBRARY_PATH}
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=${{ matrix.build }} \
-DGGML_CANN=on \
-DSOC_TYPE=${{ matrix.device }}
cmake --build build -j $(nproc)

View File

@ -16,6 +16,7 @@ endif()
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
set(LLAMA_STANDALONE ON)
@ -49,6 +50,7 @@ endif()
if (MSVC)
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/utf-8>")
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/utf-8>")
add_compile_options(/bigobj)
endif()
#

View File

@ -1361,7 +1361,9 @@ llama-server: \
examples/server/httplib.h \
examples/server/index.html.hpp \
examples/server/loading.html.hpp \
common/chat-template.hpp \
common/json.hpp \
common/minja.hpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)

View File

@ -16,7 +16,9 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
## Hot topics
- **Introducing GGUF-my-LoRA** https://github.com/ggerganov/llama.cpp/discussions/10123
- **VS Code extension for FIM completions:** https://github.com/ggml-org/llama.vscode
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
- Introducing GGUF-my-LoRA https://github.com/ggerganov/llama.cpp/discussions/10123
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggerganov/llama.cpp/discussions/9669
- Hugging Face GGUF editor: [discussion](https://github.com/ggerganov/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)

View File

@ -44,7 +44,7 @@ if(MSVC)
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
else()
execute_process(
COMMAND sh -c "$@ --version | head -1" _ ${CMAKE_C_COMPILER}
COMMAND sh -c "\"$@\" --version | head -1" _ ${CMAKE_C_COMPILER}
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)

View File

@ -56,6 +56,7 @@ add_library(${TARGET} STATIC
arg.cpp
arg.h
base64.hpp
chat-template.hpp
common.cpp
common.h
console.cpp
@ -64,6 +65,7 @@ add_library(${TARGET} STATIC
json.hpp
log.cpp
log.h
minja.hpp
ngram-cache.cpp
ngram-cache.h
sampling.cpp

View File

@ -133,7 +133,8 @@ static void common_params_handle_model_default(
const std::string & model_url,
std::string & hf_repo,
std::string & hf_file,
const std::string & hf_token) {
const std::string & hf_token,
const std::string & model_default) {
if (!hf_repo.empty()) {
// short-hand to avoid specifying --hf-file -> default it to --model
if (hf_file.empty()) {
@ -163,7 +164,7 @@ static void common_params_handle_model_default(
model = fs_get_cache_file(string_split<std::string>(f, '/').back());
}
} else if (model.empty()) {
model = DEFAULT_MODEL_PATH;
model = model_default;
}
}
@ -299,8 +300,9 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
}
// TODO: refactor model params in a common struct
common_params_handle_model_default(params.model, params.model_url, params.hf_repo, params.hf_file, params.hf_token);
common_params_handle_model_default(params.vocoder.model, params.vocoder.model_url, params.vocoder.hf_repo, params.vocoder.hf_file, params.hf_token);
common_params_handle_model_default(params.model, params.model_url, params.hf_repo, params.hf_file, params.hf_token, DEFAULT_MODEL_PATH);
common_params_handle_model_default(params.speculative.model, params.speculative.model_url, params.speculative.hf_repo, params.speculative.hf_file, params.hf_token, "");
common_params_handle_model_default(params.vocoder.model, params.vocoder.model_url, params.vocoder.hf_repo, params.vocoder.hf_file, params.hf_token, "");
if (params.escape) {
string_process_escapes(params.prompt);
@ -323,6 +325,14 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
}
if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
throw std::runtime_error(string_format(
"error: the supplied chat template is not supported: %s%s\n",
params.chat_template.c_str(),
params.use_jinja ? "" : "\nnote: llama.cpp was started without --jinja, we only support commonly used templates"
));
}
return true;
}
@ -1629,6 +1639,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.hf_repo = value;
}
).set_env("LLAMA_ARG_HF_REPO"));
add_opt(common_arg(
{"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
"Same as --hf-repo, but for the draft model (default: unused)",
[](common_params & params, const std::string & value) {
params.speculative.hf_repo = value;
}
).set_env("LLAMA_ARG_HFD_REPO"));
add_opt(common_arg(
{"-hff", "--hf-file"}, "FILE",
"Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
@ -1938,24 +1955,44 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--jinja"},
"use jinja template for chat (default: disabled)",
[](common_params & params) {
params.use_jinja = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_JINJA"));
add_opt(common_arg(
{"--chat-template"}, "JINJA_TEMPLATE",
string_format(
"set custom jinja chat template (default: template taken from model's metadata)\n"
"if suffix/prefix are specified, template will be disabled\n"
"only commonly used templates are accepted (unless --jinja is set before this flag):\n"
"list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
),
[](common_params & params, const std::string & value) {
if (!common_chat_verify_template(value)) {
throw std::runtime_error(string_format(
"error: the supplied chat template is not supported: %s\n"
"note: llama.cpp does not use jinja parser, we only support commonly used templates\n",
value.c_str()
));
}
params.chat_template = value;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
add_opt(common_arg(
{"--chat-template-file"}, "JINJA_TEMPLATE_FILE",
string_format(
"set custom jinja chat template file (default: template taken from model's metadata)\n"
"if suffix/prefix are specified, template will be disabled\n"
"only commonly used templates are accepted (unless --jinja is set before this flag):\n"
"list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
),
[](common_params & params, const std::string & value) {
std::ifstream file(value);
if (!file) {
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
}
std::copy(
std::istreambuf_iterator<char>(file),
std::istreambuf_iterator<char>(),
std::back_inserter(params.chat_template));
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE"));
add_opt(common_arg(
{"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),

268
common/chat-template.hpp Normal file
View File

@ -0,0 +1,268 @@
/*
Copyright 2024 Google LLC
Use of this source code is governed by an MIT-style
license that can be found in the LICENSE file or at
https://opensource.org/licenses/MIT.
*/
// SPDX-License-Identifier: MIT
#pragma once
#include "minja.hpp"
#include <json.hpp>
#include <string>
#include <vector>
using json = nlohmann::ordered_json;
namespace minja {
class chat_template {
public:
private:
bool supports_tools_ = true;
// Meta-Llama-3.1-8B-Instruct's template expects arguments to be an object.
// Most other templates (and OpenAI's API) expect the arguments object to be stringified.
bool requires_object_arguments_ = false;
bool requires_typed_content_ = false;
bool supports_system_role_ = true;
bool supports_parallel_tool_calls_ = false;
std::string source_;
std::string bos_token_;
std::string eos_token_;
std::shared_ptr<minja::TemplateNode> template_root_;
std::string try_raw_render(
const nlohmann::ordered_json & messages,
const nlohmann::ordered_json & tools,
bool add_generation_prompt,
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json()) const
{
try {
auto prompt = apply(messages, tools, add_generation_prompt, extra_context, /* adjust_inputs= */ false);
// fprintf(stderr, "Prompt: %s\n", prompt.c_str());
return prompt;
} catch (const std::exception & e) {
// fprintf(stderr, "Error: %s\n", e.what());
return "";
}
}
public:
chat_template(const std::string & source, const std::string & bos_token, const std::string & eos_token)
: source_(source), bos_token_(bos_token), eos_token_(eos_token)
{
template_root_ = minja::Parser::parse(source_, {
/* .trim_blocks = */ true,
/* .lstrip_blocks = */ true,
/* .keep_trailing_newline = */ false,
});
supports_tools_ = source.find("tools") != std::string::npos;
auto renders_string_arguments =
try_raw_render({
{
{"role", "user"},
{"content", "Hey"}
},
{
{"role", "assistant"},
{"tool_calls", json::array({
{
{"id", "call_1___"},
{"type", "function"},
{"function", {
{"arguments", "{\"code\": \"print('Hello, World!')\"}"},
{"name", "ipython"},
}},
},
})},
}
}, {}, false).find("{\"code\": \"print") != std::string::npos;
if (!renders_string_arguments) {
auto renders_object_arguments =
try_raw_render({
{
{"role", "user"},
{"content", "Hey"}
},
{
{"role", "assistant"},
{"tool_calls", json::array({
{
{"id", "call_1___"},
{"type", "function"},
{"function", {
{"arguments", {
{"code", "print('Hello, World!')"},
}},
{"name", "ipython"},
}},
},
})},
}
}, {}, false).find("{\"code\": \"print") != std::string::npos;
requires_object_arguments_ = renders_object_arguments;
}
supports_parallel_tool_calls_ = source.find("tool_call_id") != std::string::npos;
supports_system_role_ = try_raw_render({
{{"role", "system"}, {"content", "<System Needle>"}},
{{"role", "user"}, {"content", "Hey"}}
}, {}, false).find("<System Needle>") != std::string::npos;
requires_typed_content_ = try_raw_render({{{"role", "user"}, {"content", "Hey"}}}, {}, false).find("Hey") == std::string::npos
&& try_raw_render({{{"role", "user"}, {"content", {{{"type", "text"}, {"text", "Hey"}}}}}}, {}, false).find("Hey") != std::string::npos;
}
const std::string & source() const { return source_; }
const std::string & bos_token() const { return bos_token_; }
const std::string & eos_token() const { return eos_token_; }
bool supports_tools() const { return supports_tools_; }
bool supports_parallel_tool_calls() const { return supports_parallel_tool_calls_; }
std::string apply(
const nlohmann::ordered_json & messages,
const nlohmann::ordered_json & tools,
bool add_generation_prompt,
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json(),
bool adjust_inputs = true) const
{
json actual_messages;
// First, "fix" messages so they have a chance to be rendered correctly by the template
if (adjust_inputs && (requires_object_arguments_ || !supports_system_role_ || !supports_tools_ || requires_typed_content_)) {
actual_messages = json::array();
auto add_message = [&](const json & msg) {
if (requires_typed_content_ && msg.contains("content") && !msg.at("content").is_null() && msg.at("content").is_string()) {
actual_messages.push_back({
{"role", msg.at("role")},
{"content", {{
{"type", "text"},
{"text", msg.at("content")},
}}},
});
} else {
actual_messages.push_back(msg);
}
};
std::string pending_system;
auto flush_sys = [&]() {
if (!pending_system.empty()) {
add_message({
{"role", "user"},
{"content", pending_system},
});
pending_system.clear();
}
};
for (const auto & message_ : messages) {
auto message = message_;
if (!message.contains("role") || !message.contains("content")) {
throw std::runtime_error("message must have 'role' and 'content' fields: " + message.dump());
}
std::string role = message.at("role");
if (message.contains("tool_calls")) {
if (requires_object_arguments_ || !supports_tools_) {
for (auto & tool_call : message.at("tool_calls")) {
if (tool_call["type"] == "function") {
auto & function = tool_call.at("function");
std::string arguments = function.at("arguments");
function["arguments"] = json::parse(arguments);
}
}
}
if (!supports_tools_) {
auto content = message.at("content");
auto tool_calls = json::array();
for (const auto & tool_call : message.at("tool_calls")) {
if (tool_call.at("type") != "function") {
continue;
}
const auto & function = tool_call.at("function");
auto tc = json {
{"name", function.at("name")},
{"arguments", function.at("arguments")},
};
if (tool_call.contains("id")) {
tc["id"] = tool_call["id"];
}
tool_calls.push_back(tc);
}
auto obj = json {
{"tool_calls", tool_calls},
};
if (!content.is_null() && content != "") {
obj["content"] = content;
}
message["content"] = obj.dump(2);
message.erase("tool_calls");
}
}
if (!supports_tools_ && role == "tool") {
message["role"] = "user";
auto obj = json {
{"tool_response", {
{"tool", message.at("name")},
{"content", message.at("content")},
}},
};
if (message.contains("tool_call_id")) {
obj["tool_response"]["tool_call_id"] = message.at("tool_call_id");
}
message["content"] = obj.dump(2);
message.erase("name");
}
if (!message["content"].is_null() && !supports_system_role_) {
std::string content = message.at("content");
if (role == "system") {
if (!pending_system.empty()) pending_system += "\n";
pending_system += content;
continue;
} else {
if (role == "user") {
if (!pending_system.empty()) {
message["content"] = pending_system + (content.empty() ? "" : "\n" + content);
pending_system.clear();
}
} else {
flush_sys();
}
}
}
add_message(message);
}
flush_sys();
} else {
actual_messages = messages;
}
auto context = minja::Context::make(json({
{"messages", actual_messages},
{"add_generation_prompt", add_generation_prompt},
{"bos_token", bos_token_},
{"eos_token", eos_token_},
}));
if (!tools.is_null()) {
auto tools_val = minja::Value(tools);
context->set("tools", tools_val);
}
if (!extra_context.is_null()) {
for (auto & kv : extra_context.items()) {
minja::Value val(kv.value());
context->set(kv.key(), val);
}
}
return template_root_->render(context);
}
};
} // namespace minja

View File

@ -12,6 +12,7 @@
#include "json.hpp"
#include "json-schema-to-grammar.h"
#include "llama.h"
#include "chat-template.hpp"
#include <algorithm>
#include <cinttypes>
@ -483,6 +484,48 @@ void string_replace_all(std::string & s, const std::string & search, const std::
s = std::move(builder);
}
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
std::ostringstream result;
for (size_t i = 0; i < values.size(); ++i) {
if (i > 0) {
result << separator;
}
result << values[i];
}
return result.str();
}
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter) {
std::vector<std::string> parts;
size_t start = 0;
size_t end = str.find(delimiter);
while (end != std::string::npos) {
parts.push_back(str.substr(start, end - start));
start = end + delimiter.length();
end = str.find(delimiter, start);
}
parts.push_back(str.substr(start));
return parts;
}
std::string string_repeat(const std::string & str, size_t n) {
if (n == 0) {
return "";
}
std::string result;
result.reserve(str.length() * n);
for (size_t i = 0; i < n; ++i) {
result += str;
}
return result;
}
std::string string_from(bool value) {
return value ? "true" : "false";
}
@ -1728,67 +1771,75 @@ std::string common_detokenize(const struct llama_vocab * vocab, const std::vecto
// Chat template utils
//
std::string common_get_builtin_chat_template(const struct llama_model * model) {
const char * ptr_tmpl = llama_model_chat_template(model);
return ptr_tmpl == nullptr ? "" : ptr_tmpl;
}
bool common_chat_verify_template(const std::string & tmpl) {
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja) {
if (use_jinja) {
try {
auto chat_template = minja::chat_template(tmpl, "<s>", "</s>");
chat_template.apply({{
{"role", "user"},
{"content", "test"},
}}, json(), true);
return true;
} catch (const std::exception & e) {
LOG_ERR("%s: failed to apply template: %s\n", __func__, e.what());
return false;
}
}
llama_chat_message chat[] = {{"user", "test"}};
const int res = llama_chat_apply_template(tmpl.c_str(), chat, 1, true, nullptr, 0);
return res >= 0;
}
std::string common_chat_apply_template(const struct llama_model * model,
const std::string & tmpl,
std::string common_chat_apply_template(
const common_chat_template & tmpl,
const std::vector<common_chat_msg> & msgs,
bool add_ass) {
bool add_ass,
bool use_jinja) {
if (use_jinja) {
auto messages = json::array();
for (const auto & msg : msgs) {
messages.push_back({{"role", msg.role}, {"content", msg.content}});
}
return tmpl.apply(messages, /* tools= */ json(), add_ass);
}
int alloc_size = 0;
bool fallback = false; // indicate if we must fallback to default chatml
std::vector<llama_chat_message> chat;
for (const auto & msg : msgs) {
chat.push_back({msg.role.c_str(), msg.content.c_str()});
alloc_size += (msg.role.size() + msg.content.size()) * 1.25;
}
const char * ptr_tmpl = tmpl.empty() ? llama_model_chat_template(model) : tmpl.c_str();
std::vector<char> buf(alloc_size);
// run the first time to get the total output length
int32_t res = llama_chat_apply_template(ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
int32_t res = llama_chat_apply_template(tmpl.source().c_str(), chat.data(), chat.size(), add_ass, buf.data(), buf.size());
// error: chat template is not supported
if (res < 0) {
if (ptr_tmpl != nullptr) {
// if the custom "tmpl" is not supported, we throw an error
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
throw std::runtime_error("this custom template is not supported");
}
// If the built-in template is not supported, we default to chatml
res = llama_chat_apply_template("chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size());
fallback = true;
// if the custom "tmpl" is not supported, we throw an error
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
throw std::runtime_error("this custom template is not supported");
}
// if it turns out that our buffer is too small, we resize it
if ((size_t) res > buf.size()) {
buf.resize(res);
res = llama_chat_apply_template(
fallback ? "chatml" : ptr_tmpl,
chat.data(), chat.size(), add_ass, buf.data(), buf.size());
res = llama_chat_apply_template(tmpl.source().c_str(), chat.data(), chat.size(), add_ass, buf.data(), buf.size());
}
std::string formatted_chat(buf.data(), res);
return formatted_chat;
}
std::string common_chat_format_single(const struct llama_model * model,
const std::string & tmpl,
std::string common_chat_format_single(
const common_chat_template & tmpl,
const std::vector<common_chat_msg> & past_msg,
const common_chat_msg & new_msg,
bool add_ass) {
bool add_ass,
bool use_jinja) {
std::ostringstream ss;
auto fmt_past_msg = past_msg.empty() ? "" : common_chat_apply_template(model, tmpl, past_msg, false);
auto fmt_past_msg = past_msg.empty() ? "" : common_chat_apply_template(tmpl, past_msg, false, use_jinja);
std::vector<common_chat_msg> chat_new(past_msg);
// if the past_msg ends with a newline, we must preserve it in the formatted version
if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
@ -1796,21 +1847,74 @@ std::string common_chat_format_single(const struct llama_model * model,
};
// format chat with new_msg
chat_new.push_back(new_msg);
auto fmt_new_msg = common_chat_apply_template(model, tmpl, chat_new, add_ass);
auto fmt_new_msg = common_chat_apply_template(tmpl, chat_new, add_ass, use_jinja);
// get the diff part
ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
return ss.str();
}
std::string common_chat_format_example(const struct llama_model * model,
const std::string & tmpl) {
std::string common_chat_format_example(const common_chat_template & tmpl, bool use_jinja) {
std::vector<common_chat_msg> msgs = {
{"system", "You are a helpful assistant"},
{"user", "Hello"},
{"assistant", "Hi there"},
{"user", "How are you?"},
};
return common_chat_apply_template(model, tmpl, msgs, true);
return common_chat_apply_template(tmpl, msgs, true, use_jinja);
}
common_chat_templates common_chat_templates_from_model(const struct llama_model * model, const std::string & chat_template_override)
{
auto vocab = llama_model_get_vocab(model);
std::string default_template_src = chat_template_override;
std::string template_tool_use_src = chat_template_override;
bool has_explicit_template = !chat_template_override.empty();
if (chat_template_override.empty()) {
auto str = llama_model_chat_template(model, /* name */ nullptr);
if (str) {
default_template_src = str;
has_explicit_template = true;
}
str = llama_model_chat_template(model, /* name */ "tool_use");
if (str) {
template_tool_use_src = str;
has_explicit_template = true;
}
}
if (default_template_src.empty() || default_template_src == "chatml") {
if (!template_tool_use_src.empty()) {
default_template_src = template_tool_use_src;
} else {
default_template_src = R"(
{%- for message in messages -%}
{{- "<|im_start|>" + message.role + "\n" + message.content + "<|im_end|>\n" -}}
{%- endfor -%}
{%- if add_generation_prompt -%}
{{- "<|im_start|>assistant\n" -}}
{%- endif -%}
)";
}
}
const auto get_token = [&](llama_token token, const char * name, const char * jinja_variable_name) {
if (token == LLAMA_TOKEN_NULL) {
if (default_template_src.find(jinja_variable_name) != std::string::npos
|| template_tool_use_src.find(jinja_variable_name) != std::string::npos) {
LOG_WRN("%s: warning: vocab does not have a %s token, jinja template won't work as intended.\n", __func__, name);
}
return std::string();
} else {
return common_token_to_piece(vocab, token, true);
}
};
auto token_bos = get_token(llama_vocab_bos(vocab), "BOS", "bos_token");
auto token_eos = get_token(llama_vocab_eos(vocab), "EOS", "eos_token");
return {
has_explicit_template,
std::make_unique<minja::chat_template>(default_template_src, token_bos, token_eos),
template_tool_use_src.empty()
? nullptr
: std::make_unique<minja::chat_template>(template_tool_use_src, token_bos, token_eos)
};
}
//

View File

@ -175,7 +175,11 @@ struct common_params_speculative {
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
std::string model = ""; // draft model for speculative decoding // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string model = ""; // draft model for speculative decoding // NOLINT
std::string model_url = ""; // model url to download // NOLINT
};
struct common_params_vocoder {
@ -330,6 +334,7 @@ struct common_params {
std::string hostname = "127.0.0.1";
std::string public_path = ""; // NOLINT
std::string chat_template = ""; // NOLINT
bool use_jinja = false; // NOLINT
bool enable_chat_template = true;
std::vector<std::string> api_keys;
@ -424,6 +429,10 @@ std::string string_format(const char * fmt, ...);
std::string string_strip(const std::string & str);
std::string string_get_sortable_timestamp();
std::string string_join(const std::vector<std::string> & values, const std::string & separator);
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter);
std::string string_repeat(const std::string & str, size_t n);
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
template<class T>
@ -508,12 +517,14 @@ struct llama_model * common_load_model_from_url(
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
struct llama_model * common_load_model_from_hf(
const std::string & repo,
const std::string & remote_path,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
std::pair<std::string, std::string> common_get_hf_file(
const std::string & hf_repo_with_tag,
const std::string & hf_token);
@ -597,30 +608,43 @@ struct common_chat_msg {
std::string content;
};
// Get the built-in chat template for the model. Return empty string if not present.
std::string common_get_builtin_chat_template(const struct llama_model * model);
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
bool common_chat_verify_template(const std::string & tmpl);
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja);
namespace minja {
class chat_template;
}
typedef minja::chat_template common_chat_template;
struct common_chat_templates {
bool has_explicit_template; // Model had builtin template or template overridde was specified.
std::unique_ptr<common_chat_template> template_default; // always set (defaults to chatml)
std::unique_ptr<common_chat_template> template_tool_use;
};
// CPP wrapper for llama_chat_apply_template
// If the built-in template is not supported, we default to chatml
// If the custom "tmpl" is not supported, we throw an error
std::string common_chat_apply_template(const struct llama_model * model,
const std::string & tmpl,
std::string common_chat_apply_template(
const common_chat_template & tmpl,
const std::vector<common_chat_msg> & chat,
bool add_ass);
bool add_ass,
bool use_jinja);
// Format single message, while taking into account the position of that message in chat history
std::string common_chat_format_single(const struct llama_model * model,
const std::string & tmpl,
std::string common_chat_format_single(
const common_chat_template & tmpl,
const std::vector<common_chat_msg> & past_msg,
const common_chat_msg & new_msg,
bool add_ass);
bool add_ass,
bool use_jinja);
// Returns an example of formatted chat
std::string common_chat_format_example(const struct llama_model * model,
const std::string & tmpl);
std::string common_chat_format_example(
const common_chat_template & tmpl, bool use_jinja);
common_chat_templates common_chat_templates_from_model(const struct llama_model * model, const std::string & chat_template_override);
//
// KV cache utils

View File

@ -1,4 +1,6 @@
#include "json-schema-to-grammar.h"
#include "common.h"
#include <algorithm>
#include <fstream>
#include <map>
@ -11,11 +13,6 @@
using json = nlohmann::ordered_json;
template <typename Iterator>
static std::string join(Iterator begin, Iterator end, const std::string & separator);
static std::string repeat(const std::string & str, size_t n);
static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "") {
auto has_max = max_items != std::numeric_limits<int>::max();
@ -128,8 +125,8 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
if (sub_len > 0) {
auto from_sub = from.substr(i + 1);
auto to_sub = to.substr(i + 1);
auto sub_zeros = repeat("0", sub_len);
auto sub_nines = repeat("9", sub_len);
auto sub_zeros = string_repeat("0", sub_len);
auto sub_nines = string_repeat("9", sub_len);
auto to_reached = false;
out << "(";
@ -188,8 +185,8 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
auto max_digits = max_s.length();
for (auto digits = min_digits; digits < max_digits; digits++) {
uniform_range(min_s, repeat("9", digits));
min_s = "1" + repeat("0", digits);
uniform_range(min_s, string_repeat("9", digits));
min_s = "1" + string_repeat("0", digits);
out << " | ";
}
uniform_range(min_s, max_s);
@ -318,49 +315,6 @@ std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
std::unordered_set<char> ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'^', '$', '.', '[', ']', '(', ')', '|', '{', '}', '*', '+', '?'};
template <typename Iterator>
std::string join(Iterator begin, Iterator end, const std::string & separator) {
std::ostringstream result;
if (begin != end) {
result << *begin;
for (Iterator it = begin + 1; it != end; ++it) {
result << separator << *it;
}
}
return result.str();
}
static std::vector<std::string> split(const std::string & str, const std::string & delimiter) {
std::vector<std::string> tokens;
size_t start = 0;
size_t end = str.find(delimiter);
while (end != std::string::npos) {
tokens.push_back(str.substr(start, end - start));
start = end + delimiter.length();
end = str.find(delimiter, start);
}
tokens.push_back(str.substr(start));
return tokens;
}
static std::string repeat(const std::string & str, size_t n) {
if (n == 0) {
return "";
}
std::string result;
result.reserve(str.length() * n);
for (size_t i = 0; i < n; ++i) {
result += str;
}
return result;
}
static std::string replacePattern(const std::string & input, const std::regex & regex, const std::function<std::string(const std::smatch &)> & replacement) {
std::smatch match;
std::string result;
@ -389,6 +343,7 @@ static std::string format_literal(const std::string & literal) {
class SchemaConverter {
private:
friend std::string build_grammar(const std::function<void(const llama_grammar_builder &)> & cb);
std::function<json(const std::string &)> _fetch_json;
bool _dotall;
std::map<std::string, std::string> _rules;
@ -418,7 +373,7 @@ private:
for (size_t i = 0; i < alt_schemas.size(); i++) {
rules.push_back(visit(alt_schemas[i], name + (name.empty() ? "alternative-" : "-") + std::to_string(i)));
}
return join(rules.begin(), rules.end(), " | ");
return string_join(rules, " | ");
}
std::string _visit_pattern(const std::string & pattern, const std::string & name) {
@ -481,7 +436,7 @@ private:
for (const auto & item : ret) {
results.push_back(to_rule(item));
}
return std::make_pair(join(results.begin(), results.end(), " "), false);
return std::make_pair(string_join(results, " "), false);
};
while (i < length) {
@ -539,7 +494,7 @@ private:
}
curly_brackets += '}';
i++;
auto nums = split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
auto nums = string_split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
int min_times = 0;
int max_times = std::numeric_limits<int>::max();
try {
@ -854,7 +809,7 @@ public:
return;
}
std::string pointer = ref.substr(ref.find('#') + 1);
std::vector<std::string> tokens = split(pointer, "/");
std::vector<std::string> tokens = string_split(pointer, "/");
for (size_t i = 1; i < tokens.size(); ++i) {
std::string sel = tokens[i];
if (target.is_null() || !target.contains(sel)) {
@ -905,7 +860,7 @@ public:
for (const auto & v : schema["enum"]) {
enum_values.push_back(_generate_constant_rule(v));
}
return _add_rule(rule_name, "(" + join(enum_values.begin(), enum_values.end(), " | ") + ") space");
return _add_rule(rule_name, "(" + string_join(enum_values, " | ") + ") space");
} else if ((schema_type.is_null() || schema_type == "object")
&& (schema.contains("properties") ||
(schema.contains("additionalProperties") && schema["additionalProperties"] != true))) {
@ -1019,10 +974,10 @@ public:
void check_errors() {
if (!_errors.empty()) {
throw std::runtime_error("JSON schema conversion failed:\n" + join(_errors.begin(), _errors.end(), "\n"));
throw std::runtime_error("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
}
if (!_warnings.empty()) {
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", join(_warnings.begin(), _warnings.end(), "; ").c_str());
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str());
}
}
@ -1036,10 +991,27 @@ public:
};
std::string json_schema_to_grammar(const json & schema) {
SchemaConverter converter([](const std::string &) { return json::object(); }, /* dotall= */ false);
auto copy = schema;
converter.resolve_refs(copy, "input");
converter.visit(copy, "");
return build_grammar([&](const llama_grammar_builder & callbacks) {
auto copy = schema;
callbacks.resolve_refs(copy);
callbacks.add_schema("", copy);
});
}
std::string build_grammar(const std::function<void(const llama_grammar_builder &)> & cb) {
SchemaConverter converter([&](const std::string &) { return json(); }, /* dotall= */ false);
llama_grammar_builder builder {
/* .add_rule = */ [&](const std::string & name, const std::string & rule) {
return converter._add_rule(name, rule);
},
/* .add_schema = */ [&](const std::string & name, const nlohmann::ordered_json & schema) {
return converter.visit(schema, name == "root" ? "" : name);
},
/* .resolve_refs = */ [&](nlohmann::ordered_json & schema) {
converter.resolve_refs(schema, "");
}
};
cb(builder);
converter.check_errors();
return converter.format_grammar();
}

View File

@ -5,4 +5,12 @@
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
std::string json_schema_to_grammar(const nlohmann::ordered_json& schema);
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema);
struct llama_grammar_builder {
std::function<std::string(const std::string &, const std::string &)> add_rule;
std::function<std::string(const std::string &, const nlohmann::ordered_json &)> add_schema;
std::function<void(nlohmann::ordered_json &)> resolve_refs;
};
std::string build_grammar(const std::function<void(const llama_grammar_builder &)> & cb);

2812
common/minja.hpp Normal file

File diff suppressed because it is too large Load Diff

View File

@ -696,6 +696,9 @@ class Model:
if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
# ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
res = "deepseek-v3"
if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
# ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
res = "deepseek-r1-qwen"
if res is None:
logger.warning("\n")

View File

@ -65,49 +65,50 @@ else:
# TODO: add models here, base models preferred
models = [
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
{"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
{"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
{"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
{"name": "falcon3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon3-7B-Base", },
{"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", },
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
{"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", },
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
{"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", },
{"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", },
{"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B
{"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", },
{"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", },
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", },
{"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", },
{"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", },
{"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", },
{"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", },
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
{"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"},
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
{"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
{"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
{"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
{"name": "falcon3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon3-7B-Base", },
{"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", },
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
{"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", },
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
{"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", },
{"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", },
{"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B
{"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", },
{"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", },
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", },
{"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", },
{"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", },
{"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", },
{"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", },
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
{"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"},
{"name": "deepseek-r1-qwen", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"},
]

View File

@ -133,7 +133,7 @@ The docker build option is currently limited to *intel GPU* targets.
### Build image
```sh
# Using FP16
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" -f .devops/llama-cli-intel.Dockerfile .
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
```
*Notes*:

View File

@ -286,7 +286,7 @@ You don't need to install Vulkan SDK. It will be installed inside the container.
```sh
# Build the image
docker build -t llama-cpp-vulkan -f .devops/llama-cli-vulkan.Dockerfile .
docker build -t llama-cpp-vulkan --target light -f .devops/vulkan.Dockerfile .
# Then, use it:
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33

View File

@ -60,9 +60,9 @@ Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia
## Building Docker locally
```bash
docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
docker build -t local/llama.cpp:light-cuda -f .devops/llama-cli-cuda.Dockerfile .
docker build -t local/llama.cpp:server-cuda -f .devops/llama-server-cuda.Dockerfile .
docker build -t local/llama.cpp:full-cuda --target full -f .devops/cuda.Dockerfile .
docker build -t local/llama.cpp:light-cuda --target light -f .devops/cuda.Dockerfile .
docker build -t local/llama.cpp:server-cuda --target server -f .devops/cuda.Dockerfile .
```
You may want to pass in some different `ARGS`, depending on the CUDA environment supported by your container host, as well as the GPU architecture.
@ -95,9 +95,9 @@ Assuming one has the [mt-container-toolkit](https://developer.mthreads.com/musa/
## Building Docker locally
```bash
docker build -t local/llama.cpp:full-musa -f .devops/full-musa.Dockerfile .
docker build -t local/llama.cpp:light-musa -f .devops/llama-cli-musa.Dockerfile .
docker build -t local/llama.cpp:server-musa -f .devops/llama-server-musa.Dockerfile .
docker build -t local/llama.cpp:full-musa --target full -f .devops/musa.Dockerfile .
docker build -t local/llama.cpp:light-musa --target light -f .devops/musa.Dockerfile .
docker build -t local/llama.cpp:server-musa --target server -f .devops/musa.Dockerfile .
```
You may want to pass in some different `ARGS`, depending on the MUSA environment supported by your container host, as well as the GPU architecture.

View File

@ -345,8 +345,18 @@ struct lora_merge_ctx {
gf = ggml_new_graph(ctx0);
struct ggml_tensor * cur = inp_base;
for (size_t i = 0; i < adapters.size(); ++i) {
struct ggml_tensor * a_T = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32)));
struct ggml_tensor * delta = ggml_mul_mat(ctx0, a_T, ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32));
struct ggml_tensor * delta;
bool is_tok_embd = string_starts_with(name_base, "token_embd");
if (is_tok_embd) {
printf("%s : detected token embeddings tensor\n", __func__);
delta = ggml_mul_mat(ctx0,
ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32),
ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32));
} else {
delta = ggml_mul_mat(ctx0,
ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32))),
ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32));
}
// scale
const float alpha = adapters[i]->alpha;
const float rank = (float) inp_b[i]->ne[0];

View File

@ -0,0 +1,46 @@
## MiniCPM-o 2.6
Currently, this readme only supports minicpm-omni's image capabilities, and we will update the full-mode support as soon as possible.
### Prepare models and code
Download [MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6) PyTorch model from huggingface to "MiniCPM-o-2_6" folder.
Clone llama.cpp:
```bash
git clone git@github.com:OpenBMB/llama.cpp.git
cd llama.cpp
git checkout minicpm-omni
```
### Usage of MiniCPM-o 2.6
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) by us)
```bash
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-o-2_6
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-2_6 --minicpmv-projector ../MiniCPM-o-2_6/minicpmv.projector --output-dir ../MiniCPM-o-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 4
python ./convert_hf_to_gguf.py ../MiniCPM-o-2_6/model
# quantize int4 version
./llama-quantize ../MiniCPM-o-2_6/model/ggml-model-f16.gguf ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
```
Build llama.cpp using `CMake`:
https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md
```bash
cmake -B build
cmake --build build --config Release
```
Inference on Linux or Mac
```
# run f16 version
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run quantized int4 version
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# or run in interactive mode
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
```

View File

@ -718,6 +718,9 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
else if (ctx->minicpmv_version == 3) {
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
}
else if (ctx->minicpmv_version == 4) {
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
}
ggml_set_name(pos_embed, "pos_embed");
ggml_set_input(pos_embed);
}
@ -1053,6 +1056,11 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
n_head = hidden_size/d_head;
num_query = 64;
}
else if (ctx->minicpmv_version == 4) {
hidden_size = 3584;
n_head = hidden_size/d_head;
num_query = 64;
}
struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
@ -2041,6 +2049,7 @@ static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_imag
images[images.size()-1].push_back(patch);
}
}
clip_image_u8_free(refine_image);
}
return images;
}
@ -2079,6 +2088,13 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
clip_image_f32_free(res);
}
}
for (size_t i = 0; i < imgs.size(); ++i) {
for (size_t j = 0; j < imgs[i].size(); ++j) {
if (imgs[i][j] != nullptr) {
clip_image_u8_free(imgs[i][j]);
}
}
}
return true;
}
else if (ctx->has_qwen2vl_merger) {
@ -2335,6 +2351,9 @@ int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * i
else if (ctx->minicpmv_version == 3) {
n_patches = 64;
}
else if (ctx->minicpmv_version == 4) {
n_patches = 64;
}
} else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
int patch_size = params.patch_size * 2;
int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
@ -2514,8 +2533,8 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
int* positions_data = (int*)malloc(ggml_nbytes(positions));
int bucket_coords_h[70];
int bucket_coords_w[70];
int bucket_coords_h[1024];
int bucket_coords_w[1024];
for (int i = 0; i < pos_h; i++){
bucket_coords_h[i] = std::floor(70.0*i/pos_h);
}
@ -2543,6 +2562,9 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
else if (ctx->minicpmv_version == 3) {
embed_dim = 3584;
}
else if (ctx->minicpmv_version == 4) {
embed_dim = 3584;
}
auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
@ -2786,6 +2808,9 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
else if (ctx->minicpmv_version == 3) {
return 3584;
}
else if (ctx->minicpmv_version == 4) {
return 3584;
}
}
if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
return ctx->vision_model.mm_1_b->ne[0];

View File

@ -216,7 +216,7 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
return true;
}
static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) {
static clip_image_f32 * reshape_by_patch(clip_image_f32 * image, int patch_size) {
int width = image->nx;
int height = image->ny;
int num_patches = (height / patch_size) * (width / patch_size);
@ -277,13 +277,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
}
else {
int has_minicpmv_projector = clip_is_minicpmv(ctx_clip);
if (has_minicpmv_projector == 2) {
encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
}
else if (has_minicpmv_projector == 3) {
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
}
encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
}
if (!encoded) {
@ -313,6 +307,9 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
load_image_size->height = img->ny;
clip_add_load_image_size(ctx_clip, load_image_size);
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
delete[] img_res_v.data;
img_res_v.size = 0;
img_res_v.data = nullptr;
}
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
// flat / default llava-1.5 type embedding

View File

@ -140,6 +140,9 @@ static void process_image(struct llava_context * ctx_llava, struct llava_image_e
else if (has_minicpmv_projector == 3) {
system_prompt = "<|im_start|>user\n";
}
else if (has_minicpmv_projector == 4) {
system_prompt = "<|im_start|>user\n";
}
LOG_INF("%s: image token past: %d\n", __func__, n_past);
eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
@ -227,6 +230,9 @@ static struct common_sampler * llama_init(struct llava_context * ctx_llava, comm
else if (has_minicpmv_projector == 3) {
user_prompt = "<|im_start|>user\n" + prompt;
}
else if (has_minicpmv_projector == 4) {
user_prompt = "<|im_start|>user\n" + prompt;
}
}
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
@ -236,6 +242,9 @@ static struct common_sampler * llama_init(struct llava_context * ctx_llava, comm
else if (has_minicpmv_projector == 3) {
eval_string(ctx_llava->ctx_llama, "<|im_end|><|im_start|>assistant\n", params->n_batch, &n_past, false);
}
else if (has_minicpmv_projector == 4) {
eval_string(ctx_llava->ctx_llama, "<|im_end|><|im_start|>assistant\n", params->n_batch, &n_past, false);
}
// generate the response
@ -308,7 +317,6 @@ int main(int argc, char ** argv) {
const auto * tmp = llama_loop(ctx_llava, smpl, n_past);
response += tmp;
if (strcmp(tmp, "</s>") == 0) break;
if (strstr(tmp, "###")) break; // Yi-VL behavior
printf("%s", tmp);// mistral llava-1.6
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
fflush(stdout);

View File

@ -501,7 +501,7 @@ default_image_mean = [0.48145466, 0.4578275, 0.40821073]
default_image_std = [0.26862954, 0.26130258, 0.27577711]
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3', default=2)
ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3; MiniCPM-o-2.6 use 4', default=2)
# with proper
args = ap.parse_args()
@ -545,12 +545,19 @@ if args.use_f32:
minicpmv_version = args.minicpmv_version
emb_dim = 4096
block_count = 26
if minicpmv_version == 1:
emb_dim = 2304
block_count = 26
elif minicpmv_version == 2:
emb_dim = 4096
block_count = 27
elif minicpmv_version == 3:
emb_dim = 3584
block_count = 27
elif minicpmv_version == 4:
emb_dim = 3584
block_count = 27
default_vision_config = {
"hidden_size": 1152,
@ -567,6 +574,9 @@ model = Idefics2VisionTransformer(vision_config)
if minicpmv_version == 3:
vision_config = SiglipVisionConfig(**default_vision_config)
model = SiglipVisionTransformer(vision_config)
elif minicpmv_version == 4:
vision_config = SiglipVisionConfig(**default_vision_config)
model = SiglipVisionTransformer(vision_config)
processor = None
# if model.attn_pool is not None:
@ -587,7 +597,7 @@ elif args.minicpmv_projector is not None:
fname_middle = "mmproj-"
has_text_encoder = False
has_minicpmv_projector = True
minicpmv_version = 3
minicpmv_version = 4
elif args.vision_only:
fname_middle = "vision-"
has_text_encoder = False
@ -625,7 +635,6 @@ if has_vision_encoder:
fout.add_uint32("clip.vision.projection_dim", 0)
fout.add_uint32(add_key_str(KEY_ATTENTION_HEAD_COUNT, VISION), 16)
fout.add_float32(add_key_str(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
block_count = 26
fout.add_uint32(add_key_str(KEY_BLOCK_COUNT, VISION), block_count)
if processor is not None:

View File

@ -8,7 +8,7 @@ ap.add_argument("-m", "--model", help="Path to MiniCPM-V model")
args = ap.parse_args()
# find the model part that includes the the multimodal projector weights
model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True)
model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True, torch_dtype=torch.bfloat16)
checkpoint = model.state_dict()
# get a list of mm tensor names

View File

@ -310,9 +310,9 @@ These options help improve the performance and memory usage of the LLaMA models.
### Batch Size
- `-b N, --batch-size N`: Set the batch size for prompt processing (default: `2048`). This large batch size benefits users who have BLAS installed and enabled it during the build. If you don't have BLAS enabled ("BLAS=0"), you can use a smaller number, such as 8, to see the prompt progress as it's evaluated in some situations.
- `-ub N`, `--ubatch-size N`: Physical batch size. This is the maximum number of tokens that may be processed at a time. Increasing this value may improve performance during prompt processing, at the expense of higher memory usage. Default: `512`.
- `-ub N`, `--ubatch-size N`: physical maximum batch size. This is for pipeline parallelization. Default: `512`.
- `-b N`, `--batch-size N`: Logical batch size. Increasing this value above the value of the physical batch size may improve prompt processing performance when using multiple GPUs with pipeline parallelism. Default: `2048`.
### Prompt Caching

View File

@ -4,6 +4,7 @@
#include "log.h"
#include "sampling.h"
#include "llama.h"
#include "chat-template.hpp"
#include <cstdio>
#include <cstring>
@ -84,14 +85,6 @@ static void sigint_handler(int signo) {
}
#endif
static std::string chat_add_and_format(struct llama_model * model, std::vector<common_chat_msg> & chat_msgs, const std::string & role, const std::string & content) {
common_chat_msg new_msg{role, content};
auto formatted = common_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user");
chat_msgs.push_back({role, content});
LOG_DBG("formatted: '%s'\n", formatted.c_str());
return formatted;
}
int main(int argc, char ** argv) {
common_params params;
g_params = &params;
@ -165,6 +158,7 @@ int main(int argc, char ** argv) {
}
const llama_vocab * vocab = llama_model_get_vocab(model);
auto chat_templates = common_chat_templates_from_model(model, params.chat_template);
LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads);
@ -207,7 +201,7 @@ int main(int argc, char ** argv) {
}
// auto enable conversation mode if chat template is available
const bool has_chat_template = !common_get_builtin_chat_template(model).empty() || !params.chat_template.empty();
const bool has_chat_template = chat_templates.has_explicit_template && chat_templates.template_default;
if (params.conversation_mode == COMMON_CONVERSATION_MODE_AUTO) {
if (has_chat_template) {
LOG_INF("%s: chat template is available, enabling conversation mode (disable it with -no-cnv)\n", __func__);
@ -225,7 +219,7 @@ int main(int argc, char ** argv) {
// print chat template example in conversation mode
if (params.conversation_mode) {
if (params.enable_chat_template) {
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(model, params.chat_template).c_str());
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(*chat_templates.template_default, params.use_jinja).c_str());
} else {
LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
}
@ -269,10 +263,18 @@ int main(int argc, char ** argv) {
std::vector<llama_token> embd_inp;
auto chat_add_and_format = [&chat_msgs, &chat_templates](const std::string & role, const std::string & content) {
common_chat_msg new_msg{role, content};
auto formatted = common_chat_format_single(*chat_templates.template_default, chat_msgs, new_msg, role == "user", g_params->use_jinja);
chat_msgs.push_back({role, content});
LOG_DBG("formatted: '%s'\n", formatted.c_str());
return formatted;
};
{
auto prompt = (params.conversation_mode && params.enable_chat_template)
// format the system prompt in conversation mode (fallback to default if empty)
? chat_add_and_format(model, chat_msgs, "system", params.prompt.empty() ? DEFAULT_SYSTEM_MESSAGE : params.prompt)
? chat_add_and_format("system", params.prompt.empty() ? DEFAULT_SYSTEM_MESSAGE : params.prompt)
// otherwise use the prompt as is
: params.prompt;
if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
@ -779,7 +781,7 @@ int main(int argc, char ** argv) {
}
if (params.enable_chat_template) {
chat_add_and_format(model, chat_msgs, "assistant", assistant_ss.str());
chat_add_and_format("assistant", assistant_ss.str());
}
is_interacting = true;
LOG("\n");
@ -844,7 +846,7 @@ int main(int argc, char ** argv) {
bool format_chat = params.conversation_mode && params.enable_chat_template;
std::string user_inp = format_chat
? chat_add_and_format(model, chat_msgs, "user", std::move(buffer))
? chat_add_and_format("user", std::move(buffer))
: std::move(buffer);
// TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix)
const auto line_pfx = common_tokenize(ctx, params.input_prefix, false, true);

View File

@ -3,11 +3,10 @@
The purpose of this example is to demonstrate a minimal usage of llama.cpp for running models.
```bash
llama-run granite-code
llama-run granite3-moe
```
```bash
llama-run -h
Description:
Runs a llm
@ -17,7 +16,7 @@ Usage:
Options:
-c, --context-size <value>
Context size (default: 2048)
-n, --ngl <value>
-n, -ngl, --ngl <value>
Number of GPU layers (default: 0)
--temp <value>
Temperature (default: 0.8)

View File

@ -103,24 +103,26 @@
*
*/
#include <termios.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <vector>
#include "linenoise.h"
# include "linenoise.h"
#define LINENOISE_DEFAULT_HISTORY_MAX_LEN 100
#define LINENOISE_MAX_LINE 4096
static std::vector<const char*> unsupported_term = {"dumb","cons25","emacs",nullptr};
# include <ctype.h>
# include <errno.h>
# include <stdio.h>
# include <string.h>
# include <sys/file.h>
# include <sys/ioctl.h>
# include <sys/stat.h>
# include <sys/types.h>
# include <termios.h>
# include <unistd.h>
# include <memory>
# include <string>
# include <vector>
# define LINENOISE_DEFAULT_HISTORY_MAX_LEN 100
# define LINENOISE_MAX_LINE 4096
static std::vector<const char *> unsupported_term = { "dumb", "cons25", "emacs" };
static linenoiseCompletionCallback *completionCallback = NULL;
static linenoiseHintsCallback *hintsCallback = NULL;
static linenoiseFreeHintsCallback *freeHintsCallback = NULL;
@ -166,21 +168,58 @@ int linenoiseHistoryAdd(const char *line);
#define REFRESH_ALL (REFRESH_CLEAN|REFRESH_WRITE) // Do both.
static void refreshLine(struct linenoiseState *l);
class File {
public:
FILE * file = nullptr;
FILE * open(const std::string & filename, const char * mode) {
file = fopen(filename.c_str(), mode);
return file;
}
int lock() {
if (file) {
fd = fileno(file);
if (flock(fd, LOCK_EX | LOCK_NB) != 0) {
fd = -1;
return 1;
}
}
return 0;
}
~File() {
if (fd >= 0) {
flock(fd, LOCK_UN);
}
if (file) {
fclose(file);
}
}
private:
int fd = -1;
};
__attribute__((format(printf, 1, 2)))
/* Debugging function. */
#if 0
static void lndebug(const char *fmt, ...) {
static FILE *lndebug_fp = NULL;
if (lndebug_fp == NULL) {
lndebug_fp = fopen("/tmp/lndebug.txt", "a");
static File file;
if (file.file == nullptr) {
file.open("/tmp/lndebug.txt", "a");
}
if (lndebug_fp != NULL) {
if (file.file != nullptr) {
va_list args;
va_start(args, fmt);
vfprintf(lndebug_fp, fmt, args);
vfprintf(file.file, fmt, args);
va_end(args);
fflush(lndebug_fp);
fflush(file.file);
}
}
#else
@ -213,8 +252,11 @@ void linenoiseSetMultiLine(int ml) {
static int isUnsupportedTerm(void) {
char *term = getenv("TERM");
if (term == NULL) return 0;
for (int j = 0; unsupported_term[j]; ++j)
if (!strcasecmp(term, unsupported_term[j])) return 1;
for (size_t j = 0; j < unsupported_term.size(); ++j) {
if (!strcasecmp(term, unsupported_term[j])) {
return 1;
}
}
return 0;
}
@ -334,17 +376,6 @@ static void linenoiseBeep(void) {
fflush(stderr);
}
/* ============================== Completion ================================ */
/* Free a list of completion option populated by linenoiseAddCompletion(). */
static void freeCompletions(linenoiseCompletions *lc) {
size_t i;
for (i = 0; i < lc->len; i++)
free(lc->cvec[i]);
if (lc->cvec != NULL)
free(lc->cvec);
}
/* Called by completeLine() and linenoiseShow() to render the current
* edited line with the proposed completion. If the current completion table
* is already available, it is passed as second argument, otherwise the
@ -353,9 +384,9 @@ static void freeCompletions(linenoiseCompletions *lc) {
* Flags are the same as refreshLine*(), that is REFRESH_* macros. */
static void refreshLineWithCompletion(struct linenoiseState *ls, linenoiseCompletions *lc, int flags) {
/* Obtain the table of completions if the caller didn't provide one. */
linenoiseCompletions ctable = { 0, NULL };
linenoiseCompletions ctable;
if (lc == NULL) {
completionCallback(ls->buf,&ctable);
completionCallback(ls->buf, &ctable);
lc = &ctable;
}
@ -364,16 +395,17 @@ static void refreshLineWithCompletion(struct linenoiseState *ls, linenoiseComple
struct linenoiseState saved = *ls;
ls->len = ls->pos = strlen(lc->cvec[ls->completion_idx]);
ls->buf = lc->cvec[ls->completion_idx];
refreshLineWithFlags(ls,flags);
refreshLineWithFlags(ls, flags);
ls->len = saved.len;
ls->pos = saved.pos;
ls->buf = saved.buf;
} else {
refreshLineWithFlags(ls,flags);
refreshLineWithFlags(ls, flags);
}
/* Free the completions table if needed. */
if (lc != &ctable) freeCompletions(&ctable);
if (lc == &ctable) {
ctable.to_free = false;
}
}
/* This is an helper function for linenoiseEdit*() and is called when the
@ -391,11 +423,11 @@ static void refreshLineWithCompletion(struct linenoiseState *ls, linenoiseComple
* possible completions, and the caller should read for the next characters
* from stdin. */
static int completeLine(struct linenoiseState *ls, int keypressed) {
linenoiseCompletions lc = { 0, NULL };
linenoiseCompletions lc;
int nwritten;
char c = keypressed;
completionCallback(ls->buf,&lc);
completionCallback(ls->buf, &lc);
if (lc.len == 0) {
linenoiseBeep();
ls->in_completion = 0;
@ -406,7 +438,7 @@ static int completeLine(struct linenoiseState *ls, int keypressed) {
ls->in_completion = 1;
ls->completion_idx = 0;
} else {
ls->completion_idx = (ls->completion_idx+1) % (lc.len+1);
ls->completion_idx = (ls->completion_idx + 1) % (lc.len + 1);
if (ls->completion_idx == lc.len) linenoiseBeep();
}
c = 0;
@ -420,8 +452,7 @@ static int completeLine(struct linenoiseState *ls, int keypressed) {
default:
/* Update buffer and return */
if (ls->completion_idx < lc.len) {
nwritten = snprintf(ls->buf,ls->buflen,"%s",
lc.cvec[ls->completion_idx]);
nwritten = snprintf(ls->buf, ls->buflen, "%s", lc.cvec[ls->completion_idx]);
ls->len = ls->pos = nwritten;
}
ls->in_completion = 0;
@ -430,13 +461,12 @@ static int completeLine(struct linenoiseState *ls, int keypressed) {
/* Show completion or original buffer */
if (ls->in_completion && ls->completion_idx < lc.len) {
refreshLineWithCompletion(ls,&lc,REFRESH_ALL);
refreshLineWithCompletion(ls, &lc, REFRESH_ALL);
} else {
refreshLine(ls);
}
}
freeCompletions(&lc);
return c; /* Return last read character */
}
@ -462,53 +492,25 @@ void linenoiseSetFreeHintsCallback(linenoiseFreeHintsCallback *fn) {
* user typed <tab>. See the example.c source code for a very easy to
* understand example. */
void linenoiseAddCompletion(linenoiseCompletions *lc, const char *str) {
size_t len = strlen(str);
char *copy, **cvec;
copy = (char*) malloc(len + 1);
if (copy == NULL) return;
memcpy(copy,str,len+1);
cvec = (char**) realloc(lc->cvec,sizeof(char*)*(lc->len+1));
if (cvec == NULL) {
free(copy);
const size_t len = strlen(str);
auto copy = std::make_unique<char[]>(len + 1);
if (!copy) {
return;
}
memcpy(copy.get(), str, len + 1);
char ** cvec = static_cast<char **>(std::realloc(lc->cvec, sizeof(char *) * (lc->len + 1)));
if (cvec == nullptr) {
return;
}
lc->cvec = cvec;
lc->cvec[lc->len++] = copy;
}
/* =========================== Line editing ================================= */
/* We define a very simple "append buffer" structure, that is an heap
* allocated string where we can append to. This is useful in order to
* write all the escape sequences in a buffer and flush them to the standard
* output in a single call, to avoid flickering effects. */
struct abuf {
char *b;
int len;
};
static void abInit(struct abuf *ab) {
ab->b = NULL;
ab->len = 0;
}
static void abAppend(struct abuf *ab, const char *s, int len) {
char *new_ptr = (char*) realloc(ab->b,ab->len+len);
if (new_ptr == NULL) return;
memcpy(new_ptr+ab->len,s,len);
ab->b = new_ptr;
ab->len += len;
}
static void abFree(struct abuf *ab) {
free(ab->b);
lc->cvec[lc->len++] = copy.release();
}
/* Helper of refreshSingleLine() and refreshMultiLine() to show hints
* to the right of the prompt. */
static void refreshShowHints(struct abuf * ab, struct linenoiseState * l, int plen) {
static void refreshShowHints(std::string & ab, struct linenoiseState * l, int plen) {
char seq[64];
if (hintsCallback && plen+l->len < l->cols) {
int color = -1, bold = 0;
@ -522,10 +524,11 @@ static void refreshShowHints(struct abuf * ab, struct linenoiseState * l, int pl
snprintf(seq,64,"\033[%d;%d;49m",bold,color);
else
seq[0] = '\0';
abAppend(ab,seq,strlen(seq));
abAppend(ab,hint,hintlen);
ab.append(seq);
ab.append(hint, hintlen);
if (color != -1 || bold != 0)
abAppend(ab,"\033[0m",4);
ab.append("\033[0m");
/* Call the function to free the hint returned. */
if (freeHintsCallback) freeHintsCallback(hint);
}
@ -546,8 +549,7 @@ static void refreshSingleLine(struct linenoiseState *l, int flags) {
char *buf = l->buf;
size_t len = l->len;
size_t pos = l->pos;
struct abuf ab;
std::string ab;
while((plen+pos) >= l->cols) {
buf++;
len--;
@ -557,35 +559,34 @@ static void refreshSingleLine(struct linenoiseState *l, int flags) {
len--;
}
abInit(&ab);
/* Cursor to left edge */
snprintf(seq,sizeof(seq),"\r");
abAppend(&ab,seq,strlen(seq));
ab.append(seq);
if (flags & REFRESH_WRITE) {
/* Write the prompt and the current buffer content */
abAppend(&ab,l->prompt,strlen(l->prompt));
ab.append(l->prompt);
if (maskmode == 1) {
while (len--) abAppend(&ab,"*",1);
while (len--) {
ab.append("*");
}
} else {
abAppend(&ab,buf,len);
ab.append(buf, len);
}
/* Show hits if any. */
refreshShowHints(&ab,l,plen);
refreshShowHints(ab, l, plen);
}
/* Erase to right */
snprintf(seq,sizeof(seq),"\x1b[0K");
abAppend(&ab,seq,strlen(seq));
ab.append(seq);
if (flags & REFRESH_WRITE) {
/* Move cursor to original position. */
snprintf(seq,sizeof(seq),"\r\x1b[%dC", (int)(pos+plen));
abAppend(&ab,seq,strlen(seq));
ab.append(seq);
}
if (write(fd,ab.b,ab.len) == -1) {} /* Can't recover from write error. */
abFree(&ab);
(void) !write(fd, ab.c_str(), ab.size()); /* Can't recover from write error. */
}
/* Multi line low level line refresh.
@ -604,26 +605,23 @@ static void refreshMultiLine(struct linenoiseState *l, int flags) {
int col; /* colum position, zero-based. */
int old_rows = l->oldrows;
int fd = l->ofd, j;
struct abuf ab;
std::string ab;
l->oldrows = rows;
/* First step: clear all the lines used before. To do so start by
* going to the last row. */
abInit(&ab);
if (flags & REFRESH_CLEAN) {
if (old_rows-rpos > 0) {
lndebug("go down %d", old_rows-rpos);
snprintf(seq,64,"\x1b[%dB", old_rows-rpos);
abAppend(&ab,seq,strlen(seq));
ab.append(seq);
}
/* Now for every row clear it, go up. */
for (j = 0; j < old_rows-1; j++) {
lndebug("clear+up");
snprintf(seq,64,"\r\x1b[0K\x1b[1A");
abAppend(&ab,seq,strlen(seq));
ab.append(seq);
}
}
@ -631,21 +629,22 @@ static void refreshMultiLine(struct linenoiseState *l, int flags) {
/* Clean the top line. */
lndebug("clear");
snprintf(seq,64,"\r\x1b[0K");
abAppend(&ab,seq,strlen(seq));
ab.append(seq);
}
if (flags & REFRESH_WRITE) {
/* Write the prompt and the current buffer content */
abAppend(&ab,l->prompt,strlen(l->prompt));
ab.append(l->prompt);
if (maskmode == 1) {
unsigned int i;
for (i = 0; i < l->len; i++) abAppend(&ab,"*",1);
for (unsigned int i = 0; i < l->len; ++i) {
ab.append("*");
}
} else {
abAppend(&ab,l->buf,l->len);
ab.append(l->buf, l->len);
}
/* Show hits if any. */
refreshShowHints(&ab,l,plen);
refreshShowHints(ab, l, plen);
/* If we are at the very end of the screen with our prompt, we need to
* emit a newline and move the prompt to the first column. */
@ -654,9 +653,9 @@ static void refreshMultiLine(struct linenoiseState *l, int flags) {
(l->pos+plen) % l->cols == 0)
{
lndebug("<newline>");
abAppend(&ab,"\n",1);
ab.append("\n");
snprintf(seq,64,"\r");
abAppend(&ab,seq,strlen(seq));
ab.append(seq);
rows++;
if (rows > (int)l->oldrows) l->oldrows = rows;
}
@ -669,7 +668,7 @@ static void refreshMultiLine(struct linenoiseState *l, int flags) {
if (rows-rpos2 > 0) {
lndebug("go-up %d", rows-rpos2);
snprintf(seq,64,"\x1b[%dA", rows-rpos2);
abAppend(&ab,seq,strlen(seq));
ab.append(seq);
}
/* Set column. */
@ -679,14 +678,12 @@ static void refreshMultiLine(struct linenoiseState *l, int flags) {
snprintf(seq,64,"\r\x1b[%dC", col);
else
snprintf(seq,64,"\r");
abAppend(&ab,seq,strlen(seq));
ab.append(seq);
}
lndebug("\n");
l->oldpos = l->pos;
if (write(fd,ab.b,ab.len) == -1) {} /* Can't recover from write error. */
abFree(&ab);
(void) !write(fd, ab.c_str(), ab.size()); /* Can't recover from write error. */
}
/* Calls the two low level functions refreshSingleLine() or
@ -1313,16 +1310,17 @@ int linenoiseHistorySetMaxLen(int len) {
* otherwise -1 is returned. */
int linenoiseHistorySave(const char *filename) {
mode_t old_umask = umask(S_IXUSR|S_IRWXG|S_IRWXO);
FILE *fp;
int j;
fp = fopen(filename,"w");
File file;
file.open(filename, "w");
umask(old_umask);
if (fp == NULL) return -1;
if (file.file == NULL) {
return -1;
}
chmod(filename,S_IRUSR|S_IWUSR);
for (j = 0; j < history_len; j++)
fprintf(fp,"%s\n",history[j]);
fclose(fp);
for (int j = 0; j < history_len; ++j) {
fprintf(file.file, "%s\n", history[j]);
}
return 0;
}
@ -1332,12 +1330,14 @@ int linenoiseHistorySave(const char *filename) {
* If the file exists and the operation succeeded 0 is returned, otherwise
* on error -1 is returned. */
int linenoiseHistoryLoad(const char *filename) {
FILE *fp = fopen(filename,"r");
File file;
file.open(filename, "r");
char buf[LINENOISE_MAX_LINE];
if (file.file == NULL) {
return -1;
}
if (fp == NULL) return -1;
while (fgets(buf,LINENOISE_MAX_LINE,fp) != NULL) {
while (fgets(buf, LINENOISE_MAX_LINE, file.file) != NULL) {
char *p;
p = strchr(buf,'\r');
@ -1345,7 +1345,6 @@ int linenoiseHistoryLoad(const char *filename) {
if (p) *p = '\0';
linenoiseHistoryAdd(buf);
}
fclose(fp);
return 0;
}
#endif

View File

@ -45,6 +45,7 @@ extern "C" {
#endif
#include <stddef.h> /* For size_t. */
#include <stdlib.h>
extern const char *linenoiseEditMore;
@ -69,10 +70,23 @@ struct linenoiseState {
int history_index; /* The history index we are currently editing. */
};
typedef struct linenoiseCompletions {
size_t len;
char **cvec;
} linenoiseCompletions;
struct linenoiseCompletions {
size_t len = 0;
char ** cvec = nullptr;
bool to_free = true;
~linenoiseCompletions() {
if (!to_free) {
return;
}
for (size_t i = 0; i < len; ++i) {
free(cvec[i]);
}
free(cvec);
}
};
/* Non blocking API. */
int linenoiseEditStart(struct linenoiseState *l, int stdin_fd, int stdout_fd, char *buf, size_t buflen, const char *prompt);

View File

@ -28,6 +28,7 @@
#include "json.hpp"
#include "linenoise.cpp/linenoise.h"
#include "llama-cpp.h"
#include "chat-template.hpp"
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || defined(_WIN32)
[[noreturn]] static void sigint_handler(int) {
@ -105,6 +106,7 @@ class Opt {
llama_model_params model_params;
std::string model_;
std::string user;
bool use_jinja = false;
int context_size = -1, ngl = -1;
float temperature = -1;
bool verbose = false;
@ -145,7 +147,8 @@ class Opt {
if (handle_option_with_value(argc, argv, i, context_size) == 1) {
return 1;
}
} else if (options_parsing && (strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "--ngl") == 0)) {
} else if (options_parsing &&
(strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "-ngl") == 0 || strcmp(argv[i], "--ngl") == 0)) {
if (handle_option_with_value(argc, argv, i, ngl) == 1) {
return 1;
}
@ -156,6 +159,8 @@ class Opt {
} else if (options_parsing &&
(parse_flag(argv, i, "-v", "--verbose") || parse_flag(argv, i, "-v", "--log-verbose"))) {
verbose = true;
} else if (options_parsing && strcmp(argv[i], "--jinja") == 0) {
use_jinja = true;
} else if (options_parsing && parse_flag(argv, i, "-h", "--help")) {
help = true;
return 0;
@ -190,7 +195,7 @@ class Opt {
"Options:\n"
" -c, --context-size <value>\n"
" Context size (default: %d)\n"
" -n, --ngl <value>\n"
" -n, -ngl, --ngl <value>\n"
" Number of GPU layers (default: %d)\n"
" --temp <value>\n"
" Temperature (default: %.1f)\n"
@ -630,20 +635,20 @@ class LlamaData {
return path.substr(pos + 1);
}
int remove_proto(std::string & model_) {
const std::string::size_type pos = model_.find("://");
int rm_until_substring(std::string & model_, const std::string & substring) {
const std::string::size_type pos = model_.find(substring);
if (pos == std::string::npos) {
return 1;
}
model_ = model_.substr(pos + 3); // Skip past "://"
model_ = model_.substr(pos + substring.size()); // Skip past the substring
return 0;
}
int resolve_model(std::string & model_) {
int ret = 0;
if (string_starts_with(model_, "file://") || std::filesystem::exists(model_)) {
remove_proto(model_);
rm_until_substring(model_, "://");
return ret;
}
@ -652,13 +657,16 @@ class LlamaData {
const std::vector<std::string> headers = { "--header",
"Accept: application/vnd.docker.distribution.manifest.v2+json" };
if (string_starts_with(model_, "hf://") || string_starts_with(model_, "huggingface://")) {
remove_proto(model_);
rm_until_substring(model_, "://");
ret = huggingface_dl(model_, headers, bn);
} else if (string_starts_with(model_, "hf.co/")) {
rm_until_substring(model_, "hf.co/");
ret = huggingface_dl(model_, headers, bn);
} else if (string_starts_with(model_, "ollama://")) {
remove_proto(model_);
rm_until_substring(model_, "://");
ret = ollama_dl(model_, headers, bn);
} else if (string_starts_with(model_, "https://")) {
download(model_, headers, bn, true);
ret = download(model_, headers, bn, true);
} else {
ret = ollama_dl(model_, headers, bn);
}
@ -713,13 +721,31 @@ static void add_message(const char * role, const std::string & text, LlamaData &
}
// Function to apply the chat template and resize `formatted` if needed
static int apply_chat_template(LlamaData & llama_data, const bool append) {
static int apply_chat_template(const common_chat_template & tmpl, LlamaData & llama_data, const bool append, bool use_jinja) {
if (use_jinja) {
json messages = json::array();
for (const auto & msg : llama_data.messages) {
messages.push_back({
{"role", msg.role},
{"content", msg.content},
});
}
try {
auto result = tmpl.apply(messages, /* tools= */ json(), append);
llama_data.fmtted.resize(result.size() + 1);
memcpy(llama_data.fmtted.data(), result.c_str(), result.size() + 1);
return result.size();
} catch (const std::exception & e) {
printe("failed to render the chat template: %s\n", e.what());
return -1;
}
}
int result = llama_chat_apply_template(
llama_model_chat_template(llama_data.model.get()), llama_data.messages.data(), llama_data.messages.size(), append,
tmpl.source().c_str(), llama_data.messages.data(), llama_data.messages.size(), append,
append ? llama_data.fmtted.data() : nullptr, append ? llama_data.fmtted.size() : 0);
if (append && result > static_cast<int>(llama_data.fmtted.size())) {
llama_data.fmtted.resize(result);
result = llama_chat_apply_template(llama_model_chat_template(llama_data.model.get()), llama_data.messages.data(),
result = llama_chat_apply_template(tmpl.source().c_str(), llama_data.messages.data(),
llama_data.messages.size(), append, llama_data.fmtted.data(),
llama_data.fmtted.size());
}
@ -729,10 +755,12 @@ static int apply_chat_template(LlamaData & llama_data, const bool append) {
// Function to tokenize the prompt
static int tokenize_prompt(const llama_vocab * vocab, const std::string & prompt,
std::vector<llama_token> & prompt_tokens) {
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
std::vector<llama_token> & prompt_tokens, const LlamaData & llama_data) {
const bool is_first = llama_get_kv_cache_used_cells(llama_data.context.get()) == 0;
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
prompt_tokens.resize(n_prompt_tokens);
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true,
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), is_first,
true) < 0) {
printe("failed to tokenize the prompt\n");
return -1;
@ -778,7 +806,7 @@ static int generate(LlamaData & llama_data, const std::string & prompt, std::str
const llama_vocab * vocab = llama_model_get_vocab(llama_data.model.get());
std::vector<llama_token> tokens;
if (tokenize_prompt(vocab, prompt, tokens) < 0) {
if (tokenize_prompt(vocab, prompt, tokens, llama_data) < 0) {
return 1;
}
@ -869,8 +897,8 @@ static int generate_response(LlamaData & llama_data, const std::string & prompt,
}
// Helper function to apply the chat template and handle errors
static int apply_chat_template_with_error_handling(LlamaData & llama_data, const bool append, int & output_length) {
const int new_len = apply_chat_template(llama_data, append);
static int apply_chat_template_with_error_handling(const common_chat_template & tmpl, LlamaData & llama_data, const bool append, int & output_length, bool use_jinja) {
const int new_len = apply_chat_template(tmpl, llama_data, append, use_jinja);
if (new_len < 0) {
printe("failed to apply the chat template\n");
return -1;
@ -929,9 +957,11 @@ static int get_user_input(std::string & user_input, const std::string & user) {
}
// Main chat loop function
static int chat_loop(LlamaData & llama_data, const std::string & user) {
static int chat_loop(LlamaData & llama_data, const std::string & user, bool use_jinja) {
int prev_len = 0;
llama_data.fmtted.resize(llama_n_ctx(llama_data.context.get()));
auto chat_templates = common_chat_templates_from_model(llama_data.model.get(), "");
GGML_ASSERT(chat_templates.template_default);
static const bool stdout_a_terminal = is_stdout_a_terminal();
while (true) {
// Get user input
@ -942,7 +972,7 @@ static int chat_loop(LlamaData & llama_data, const std::string & user) {
add_message("user", user.empty() ? user_input : user, llama_data);
int new_len;
if (apply_chat_template_with_error_handling(llama_data, true, new_len) < 0) {
if (apply_chat_template_with_error_handling(*chat_templates.template_default, llama_data, true, new_len, use_jinja) < 0) {
return 1;
}
@ -957,7 +987,7 @@ static int chat_loop(LlamaData & llama_data, const std::string & user) {
}
add_message("assistant", response, llama_data);
if (apply_chat_template_with_error_handling(llama_data, false, prev_len) < 0) {
if (apply_chat_template_with_error_handling(*chat_templates.template_default, llama_data, false, prev_len, use_jinja) < 0) {
return 1;
}
}
@ -1017,7 +1047,7 @@ int main(int argc, const char ** argv) {
return 1;
}
if (chat_loop(llama_data, opt.user)) {
if (chat_loop(llama_data, opt.user, opt.use_jinja)) {
return 1;
}

View File

@ -126,7 +126,7 @@ The project is under active development, and we are [looking for feedback and co
| `--grammar GRAMMAR` | BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '') |
| `--grammar-file FNAME` | file to read grammar from |
| `-j, --json-schema SCHEMA` | JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object<br/>For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead |
| `--jinja` | Enable experimental Jinja templating engine (needed for tool use) |
**Example-specific params**

Binary file not shown.

View File

@ -267,6 +267,11 @@ struct server_task {
params.speculative.n_min = std::max(params.speculative.n_min, 2);
params.speculative.n_max = std::max(params.speculative.n_max, 0);
// Use OpenAI API logprobs only if n_probs wasn't provided
if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
}
if (data.contains("lora")) {
if (data.at("lora").is_array()) {
params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
@ -1422,6 +1427,10 @@ struct server_queue {
int post(server_task task, bool front = false) {
std::unique_lock<std::mutex> lock(mutex_tasks);
GGML_ASSERT(task.id != -1);
// if this is cancel task make sure to clean up pending tasks
if (task.type == SERVER_TASK_TYPE_CANCEL) {
cleanup_pending_task(task.id_target);
}
QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
if (front) {
queue_tasks.push_front(std::move(task));
@ -1439,6 +1448,10 @@ struct server_queue {
if (task.id == -1) {
task.id = id++;
}
// if this is cancel task make sure to clean up pending tasks
if (task.type == SERVER_TASK_TYPE_CANCEL) {
cleanup_pending_task(task.id_target);
}
QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
if (front) {
queue_tasks.push_front(std::move(task));
@ -1539,6 +1552,20 @@ struct server_queue {
}
}
}
private:
void cleanup_pending_task(int id_target) {
// no need lock because this is called exclusively by post()
auto rm_func = [id_target](const server_task & task) {
return task.id_target == id_target;
};
queue_tasks.erase(
std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
queue_tasks.end());
queue_tasks_deferred.erase(
std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
queue_tasks_deferred.end());
}
};
struct server_response {
@ -1574,6 +1601,12 @@ struct server_response {
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.erase(id_task);
// make sure to clean up all pending results
queue_results.erase(
std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
return res->id == id_task;
}),
queue_results.end());
}
void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
@ -1593,7 +1626,7 @@ struct server_response {
return !queue_results.empty();
});
for (int i = 0; i < (int) queue_results.size(); i++) {
for (size_t i = 0; i < queue_results.size(); i++) {
if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
server_task_result_ptr res = std::move(queue_results[i]);
queue_results.erase(queue_results.begin() + i);
@ -1610,12 +1643,6 @@ struct server_response {
server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
while (true) {
std::unique_lock<std::mutex> lock(mutex_results);
bool cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout), [&]{
return !queue_results.empty();
});
if (!cr_res) {
return nullptr;
}
for (int i = 0; i < (int) queue_results.size(); i++) {
if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
@ -1624,6 +1651,11 @@ struct server_response {
return res;
}
}
std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
if (cr_res == std::cv_status::timeout) {
return nullptr;
}
}
// should never reach here
@ -1688,6 +1720,8 @@ struct server_context {
// Necessary similarity of prompt for slot selection
float slot_prompt_similarity = 0.0f;
common_chat_templates chat_templates;
~server_context() {
// Clear any sampling context
for (server_slot & slot : slots) {
@ -1728,13 +1762,16 @@ struct server_context {
add_bos_token = llama_vocab_get_add_bos(vocab);
has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
if (!params_base.speculative.model.empty()) {
if (!params_base.speculative.model.empty() || !params_base.speculative.hf_repo.empty()) {
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
auto params_dft = params_base;
params_dft.devices = params_base.speculative.devices;
params_dft.hf_file = params_base.speculative.hf_file;
params_dft.hf_repo = params_base.speculative.hf_repo;
params_dft.model = params_base.speculative.model;
params_dft.model_url = params_base.speculative.model_url;
params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
params_dft.n_parallel = 1;
@ -1762,16 +1799,44 @@ struct server_context {
// force F16 KV cache for the draft model for extra performance
cparams_dft.type_k = GGML_TYPE_F16;
cparams_dft.type_v = GGML_TYPE_F16;
// the context is not needed - we will create one for each slot
llama_init_dft.context.reset();
}
chat_templates = common_chat_templates_from_model(model, params_base.chat_template);
GGML_ASSERT(chat_templates.template_default.get() != nullptr);
return true;
}
bool validate_builtin_chat_template() const {
bool validate_builtin_chat_template(bool use_jinja) const {
llama_chat_message chat[] = {{"user", "test"}};
const char * tmpl = llama_model_chat_template(model);
const int32_t chat_res = llama_chat_apply_template(tmpl, chat, 1, true, nullptr, 0);
return chat_res > 0;
if (use_jinja) {
auto templates = common_chat_templates_from_model(model, "");
GGML_ASSERT(templates.template_default);
try {
templates.template_default->apply({{
{"role", "user"},
{"content", "test"},
}}, json(), true);
if (templates.template_tool_use) {
templates.template_tool_use->apply({{
{"role", "user"},
{"content", "test"},
}}, json(), true);
}
return true;
} catch (const std::exception & e) {
SRV_ERR("failed to apply template: %s\n", e.what());
return false;
}
} else {
const char * tmpl = llama_model_chat_template(model, /* name */ nullptr);
const int32_t chat_res = llama_chat_apply_template(tmpl, chat, 1, true, nullptr, 0);
return chat_res > 0;
}
}
void init() {
@ -2338,8 +2403,8 @@ struct server_context {
server_task task(SERVER_TASK_TYPE_CANCEL);
task.id_target = id_task;
cancel_tasks.push_back(task);
queue_results.remove_waiting_task_id(id_task);
cancel_tasks.push_back(task);
}
// push to beginning of the queue, so it has highest priority
queue_tasks.post(cancel_tasks, true);
@ -3656,9 +3721,12 @@ int main(int argc, char ** argv) {
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
{ "total_slots", ctx_server.params_base.n_parallel },
{ "model_path", ctx_server.params_base.model },
{ "chat_template", common_get_builtin_chat_template(ctx_server.model) },
{ "chat_template", ctx_server.chat_templates.template_default->source() },
{ "build_info", build_info },
};
if (ctx_server.params_base.use_jinja && ctx_server.chat_templates.template_tool_use) {
data["chat_template_tool_use"] = ctx_server.chat_templates.template_tool_use->source();
}
res_ok(res, data);
};
@ -3886,7 +3954,10 @@ int main(int argc, char ** argv) {
return;
}
json data = oaicompat_chat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
auto body = json::parse(req.body);
const auto & chat_template = body.contains("tools") && ctx_server.chat_templates.template_tool_use ? *ctx_server.chat_templates.template_tool_use : *ctx_server.chat_templates.template_default;
json data = oaicompat_completion_params_parse(body, chat_template, params.use_jinja);
return handle_completions_impl(
SERVER_TASK_TYPE_COMPLETION,
data,
@ -4296,7 +4367,7 @@ int main(int argc, char ** argv) {
// if a custom chat template is not supplied, we will use the one that comes with the model (if any)
if (params.chat_template.empty()) {
if (!ctx_server.validate_builtin_chat_template()) {
if (!ctx_server.validate_builtin_chat_template(params.use_jinja)) {
LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
params.chat_template = "chatml";
}
@ -4304,8 +4375,8 @@ int main(int argc, char ** argv) {
// print sample chat example to make it clear which template is used
LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
params.chat_template.empty() ? "(built-in)" : params.chat_template.c_str(),
common_chat_format_example(ctx_server.model, params.chat_template).c_str());
ctx_server.chat_templates.template_default->source().c_str(),
common_chat_format_example(*ctx_server.chat_templates.template_default, ctx_server.params_base.use_jinja).c_str());
ctx_server.queue_tasks.on_new_task(std::bind(
&server_context::process_single_task, &ctx_server, std::placeholders::_1));

View File

@ -4,22 +4,26 @@ from utils import *
server = ServerPreset.tinyllama2()
@pytest.fixture(scope="module", autouse=True)
@pytest.fixture(autouse=True)
def create_server():
global server
server = ServerPreset.tinyllama2()
@pytest.mark.parametrize(
"model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason",
"model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason,jinja,chat_template",
[
(None, "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, "length"),
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length"),
(None, "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, "length", False, None),
(None, "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, "length", True, None),
(None, "Book", "What is the best book", 8, "^ blue", 23, 8, "length", True, "This is not a chat template, it is"),
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length", False, None),
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length", True, None),
]
)
def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason):
def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason, jinja, chat_template):
global server
server.jinja = jinja
server.chat_template = chat_template
server.start()
res = server.make_request("POST", "/chat/completions", data={
"model": model,

View File

@ -72,13 +72,14 @@ class ServerProcess:
pooling: str | None = None
draft: int | None = None
api_key: str | None = None
response_format: str | None = None
lora_files: List[str] | None = None
disable_ctx_shift: int | None = False
draft_min: int | None = None
draft_max: int | None = None
no_webui: bool | None = None
jinja: bool | None = None
chat_template: str | None = None
chat_template_file: str | None = None
# session variables
process: subprocess.Popen | None = None
@ -169,8 +170,12 @@ class ServerProcess:
server_args.extend(["--draft-min", self.draft_min])
if self.no_webui:
server_args.append("--no-webui")
if self.jinja:
server_args.append("--jinja")
if self.chat_template:
server_args.extend(["--chat-template", self.chat_template])
if self.chat_template_file:
server_args.extend(["--chat-template-file", self.chat_template_file])
args = [str(arg) for arg in [server_path, *server_args]]
print(f"bench: starting server with: {' '.join(args)}")

View File

@ -16,6 +16,8 @@
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
#include "minja.hpp"
#include "chat-template.hpp"
#include <random>
#include <sstream>
@ -349,7 +351,7 @@ static llama_tokens format_infill(
}
// Format given chat. If tmpl is empty, we take the template from model metadata
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
inline std::string format_chat(const common_chat_template & tmpl, const std::vector<json> & messages) {
std::vector<common_chat_msg> chat;
for (size_t i = 0; i < messages.size(); ++i) {
@ -377,7 +379,7 @@ inline std::string format_chat(const struct llama_model * model, const std::stri
chat.push_back({role, content});
}
const auto formatted_chat = common_chat_apply_template(model, tmpl, chat, true);
const auto formatted_chat = common_chat_apply_template(tmpl, chat, true, /* use_jinja= */ false);
LOG_DBG("formatted_chat: '%s'\n", formatted_chat.c_str());
return formatted_chat;
@ -576,14 +578,23 @@ static json oaicompat_completion_params_parse(const json & body) {
return llama_params;
}
static json oaicompat_chat_completion_params_parse(
const struct llama_model * model,
const json & body, /* openai api json semantics */
const std::string & chat_template) {
static json oaicompat_completion_params_parse(
const json & body, /* openai api json semantics */
const common_chat_template & tmpl,
bool use_jinja)
{
json llama_params;
// Apply chat template to the list of messages
llama_params["prompt"] = format_chat(model, chat_template, body.at("messages"));
auto tools = json_value(body, "tools", json());
auto has_tools = tools.is_array() && !tools.empty();
if (has_tools) {
if (use_jinja) {
LOG_WRN("tools param is not fully supported yet\n");
} else {
throw std::runtime_error("tools param requires --jinja flag");
}
}
// Handle "stop" field
if (body.contains("stop") && body.at("stop").is_string()) {
@ -606,6 +617,13 @@ static json oaicompat_chat_completion_params_parse(
}
}
// Apply chat template to the list of messages
if (use_jinja) {
llama_params["prompt"] = tmpl.apply(body.at("messages"), tools, /* add_generation_prompt= */ true);
} else {
llama_params["prompt"] = format_chat(tmpl, body.at("messages"));
}
// Handle "n" field
int n_choices = json_value(body, "n", 1);
if (n_choices != 1) {
@ -621,7 +639,7 @@ static json oaicompat_chat_completion_params_parse(
}
// Params supported by OAI but unsupported by llama.cpp
static const std::vector<std::string> unsupported_params { "tools", "tool_choice" };
static const std::vector<std::string> unsupported_params { "tool_choice" };
for (const auto & param : unsupported_params) {
if (body.contains(param)) {
throw std::runtime_error("Unsupported param: " + param);

View File

@ -141,6 +141,7 @@
:msg="pendingMsg"
:key="pendingMsg.id"
:is-generating="isGenerating"
:show-thought-in-progress="config.showThoughtInProgress"
:edit-user-msg-and-regenerate="() => {}"
:regenerate-msg="() => {}"></message-bubble>
</div>
@ -202,6 +203,20 @@
</template>
</div>
</details>
<!-- Section: Reasoning models -->
<details class="collapse collapse-arrow bg-base-200 mb-2 overflow-visible">
<summary class="collapse-title font-bold">Reasoning models</summary>
<div class="collapse-content">
<div class="flex flex-row items-center mb-2">
<input type="checkbox" class="checkbox" v-model="config.showThoughtInProgress" />
<span class="ml-4">Expand though process by default for generating message</span>
</div>
<div class="flex flex-row items-center mb-2">
<input type="checkbox" class="checkbox" v-model="config.excludeThoughtOnReq" />
<span class="ml-4">Exclude thought process when sending request to API (Recommended for DeepSeek-R1)</span>
</div>
</div>
</details>
<!-- Section: Advanced config -->
<details class="collapse collapse-arrow bg-base-200 mb-2 overflow-visible">
<summary class="collapse-title font-bold">Advanced config</summary>
@ -261,7 +276,17 @@
<span v-if="msg.content === null" class="loading loading-dots loading-md"></span>
<!-- render message as markdown -->
<div v-else dir="auto">
<vue-markdown :source="msg.content"></vue-markdown>
<details v-if="msg.role === 'assistant' && splitMsgContent.cot" class="collapse bg-base-200 collapse-arrow mb-4" :open="splitMsgContent.isThinking && showThoughtInProgress">
<summary class="collapse-title">
<span v-if="splitMsgContent.isThinking">
<span v-if="isGenerating" class="loading loading-spinner loading-md mr-2" style="vertical-align: middle;"></span>
<b>Thinking</b>
</span>
<b v-else>Thought Process</b>
</summary>
<vue-markdown :source="splitMsgContent.cot" dir="auto" class="collapse-content"></vue-markdown>
</details>
<vue-markdown :source="splitMsgContent.content"></vue-markdown>
</div>
<!-- render timings if enabled -->
<div class="dropdown dropdown-hover dropdown-top mt-2" v-if="timings && config.showTokensPerSecond">

View File

@ -17,6 +17,11 @@ import { asyncIterator } from '@sec-ant/readable-stream/ponyfill/asyncIterator';
const isDev = import.meta.env.MODE === 'development';
// types
/** @typedef {{ id: number, role: 'user' | 'assistant', content: string, timings: any }} Message */
/** @typedef {{ role: 'user' | 'assistant', content: string }} APIMessage */
/** @typedef {{ id: string, lastModified: number, messages: Array<Message> }} Conversation */
// utility functions
const isString = (x) => !!x.toLowerCase;
const isBoolean = (x) => x === true || x === false;
@ -50,6 +55,8 @@ const CONFIG_DEFAULT = {
apiKey: '',
systemMessage: 'You are a helpful assistant.',
showTokensPerSecond: false,
showThoughtInProgress: false,
excludeThoughtOnReq: true,
// make sure these default values are in sync with `common.h`
samplers: 'edkypmxt',
temperature: 0.8,
@ -172,6 +179,7 @@ const MessageBubble = defineComponent({
config: Object,
msg: Object,
isGenerating: Boolean,
showThoughtInProgress: Boolean,
editUserMsgAndRegenerate: Function,
regenerateMsg: Function,
},
@ -188,7 +196,31 @@ const MessageBubble = defineComponent({
prompt_per_second: this.msg.timings.prompt_n / (this.msg.timings.prompt_ms / 1000),
predicted_per_second: this.msg.timings.predicted_n / (this.msg.timings.predicted_ms / 1000),
};
}
},
splitMsgContent() {
const content = this.msg.content;
if (this.msg.role !== 'assistant') {
return { content };
}
let actualContent = '';
let cot = '';
let isThinking = false;
let thinkSplit = content.split('<think>', 2);
actualContent += thinkSplit[0];
while (thinkSplit[1] !== undefined) {
// <think> tag found
thinkSplit = thinkSplit[1].split('</think>', 2);
cot += thinkSplit[0];
isThinking = true;
if (thinkSplit[1] !== undefined) {
// </think> closing tag found
isThinking = false;
thinkSplit = thinkSplit[1].split('<think>', 2);
actualContent += thinkSplit[0];
}
}
return { content: actualContent, cot, isThinking };
},
},
methods: {
copyMsg() {
@ -208,7 +240,10 @@ const MessageBubble = defineComponent({
// format: { [convId]: { id: string, lastModified: number, messages: [...] } }
// convId is a string prefixed with 'conv-'
const StorageUtils = {
// manage conversations
/**
* manage conversations
* @returns {Array<Conversation>}
*/
getAllConversations() {
const res = [];
for (const key in localStorage) {
@ -219,11 +254,19 @@ const StorageUtils = {
res.sort((a, b) => b.lastModified - a.lastModified);
return res;
},
// can return null if convId does not exist
/**
* can return null if convId does not exist
* @param {string} convId
* @returns {Conversation | null}
*/
getOneConversation(convId) {
return JSON.parse(localStorage.getItem(convId) || 'null');
},
// if convId does not exist, create one
/**
* if convId does not exist, create one
* @param {string} convId
* @param {Message} msg
*/
appendMsg(convId, msg) {
if (msg.content === null) return;
const conv = StorageUtils.getOneConversation(convId) || {
@ -235,12 +278,24 @@ const StorageUtils = {
conv.lastModified = Date.now();
localStorage.setItem(convId, JSON.stringify(conv));
},
/**
* Get new conversation id
* @returns {string}
*/
getNewConvId() {
return `conv-${Date.now()}`;
},
/**
* remove conversation by id
* @param {string} convId
*/
remove(convId) {
localStorage.removeItem(convId);
},
/**
* remove all conversations
* @param {string} convId
*/
filterAndKeepMsgs(convId, predicate) {
const conv = StorageUtils.getOneConversation(convId);
if (!conv) return;
@ -248,6 +303,11 @@ const StorageUtils = {
conv.lastModified = Date.now();
localStorage.setItem(convId, JSON.stringify(conv));
},
/**
* remove last message from conversation
* @param {string} convId
* @returns {Message | undefined}
*/
popMsg(convId) {
const conv = StorageUtils.getOneConversation(convId);
if (!conv) return;
@ -322,10 +382,12 @@ const mainApp = createApp({
data() {
return {
conversations: StorageUtils.getAllConversations(),
messages: [], // { id: number, role: 'user' | 'assistant', content: string }
/** @type {Array<Message>} */
messages: [],
viewingConvId: StorageUtils.getNewConvId(),
inputMsg: '',
isGenerating: false,
/** @type {Array<Message> | null} */
pendingMsg: null, // the on-going message from assistant
stopGeneration: () => {},
selectedTheme: StorageUtils.getTheme(),
@ -333,6 +395,7 @@ const mainApp = createApp({
showConfigDialog: false,
// const
themes: THEMES,
/** @type {CONFIG_DEFAULT} */
configDefault: {...CONFIG_DEFAULT},
configInfo: {...CONFIG_INFO},
isDev,
@ -425,42 +488,50 @@ const mainApp = createApp({
this.isGenerating = true;
try {
/** @type {CONFIG_DEFAULT} */
const config = this.config;
const abortController = new AbortController();
this.stopGeneration = () => abortController.abort();
/** @type {Array<APIMessage>} */
let messages = [
{ role: 'system', content: config.systemMessage },
...normalizeMsgsForAPI(this.messages),
];
if (config.excludeThoughtOnReq) {
messages = filterThoughtFromMsgs(messages);
}
if (isDev) console.log({messages});
const params = {
messages: [
{ role: 'system', content: this.config.systemMessage },
...this.messages,
],
messages,
stream: true,
cache_prompt: true,
samplers: this.config.samplers,
temperature: this.config.temperature,
dynatemp_range: this.config.dynatemp_range,
dynatemp_exponent: this.config.dynatemp_exponent,
top_k: this.config.top_k,
top_p: this.config.top_p,
min_p: this.config.min_p,
typical_p: this.config.typical_p,
xtc_probability: this.config.xtc_probability,
xtc_threshold: this.config.xtc_threshold,
repeat_last_n: this.config.repeat_last_n,
repeat_penalty: this.config.repeat_penalty,
presence_penalty: this.config.presence_penalty,
frequency_penalty: this.config.frequency_penalty,
dry_multiplier: this.config.dry_multiplier,
dry_base: this.config.dry_base,
dry_allowed_length: this.config.dry_allowed_length,
dry_penalty_last_n: this.config.dry_penalty_last_n,
max_tokens: this.config.max_tokens,
timings_per_token: !!this.config.showTokensPerSecond,
...(this.config.custom.length ? JSON.parse(this.config.custom) : {}),
samplers: config.samplers,
temperature: config.temperature,
dynatemp_range: config.dynatemp_range,
dynatemp_exponent: config.dynatemp_exponent,
top_k: config.top_k,
top_p: config.top_p,
min_p: config.min_p,
typical_p: config.typical_p,
xtc_probability: config.xtc_probability,
xtc_threshold: config.xtc_threshold,
repeat_last_n: config.repeat_last_n,
repeat_penalty: config.repeat_penalty,
presence_penalty: config.presence_penalty,
frequency_penalty: config.frequency_penalty,
dry_multiplier: config.dry_multiplier,
dry_base: config.dry_base,
dry_allowed_length: config.dry_allowed_length,
dry_penalty_last_n: config.dry_penalty_last_n,
max_tokens: config.max_tokens,
timings_per_token: !!config.showTokensPerSecond,
...(config.custom.length ? JSON.parse(config.custom) : {}),
};
const chunks = sendSSEPostRequest(`${BASE_URL}/v1/chat/completions`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
...(this.config.apiKey ? {'Authorization': `Bearer ${this.config.apiKey}`} : {})
...(config.apiKey ? {'Authorization': `Bearer ${config.apiKey}`} : {})
},
body: JSON.stringify(params),
signal: abortController.signal,
@ -477,7 +548,7 @@ const mainApp = createApp({
};
}
const timings = chunk.timings;
if (timings && this.config.showTokensPerSecond) {
if (timings && config.showTokensPerSecond) {
// only extract what's really needed, to save some space
this.pendingMsg.timings = {
prompt_n: timings.prompt_n,
@ -598,3 +669,33 @@ try {
<button class="btn" onClick="localStorage.clear(); window.location.reload();">Clear localStorage</button>
</div>`;
}
/**
* filter out redundant fields upon sending to API
* @param {Array<APIMessage>} messages
* @returns {Array<APIMessage>}
*/
function normalizeMsgsForAPI(messages) {
return messages.map((msg) => {
return {
role: msg.role,
content: msg.content,
};
});
}
/**
* recommended for DeepsSeek-R1, filter out content between <think> and </think> tags
* @param {Array<APIMessage>} messages
* @returns {Array<APIMessage>}
*/
function filterThoughtFromMsgs(messages) {
return messages.map((msg) => {
return {
role: msg.role,
content: msg.role === 'assistant'
? msg.content.split('</think>').at(-1).trim()
: msg.content,
};
});
}

View File

@ -95,13 +95,15 @@ int main(int argc, char ** argv) {
llama_sampler_chain_add(smpl, llama_sampler_init_dist(LLAMA_DEFAULT_SEED));
// helper function to evaluate a prompt and generate a response
auto generate = [&](const std::string & prompt, bool is_first) {
auto generate = [&](const std::string & prompt) {
std::string response;
const bool is_first = llama_get_kv_cache_used_cells(ctx) == 0;
// tokenize the prompt
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
std::vector<llama_token> prompt_tokens(n_prompt_tokens);
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), llama_get_kv_cache_used_cells(ctx) == 0, true) < 0) {
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), is_first, true) < 0) {
GGML_ABORT("failed to tokenize the prompt\n");
}
@ -161,7 +163,7 @@ int main(int argc, char ** argv) {
break;
}
const char * tmpl = llama_model_chat_template(model);
const char * tmpl = llama_model_chat_template(model, /* name */ nullptr);
// add the user input to the message list and format it
messages.push_back({"user", strdup(user.c_str())});
@ -180,7 +182,7 @@ int main(int argc, char ** argv) {
// generate a response
printf("\033[33m");
std::string response = generate(prompt, prev_len == 0);
std::string response = generate(prompt);
printf("\n\033[0m");
// add the response to the messages

View File

@ -58,7 +58,8 @@ else()
set(GGML_BLAS_VENDOR_DEFAULT "Generic")
endif()
if (CMAKE_CROSSCOMPILING)
if (CMAKE_CROSSCOMPILING OR DEFINED ENV{SOURCE_DATE_EPOCH})
message(STATUS "Setting GGML_NATIVE_DEFAULT to OFF")
set(GGML_NATIVE_DEFAULT OFF)
else()
set(GGML_NATIVE_DEFAULT ON)
@ -153,6 +154,8 @@ option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashA
option(GGML_CUDA_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" ${GGML_CUDA_GRAPHS_DEFAULT})
option(GGML_HIP "ggml: use HIP" OFF)
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
option(GGML_VULKAN "ggml: use Vulkan" OFF)
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)

View File

@ -7883,7 +7883,7 @@ static void ggml_compute_forward_out_prod_f32(
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
}
@ -7892,7 +7892,7 @@ static void ggml_compute_forward_out_prod_f32(
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
ggml_vec_mad_f32(ne0, d, s0, *s1);
}

View File

@ -416,7 +416,8 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
case GGML_OP_IM2COL_BACK:
return src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32;
case GGML_OP_OUT_PROD:
return (src0->type == GGML_TYPE_F32 || ggml_is_quantized(src0->type)) && src1->type == GGML_TYPE_F32;
return (src0->type == GGML_TYPE_F32 || (ggml_is_quantized(src0->type) && src0->ne[2] == src1->ne[2] && src0->ne[3] == src1->ne[3])) &&
src1->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
default:
return true;
}

View File

@ -93,26 +93,31 @@ static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * s
template <typename T>
static __global__ void k_repeat_back(
const T * __restrict__ src, T * __restrict__ dst, const int64_t ne00, const int64_t ne01, const int64_t ne02,
const int64_t ne0, const int64_t ne1, const int64_t ne2) {
const T * __restrict__ src, T * __restrict__ dst, const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const size_t s00, const size_t s01, const size_t s02, const size_t s03,
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3) {
const int64_t tid0 = (int64_t) blockIdx.x*blockDim.x + threadIdx.x;
const int64_t tid1 = (int64_t) blockIdx.y*blockDim.y + threadIdx.y;
const int64_t tid2 = (int64_t) blockIdx.z*blockDim.z + threadIdx.z;
const int64_t tid0 = int64_t(blockIdx.x)*blockDim.x + threadIdx.x;
const int64_t tid1 = int64_t(blockIdx.y)*blockDim.y + threadIdx.y;
const int64_t tid23 = int64_t(blockIdx.z)*blockDim.z + threadIdx.z;
const int64_t tid2 = tid23 % ne2;
const int64_t tid3 = tid23 / ne2;
if (tid0 >= ne0) {
return;
}
T sum = 0;
for (int64_t i2 = tid2; i2 < ne02; i2 += ne2) {
for (int64_t i1 = tid1; i1 < ne01; i1 += ne1) {
for (int64_t i0 = tid0; i0 < ne00; i0 += ne0) {
sum += src[i2*ne01*ne00 + i1*ne00 + i0];
for (int64_t i3 = tid3; i3 < ne03; i3 += ne3) {
for (int64_t i2 = tid2; i2 < ne02; i2 += ne2) {
for (int64_t i1 = tid1; i1 < ne01; i1 += ne1) {
for (int64_t i0 = tid0; i0 < ne00; i0 += ne0) {
sum += src[i3*s03 + i2*s02 + i1*s01 + i0*s00];
}
}
}
}
dst[tid2*ne1*ne0 + tid1*ne0 + tid0] = sum;
dst[tid3*ne2*ne1*ne0 + tid2*ne1*ne0 + tid1*ne0 + tid0] = sum;
}
template<float (*bin_op)(const float, const float)>
@ -274,12 +279,14 @@ struct bin_bcast_cuda {
template <typename T>
static void repeat_back_cuda(
const T * src, T * dst, const int64_t ne00, const int64_t ne01, const int64_t ne02,
const int64_t ne0, const int64_t ne1, const int64_t ne2, cudaStream_t stream) {
const T * src, T * dst, const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const size_t s00, const size_t s01, const size_t s02, const size_t s03,
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3, cudaStream_t stream) {
const dim3 block_dims(WARP_SIZE, 1, 1);
const dim3 block_nums((ne0 + WARP_SIZE - 1) / WARP_SIZE, ne1, ne2);
k_repeat_back<T><<<block_nums, block_dims, 0, stream>>>(src, dst, ne00, ne01, ne02, ne0, ne1, ne2);
const dim3 block_nums((ne0 + WARP_SIZE - 1) / WARP_SIZE, ne1, ne2*ne3);
k_repeat_back<T><<<block_nums, block_dims, 0, stream>>>
(src, dst, ne00, ne01, ne02, ne03, s00, s01, s02, s03, ne0, ne1, ne2, ne3);
}
template<class op>
@ -326,27 +333,26 @@ void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(src0->type == dst->type);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_can_repeat(dst, src0));
cudaStream_t stream = ctx.stream();
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
GGML_ASSERT(src0->ne[3] == 1);
GGML_TENSOR_UNARY_OP_LOCALS;
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
const int64_t ne2 = dst->ne[2];
GGML_ASSERT(dst->ne[3] == 1);
GGML_ASSERT(ne2*ne3 <= (1 << 15));
const size_t ts = ggml_type_size(src0->type);
const size_t s00 = nb00 / ts;
const size_t s01 = nb01 / ts;
const size_t s02 = nb02 / ts;
const size_t s03 = nb03 / ts;
switch (dst->type) {
case GGML_TYPE_F32: {
const float * src0_d = (const float *) src0->data;
float * dst_d = (float *) dst->data;
repeat_back_cuda<float>(src0_d, dst_d, ne00, ne01, ne02, ne0, ne1, ne2, stream);
repeat_back_cuda(src0_d, dst_d, ne00, ne01, ne02, ne03, s00, s01, s02, s03, ne0, ne1, ne2, ne3, stream);
} break;
default: {
GGML_ASSERT(false);

View File

@ -131,6 +131,10 @@ typedef float dfloat; // dequantize float
typedef float2 dfloat2;
#endif // GGML_CUDA_F16
#if (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
#define GGML_USE_VMM
#endif // (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#define FP16_AVAILABLE
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
@ -588,7 +592,7 @@ struct ggml_tensor_extra_gpu {
};
#if (CUDART_VERSION >= 12000) && defined(GGML_CUDA_USE_GRAPHS)
#if ((CUDART_VERSION >= 12000) && defined(GGML_CUDA_USE_GRAPHS)) || defined(GGML_HIP_GRAPHS)
#define USE_CUDA_GRAPH
#endif

View File

@ -62,7 +62,7 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
[[noreturn]]
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) {
int id = -1; // in case cudaGetDevice fails
cudaGetDevice(&id);
(void)cudaGetDevice(&id);
GGML_LOG_ERROR(GGML_CUDA_NAME " error: %s\n", msg);
GGML_LOG_ERROR(" current device: %d, in function %s at %s:%d\n", id, func, file, line);
@ -152,7 +152,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
for (int id = 0; id < info.device_count; ++id) {
int device_vmm = 0;
#if !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
#if defined(GGML_USE_VMM)
CUdevice device;
CU_CHECK(cuDeviceGet(&device, id));
CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
@ -164,7 +164,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
alloc_prop.location.id = id;
CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
}
#endif // !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
#endif // defined(GGML_USE_VMM)
info.devices[id].vmm = !!device_vmm;
cudaDeviceProp prop;
@ -300,7 +300,7 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
};
// pool with virtual memory
#if !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
#if defined(GGML_USE_VMM)
struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
@ -309,6 +309,9 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
size_t pool_used = 0;
size_t pool_size = 0;
size_t granularity;
#if defined(GGML_USE_HIP)
std::vector<std::pair<CUdeviceptr, size_t>> mappings;
#endif
explicit ggml_cuda_pool_vmm(int device) :
device(device),
@ -317,7 +320,14 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
~ggml_cuda_pool_vmm() {
if (pool_addr != 0) {
#if defined(GGML_USE_HIP)
// Workaround for https://github.com/ROCm/ROCR-Runtime/issues/285
for (std::pair<CUdeviceptr, size_t> & mapping : mappings) {
CU_CHECK(cuMemUnmap(mapping.first, mapping.second));
}
#else
CU_CHECK(cuMemUnmap(pool_addr, pool_size));
#endif
CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE));
}
}
@ -350,7 +360,11 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
}
// map at the end of the pool
CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0));
CUdeviceptr start_ptr = (CUdeviceptr)((char *)(pool_addr) + pool_size);
CU_CHECK(cuMemMap(start_ptr, reserve_size, 0, handle, 0));
#if defined(GGML_USE_HIP)
mappings.push_back({start_ptr, reserve_size});
#endif
// the memory allocation handle is no longer needed after mapping
CU_CHECK(cuMemRelease(handle));
@ -360,7 +374,7 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
access.location.id = device;
access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1));
CU_CHECK(cuMemSetAccess((CUdeviceptr)((char *)(pool_addr) + pool_size), reserve_size, &access, 1));
// add to the pool
pool_size += reserve_size;
@ -372,7 +386,7 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
GGML_ASSERT(pool_addr != 0);
void * ptr = (void *) (pool_addr + pool_used);
void * ptr = (void *) ((CUdeviceptr)((char *)(pool_addr) + pool_used));
*actual_size = size;
pool_used += size;
@ -391,17 +405,17 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
pool_used -= size;
// all deallocations must be in reverse order of the allocations
GGML_ASSERT(ptr == (void *) (pool_addr + pool_used));
GGML_ASSERT(ptr == (void *) ((char *)(pool_addr) + pool_used));
}
};
#endif // !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
#endif // defined(GGML_USE_VMM)
std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
#if !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
#if defined(GGML_USE_VMM)
if (ggml_cuda_info().devices[device].vmm) {
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
}
#endif // !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
#endif // defined(GGML_USE_VMM)
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
}
@ -547,7 +561,7 @@ static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_bac
cudaError_t err = ggml_cuda_device_malloc(&dev_ptr, size, buft_ctx->device);
if (err != cudaSuccess) {
// clear the error
cudaGetLastError();
(void)cudaGetLastError();
GGML_LOG_ERROR("%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size / 1024.0 / 1024.0, buft_ctx->device, cudaGetErrorString(err));
return nullptr;
}
@ -962,7 +976,7 @@ static void * ggml_cuda_host_malloc(size_t size) {
cudaError_t err = cudaMallocHost((void **) &ptr, size);
if (err != cudaSuccess) {
// clear the error
cudaGetLastError();
(void)cudaGetLastError();
GGML_LOG_DEBUG("%s: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
size / 1024.0 / 1024.0, cudaGetErrorString(err));
return nullptr;
@ -1082,7 +1096,9 @@ static void ggml_cuda_op_mul_mat_cublas(
const int compute_capability = ggml_cuda_info().devices[id].cc;
if (compute_capability >= GGML_CUDA_CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
const bool use_fp16 = (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT;
if (compute_capability >= GGML_CUDA_CC_VOLTA && use_fp16) {
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
if (src0->type != GGML_TYPE_F16) {
@ -1103,28 +1119,38 @@ static void ggml_cuda_op_mul_mat_cublas(
to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
}
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
const half alpha_f16 = 1.0f;
const half beta_f16 = 0.0f;
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
cu_compute_type = CUBLAS_COMPUTE_32F;
}
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
CUBLAS_CHECK(
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
row_diff, src1_ncols, ne10,
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
src1_ptr, CUDA_R_16F, ne10,
&beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
cu_compute_type,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
if (compute_capability == GGML_CUDA_CC_CDNA) {
const float alpha = 1.0f;
const float beta = 0.0f;
CUBLAS_CHECK(
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
row_diff, src1_ncols, ne10,
&alpha, src0_ptr, CUDA_R_16F, ne00,
src1_ptr, CUDA_R_16F, ne10,
&beta, dst_dd_i, CUDA_R_32F, ldc,
CUBLAS_COMPUTE_32F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
} else {
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
const half alpha_f16 = 1.0f;
const half beta_f16 = 0.0f;
CUBLAS_CHECK(
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
row_diff, src1_ncols, ne10,
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
src1_ptr, CUDA_R_16F, ne10,
&beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
CUBLAS_COMPUTE_16F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
}
} else {
ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id));
ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id));
@ -1197,7 +1223,7 @@ static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
CUDA_CHECK(err);
} else {
// reset the error
cudaGetLastError();
(void)cudaGetLastError();
}
} else {
cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
@ -1205,7 +1231,7 @@ static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
CUDA_CHECK(err);
} else {
// reset the error
cudaGetLastError();
(void)cudaGetLastError();
}
}
}
@ -1613,10 +1639,6 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
cudaDataType_t cu_data_type = CUDA_R_16F;
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
cu_compute_type = CUBLAS_COMPUTE_32F;
}
// dst strides
size_t nbd2 = dst->nb[2];
size_t nbd3 = dst->nb[3];
@ -1645,6 +1667,12 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
beta = &beta_f32;
}
if (ggml_cuda_info().devices[ctx.device].cc == GGML_CUDA_CC_CDNA) {
cu_compute_type = CUBLAS_COMPUTE_32F;
alpha = &alpha_f32;
beta = &beta_f32;
}
GGML_ASSERT(ne12 % ne02 == 0);
GGML_ASSERT(ne13 % ne03 == 0);
@ -2438,7 +2466,7 @@ static void maintain_cuda_graph(ggml_backend_cuda_context * cuda_ctx, std::vecto
if (stat == cudaErrorInvalidDeviceFunction) {
// Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
// We don't need to update blas nodes, so clear error and move on.
cudaGetLastError();
(void)cudaGetLastError();
} else {
GGML_ASSERT(stat == cudaSuccess);
}
@ -2493,14 +2521,20 @@ static bool is_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx,
static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
cudaGraphExecUpdateResultInfo result_info;
#ifdef __HIP_PLATFORM_AMD__
hipGraphNode_t errorNode;
hipError_t stat = hipGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &errorNode, &result_info);
#else
cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
#endif
if (stat == cudaErrorGraphExecUpdateFailure) {
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: CUDA graph update failed\n", __func__);
#endif
// The pre-existing graph exec cannot be updated due to violated constraints
// so instead clear error and re-instantiate
cudaGetLastError();
(void)cudaGetLastError();
CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
cuda_ctx->cuda_graph->instance = nullptr;
CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
@ -2728,7 +2762,7 @@ bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
if (err != cudaSuccess) {
// clear the error
cudaGetLastError();
(void)cudaGetLastError();
GGML_LOG_DEBUG("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__,
size / 1024.0 / 1024.0, cudaGetErrorString(err));
@ -2748,7 +2782,7 @@ void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
cudaError_t err = cudaHostUnregister(buffer);
if (err != cudaSuccess) {
// clear the error
cudaGetLastError();
(void)cudaGetLastError();
}
}
@ -3002,7 +3036,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
} break;
case GGML_OP_REPEAT_BACK:
return op->type == GGML_TYPE_F32 && op->src[0]->ne[3] == 1;
return op->type == GGML_TYPE_F32 && (op->src[0]->ne[2]*op->src[0]->ne[3]) <= (1 << 15);
case GGML_OP_CONCAT:
{
ggml_type src0_type = op->src[0]->type;
@ -3216,7 +3250,7 @@ static ggml_backend_feature * ggml_backend_cuda_get_features(ggml_backend_reg_t
features.push_back({ "FORCE_CUBLAS", "1" });
#endif
#ifdef GGML_CUDA_NO_VMM
#ifndef GGML_USE_VMM
features.push_back({ "NO_VMM", "1" });
#endif

View File

@ -142,7 +142,7 @@ static void mul_mat_vec_q_cuda(
int64_t nwarps = 1;
int64_t rows_per_cuda_block = 1;
if (ggml_cuda_info().devices[id].cc < GGML_CUDA_CC_CDNA || ggml_cuda_info().devices[id].cc == GGML_CUDA_CC_RDNA1) { // NVIDIA and AMD older than RDNA2 but not CDNA
if (ggml_cuda_info().devices[id].cc < GGML_CUDA_CC_RDNA2) { // NVIDIA and AMD older than RDNA2
switch(ncols_y) {
case 1:
nwarps = 4;
@ -166,6 +166,7 @@ static void mul_mat_vec_q_cuda(
break;
}
}
const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
const dim3 block_nums(nblocks, 1, 1);
const dim3 block_dims(WARP_SIZE, nwarps, 1);

View File

@ -34,6 +34,9 @@ void ggml_cuda_out_prod(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
CUBLAS_CHECK(cublasSetStream(handle, stream));
const int64_t lda = nb01 / sizeof(float);
const int64_t ldc = nb1 / sizeof(float);
const bool src1_T = ggml_is_transposed(src1);
const cublasOperation_t src1_cublas_op = src1_T ? CUBLAS_OP_N : CUBLAS_OP_T;
const int64_t ldb = (src1_T ? nb10 : nb11) / sizeof(float);
@ -57,9 +60,9 @@ void ggml_cuda_out_prod(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
CUBLAS_CHECK(
cublasSgemm(handle, CUBLAS_OP_N, src1_cublas_op,
ne0, ne1, ne01,
&alpha, src0_d + (i3/dps3)*s03 + (i2/dps2)*s02, ne00,
&alpha, src0_d + (i3/dps3)*s03 + (i2/dps2)*s02, lda,
src1_d + i3 *s13 + i2 *s12, ldb,
&beta, dst_d + i3 *s3 + i2 *s2, ne0));
&beta, dst_d + i3 *s3 + i2 *s2, ldc));
}
}
}

View File

@ -19,6 +19,12 @@
#define CUBLAS_TF32_TENSOR_OP_MATH 0
#define CUDA_R_16F HIPBLAS_R_16F
#define CUDA_R_32F HIPBLAS_R_32F
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED hipDeviceAttributeVirtualMemoryManagementSupported
#define CU_MEM_ALLOC_GRANULARITY_RECOMMENDED hipMemAllocationGranularityRecommended
#define CU_MEM_ALLOCATION_TYPE_PINNED hipMemAllocationTypePinned
#define CU_MEM_LOCATION_TYPE_DEVICE hipMemLocationTypeDevice
#define CU_MEM_ACCESS_FLAGS_PROT_READWRITE hipMemAccessFlagsProtReadWrite
#define CU_CHECK(fn) {hipError_t err = fn; if(err != hipSuccess) { GGML_ABORT("HipVMM Failure: %s\n", hipGetErrorString(err)); }}
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
#define cublasCreate hipblasCreate
@ -74,6 +80,21 @@
#define cudaMemGetInfo hipMemGetInfo
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
#define cudaSetDevice hipSetDevice
#define cuDeviceGet hipDeviceGet
#define CUdevice hipDevice_t
#define CUdeviceptr hipDeviceptr_t
#define cuMemUnmap hipMemUnmap
#define CUmemAccessDesc hipMemAccessDesc
#define cuMemAddressFree hipMemAddressFree
#define cuMemRelease hipMemRelease
#define CUmemGenericAllocationHandle hipMemGenericAllocationHandle_t
#define cuMemCreate hipMemCreate
#define cuMemAddressReserve hipMemAddressReserve
#define cuMemMap hipMemMap
#define cuMemSetAccess hipMemSetAccess
#define cuMemGetAllocationGranularity hipMemGetAllocationGranularity
#define CUmemAllocationProp hipMemAllocationProp
#define cuDeviceGetAttribute hipDeviceGetAttribute
#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
#define cudaStreamDestroy hipStreamDestroy
#define cudaStreamFireAndForget hipStreamFireAndForget
@ -81,6 +102,28 @@
#define cudaStreamPerThread hipStreamPerThread
#define cudaStreamSynchronize hipStreamSynchronize
#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
#define cudaGraphExec_t hipGraphExec_t
#define cudaGraphNode_t hipGraphNode_t
#define cudaKernelNodeParams hipKernelNodeParams
#define cudaKernelNodeParams hipKernelNodeParams
#define cudaGraphExecDestroy hipGraphExecDestroy
#define cudaGraphLaunch hipGraphLaunch
#define cudaErrorGraphExecUpdateFailure hipErrorGraphExecUpdateFailure
#define cudaGraphExecUpdateResultInfo hipGraphExecUpdateResult
#define cudaGraphNodeType hipGraphNodeType
#define cudaGraphNodeTypeKernel hipGraphNodeTypeKernel
#define cudaGraphInstantiate hipGraphInstantiate
#define cudaStreamEndCapture hipStreamEndCapture
#define cudaGraphDestroy hipGraphDestroy
#define cudaGraphKernelNodeSetParams hipGraphKernelNodeSetParams
#define cudaErrorInvalidDeviceFunction hipErrorInvalidDeviceFunction
#define cudaGraphKernelNodeGetParams hipGraphKernelNodeGetParams
#define cudaGraphNodeGetType hipGraphNodeGetType
#define cudaGraphGetNodes hipGraphGetNodes
#define cudaGraphExecUpdate hipGraphExecUpdate
#define cudaStreamCaptureModeRelaxed hipStreamCaptureModeRelaxed
#define cudaStreamBeginCapture hipStreamBeginCapture
#define cudaGraph_t hipGraph_t
#define cudaStream_t hipStream_t
#define cudaSuccess hipSuccess
#define __trap() do { abort(); __builtin_unreachable(); } while(0)

View File

@ -92,6 +92,14 @@ if (GGML_CUDA_NO_PEER_COPY)
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
endif()
if (GGML_HIP_GRAPHS)
add_compile_definitions(GGML_HIP_GRAPHS)
endif()
if (GGML_HIP_NO_VMM)
add_compile_definitions(GGML_HIP_NO_VMM)
endif()
if (CXX_IS_HIPCC)
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
target_link_libraries(ggml-hip PRIVATE hip::device)

View File

@ -4416,7 +4416,6 @@ void kernel_mul_mv_q2_K_f32_impl(
device const half * dh = &x[ib].d;
for (int row = 0; row < N_DST; row++) {
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; i += 2) {
@ -4447,7 +4446,7 @@ void kernel_mul_mv_q2_K_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < N_DST; ++row) {
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum;
@ -4613,7 +4612,7 @@ void kernel_mul_mv_q3_K_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
if (tiisg == 0) {
for (int row = 0; row < 2; ++row) {
for (int row = 0; row < 2 && first_row + row < args.ne0; ++row) {
dst_f32[first_row + row] = sumf1[row];
}
}
@ -4729,7 +4728,7 @@ void kernel_mul_mv_q4_K_f32_impl(
device float * dst_f32 = (device float *) dst + (int64_t)im*args.ne0*args.ne1 + (int64_t)r1*args.ne0;
for (int row = 0; row < N_DST; ++row) {
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum;
@ -4861,7 +4860,7 @@ void kernel_mul_mv_q5_K_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < 2; ++row) {
for (int row = 0; row < 2 && first_row + row < args.ne0; ++row) {
const float tot = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = tot;
@ -4906,6 +4905,10 @@ void kernel_mul_mv_q6_K_f32_impl(
const int row = 2*r0 + sgitg;
if (row >= args.ne0) {
return;
}
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
@ -5061,7 +5064,7 @@ void kernel_mul_mv_iq2_xxs_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < N_DST; ++row) {
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum * 0.25f;
@ -5179,7 +5182,7 @@ void kernel_mul_mv_iq2_xs_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < N_DST; ++row) {
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum * 0.25f;
@ -5289,7 +5292,7 @@ void kernel_mul_mv_iq3_xxs_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < N_DST; ++row) {
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum * 0.5f;
@ -5401,7 +5404,7 @@ void kernel_mul_mv_iq3_s_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < N_DST; ++row) {
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum;
@ -5514,7 +5517,7 @@ void kernel_mul_mv_iq2_s_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < N_DST; ++row) {
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum * 0.25f;
@ -5614,7 +5617,7 @@ void kernel_mul_mv_iq1_s_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < N_DST; ++row) {
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum;
@ -5709,7 +5712,7 @@ void kernel_mul_mv_iq1_m_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < N_DST; ++row) {
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum;
@ -5799,7 +5802,7 @@ void kernel_mul_mv_iq4_nl_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < 2 && first_row + row < args.ne01; ++row) {
for (int row = 0; row < 2 && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum;
@ -5888,7 +5891,7 @@ void kernel_mul_mv_iq4_xs_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < 2; ++row) {
for (int row = 0; row < 2 && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum;

View File

@ -181,7 +181,7 @@ struct ggml_backend_rpc_context {
struct ggml_backend_rpc_buffer_context {
std::shared_ptr<socket_t> sock;
std::unordered_map<ggml_backend_buffer_t, void *> base_cache;
void * base_ptr;
uint64_t remote_ptr;
};
@ -423,16 +423,15 @@ static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
if (ctx->base_cache.find(buffer) != ctx->base_cache.end()) {
return ctx->base_cache[buffer];
if (ctx->base_ptr != nullptr) {
return ctx->base_ptr;
}
rpc_msg_buffer_get_base_req request = {ctx->remote_ptr};
rpc_msg_buffer_get_base_rsp response;
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_GET_BASE, &request, sizeof(request), &response, sizeof(response));
GGML_ASSERT(status);
void * base_ptr = reinterpret_cast<void *>(response.base_ptr);
ctx->base_cache[buffer] = base_ptr;
return base_ptr;
ctx->base_ptr = reinterpret_cast<void *>(response.base_ptr);
return ctx->base_ptr;
}
static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
@ -557,7 +556,7 @@ static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_back
if (response.remote_ptr != 0) {
ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
ggml_backend_rpc_buffer_interface,
new ggml_backend_rpc_buffer_context{sock, {}, response.remote_ptr},
new ggml_backend_rpc_buffer_context{sock, nullptr, response.remote_ptr},
response.remote_size);
return buffer;
} else {

View File

@ -29,8 +29,6 @@
#include "ggml-vulkan-shaders.hpp"
#define VK_API_VERSION VK_API_VERSION_1_2
#define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
#define VK_VENDOR_ID_AMD 0x1002
@ -87,6 +85,10 @@ struct vk_pipeline_struct {
uint32_t parameter_count;
std::array<uint32_t, 3> wg_denoms;
uint32_t align;
// set to true to request the pipeline is compiled after the dryrun
bool needed {};
// set to true when the shader has been compiled
bool compiled {};
};
typedef std::shared_ptr<vk_pipeline_struct> vk_pipeline;
@ -188,8 +190,11 @@ struct vk_device_struct {
bool mul_mat_id_m;
bool mul_mat_id_s;
vk_matmul_pipeline pipeline_matmul_f32;
vk_matmul_pipeline pipeline_matmul_f32_f16;
// set to true to indicate that some shaders need to be compiled after the dryrun
bool need_compiles {};
vk_matmul_pipeline pipeline_matmul_f32 {};
vk_matmul_pipeline pipeline_matmul_f32_f16 {};
vk_matmul_pipeline2 pipeline_matmul_f16;
vk_matmul_pipeline2 pipeline_matmul_f16_f32;
vk_pipeline pipeline_matmul_split_k_reduce;
@ -197,7 +202,7 @@ struct vk_device_struct {
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_COUNT];
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat[GGML_TYPE_COUNT];
vk_matmul_pipeline pipeline_matmul_id_f32;
vk_matmul_pipeline pipeline_matmul_id_f32 {};
vk_matmul_pipeline2 pipeline_matmul_id_f16;
vk_matmul_pipeline2 pipeline_matmul_id_f16_f32;
@ -778,13 +783,6 @@ static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipelin
GGML_ASSERT(parameter_count > 0);
GGML_ASSERT(wg_denoms[0] > 0 && wg_denoms[1] > 0 && wg_denoms[2] > 0); // NOLINT
pipeline = std::make_shared<vk_pipeline_struct>();
pipeline->name = name;
pipeline->parameter_count = parameter_count;
pipeline->push_constant_size = push_constant_size;
pipeline->wg_denoms = wg_denoms;
pipeline->align = align;
vk::ShaderModuleCreateInfo shader_module_create_info({}, spv_size, reinterpret_cast<const uint32_t *>(spv_data));
pipeline->shader_module = device->device.createShaderModule(shader_module_create_info);
@ -867,6 +865,7 @@ static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipelin
}
pipeline->pipeline = device->device.createComputePipeline(VK_NULL_HANDLE, compute_pipeline_create_info).value;
pipeline->compiled = true;
{
std::lock_guard<std::mutex> guard(device->mutex);
@ -877,12 +876,6 @@ static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipelin
std::lock_guard<std::mutex> guard(compile_count_mutex);
assert(compile_count > 0);
compile_count--;
// "Progress bar" for shader compiles
static uint32_t total_compile_count = 0;
if ((total_compile_count++ % 10) == 0) {
std::cerr << ".";
}
}
compile_count_cond.notify_all();
}
@ -908,6 +901,10 @@ static void ggml_vk_destroy_pipeline(vk::Device& device, vk_pipeline& pipeline)
static void ggml_pipeline_request_descriptor_sets(vk_device& device, vk_pipeline& pipeline, uint32_t n) {
VK_LOG_DEBUG("ggml_pipeline_request_descriptor_sets(" << pipeline->name << ", " << n << ")");
device->pipeline_descriptor_set_requirements[pipeline->name] += n;
if (!pipeline->compiled) {
pipeline->needed = true;
device->need_compiles = true;
}
}
static void ggml_pipeline_allocate_descriptor_sets(vk_device& device) {
@ -1390,8 +1387,6 @@ static bool ggml_vk_matmul_shmem_support(const vk_device& device, const std::vec
static void ggml_vk_load_shaders(vk_device& device) {
VK_LOG_DEBUG("ggml_vk_load_shaders(" << device->name << ")");
std::cerr << "ggml_vulkan: Compiling shaders";
// some shaders have a minimum subgroup size
const uint32_t subgroup_size_16 = std::max(device->subgroup_size, 16u);
const uint32_t subgroup_size_32 = std::max(device->subgroup_size, 32u);
@ -1529,15 +1524,33 @@ static void ggml_vk_load_shaders(vk_device& device) {
}
}
device->pipeline_matmul_f32 = std::make_shared<vk_matmul_pipeline_struct>();
device->pipeline_matmul_f32_f16 = std::make_shared<vk_matmul_pipeline_struct>();
device->pipeline_matmul_id_f32 = std::make_shared<vk_matmul_pipeline_struct>();
if (!device->pipeline_matmul_f32) {
device->pipeline_matmul_f32 = std::make_shared<vk_matmul_pipeline_struct>();
}
if (!device->pipeline_matmul_f32_f16) {
device->pipeline_matmul_f32_f16 = std::make_shared<vk_matmul_pipeline_struct>();
}
if (!device->pipeline_matmul_id_f32) {
device->pipeline_matmul_id_f32 = std::make_shared<vk_matmul_pipeline_struct>();
}
std::vector<std::future<void>> compiles;
auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const std::string &entrypoint,
uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, const std::vector<uint32_t>& specialization_constants,
uint32_t align, bool disable_robustness = false, bool require_full_subgroups = false, uint32_t required_subgroup_size = 0) {
if (!pipeline) {
pipeline = std::make_shared<vk_pipeline_struct>();
pipeline->name = name;
pipeline->parameter_count = parameter_count;
pipeline->push_constant_size = push_constant_size;
pipeline->wg_denoms = wg_denoms;
pipeline->align = align;
}
if (!pipeline->needed || pipeline->compiled) {
return;
}
{
// wait until fewer than N compiles are in progress
uint32_t N = std::max(1u, std::thread::hardware_concurrency());
@ -1614,11 +1627,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
CREATE_MM(PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
CREATE_MM(pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3)
CREATE_MM2(pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3)
CREATE_MM2(pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
@ -1631,21 +1640,18 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f16, _f16acc, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
CREATE_MM2(pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
CREATE_MM2(pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
#undef CREATE_MM
#undef CREATE_MM2
} else
@ -1682,31 +1688,31 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM2(pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
if (device->coopmat_acc_f16_support) {
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
} else {
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
}
// If there's not enough shared memory for row_ids and the result tile, don't create these pipelines.
@ -1716,31 +1722,31 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM2(pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
if (device->coopmat_acc_f16_support) {
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
} else {
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
}
}
#undef CREATE_MM2
@ -2021,7 +2027,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_leaky_relu_f32, "leaky_relu_f32", leaky_relu_f32_len, leaky_relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_tanh_f32, "tanh_f32", tanh_f32_len, tanh_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {1, 512, 1}, {}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_wg512, "soft_max_f32_wg512", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1);
@ -2059,7 +2065,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
for (auto &c : compiles) {
c.wait();
}
std::cerr << "Done!" << std::endl;
device->need_compiles = false;
}
static bool ggml_vk_khr_cooperative_matrix_support(const vk::PhysicalDeviceProperties& props, const vk::PhysicalDeviceDriverProperties& driver_props);
@ -2287,6 +2293,14 @@ static vk_device ggml_vk_get_device(size_t idx) {
}
#endif
VkPhysicalDeviceMaintenance4Features maint4_features {};
maint4_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES;
if (maintenance4_support) {
last_struct->pNext = (VkBaseOutStructure *)&maint4_features;
last_struct = (VkBaseOutStructure *)&maint4_features;
device_extensions.push_back("VK_KHR_maintenance4");
}
vkGetPhysicalDeviceFeatures2(device->physical_device, &device_features2);
device->fp16 = device->fp16 && vk12_features.shaderFloat16;
@ -2662,7 +2676,14 @@ void ggml_vk_instance_init() {
vk_instance_initialized = true;
vk::ApplicationInfo app_info{ "ggml-vulkan", 1, nullptr, 0, VK_API_VERSION };
uint32_t api_version = vk::enumerateInstanceVersion();
if (api_version < VK_API_VERSION_1_2) {
std::cerr << "ggml_vulkan: Error: Vulkan 1.2 required." << std::endl;
GGML_ABORT("fatal error");
}
vk::ApplicationInfo app_info{ "ggml-vulkan", 1, nullptr, 0, api_version };
const std::vector<vk::ExtensionProperties> instance_extensions = vk::enumerateInstanceExtensionProperties();
const bool validation_ext = ggml_vk_instance_validation_ext_available(instance_extensions);
@ -2972,7 +2993,7 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_id_pipeline(ggml_backend_vk_co
}
}
GGML_ASSERT(src1_type == GGML_TYPE_F32);
GGML_ASSERT(src1_type == GGML_TYPE_F32 || (ctx->device->coopmat2 && src1_type == GGML_TYPE_F16));
switch (src0_type) {
case GGML_TYPE_Q4_0:
@ -3812,8 +3833,9 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
src1_uma = d_Qy != nullptr;
}
const bool x_non_contig = !ggml_vk_dim01_contiguous(src0);
// Reformat and convert to fp16 if src1 is non-contiguous, or for coopmat2 for better perf
// Reformat and convert to fp16 if non-contiguous, or for coopmat2 for better perf
const bool x_non_contig = (ctx->device->coopmat2 && src0->type == GGML_TYPE_F32) ||
!ggml_vk_dim01_contiguous(src0);
const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
!ggml_vk_dim01_contiguous(src1);
@ -4393,8 +4415,11 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
ids_uma = d_ids != nullptr;
}
const bool x_non_contig = !ggml_vk_dim01_contiguous(src0);
const bool y_non_contig = !ggml_vk_dim01_contiguous(src1);
// Reformat and convert to fp16 if non-contiguous, or for coopmat2 for better perf
const bool x_non_contig = (ctx->device->coopmat2 && src0->type == GGML_TYPE_F32) ||
!ggml_vk_dim01_contiguous(src0);
const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
!ggml_vk_dim01_contiguous(src1);
const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
@ -4404,7 +4429,8 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig;
if (qx_needs_dequant) {
GGML_ABORT("fatal error");
// Fall back to dequant + f16 mulmat
mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, GGML_TYPE_F16, y_f32_kernel ? GGML_TYPE_F32 : GGML_TYPE_F16, (ggml_prec)dst->op_params[0]);
}
// Not implemented
@ -7645,6 +7671,9 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_vk_build_graph(ctx, cgraph->nodes[i], i, nullptr, 0, true, false, false);
}
if (ctx->device->need_compiles) {
ggml_vk_load_shaders(ctx->device);
}
ggml_vk_preallocate_buffers(ctx);
ggml_pipeline_allocate_descriptor_sets(ctx->device);

View File

@ -12,7 +12,7 @@ layout (push_constant) uniform parameter
#include "types.comp"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
layout(local_size_x = 1, local_size_y = 512, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};

View File

@ -166,7 +166,7 @@ void main() {
tensorLayoutK = setTensorLayoutStrideNV(tensorLayoutK, k_stride, 1);
tensorLayoutV = setTensorLayoutStrideNV(tensorLayoutV, v_stride, 1);
coopmat<Q_TYPE, gl_ScopeWorkgroup, Br, D, gl_MatrixUseA> Q;
coopmat<Q_TYPE, gl_ScopeWorkgroup, Br, D, gl_MatrixUseAccumulator> Q;
coopmat<float16_t, gl_ScopeWorkgroup, Br, D, gl_MatrixUseA> Qf16;
uint32_t q_offset = iq2*p.nb02+iq3*p.nb03;

View File

@ -57,17 +57,13 @@ layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
#if QUANT_K > 1
#define DECODEFUNCA , dequantFuncA
#define MAT_A_TYPE float16_t
#include "dequant_funcs_cm2.comp"
#else
#define DECODEFUNCA
#define MAT_A_TYPE A_TYPE
#endif
#define MAT_B_TYPE B_TYPE
#ifdef MUL_MAT_ID
layout (binding = 3) readonly buffer IDS {int data_ids[];};
@ -236,16 +232,13 @@ void main() {
for (uint block_k = start_k, i = 0; i < k_iters; block_k += BK, ++i) {
coopmat<MAT_A_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_B_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA>(mat_a);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BN, block_k, BK), tensorViewTranspose);
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB>(mat_b);
sum = coopMatMulAdd(mat_a_ft, mat_b_ft, sum);
sum = coopMatMulAdd(mat_a, mat_b, sum);
}
} else
#endif // !defined(MUL_MAT_ID)
@ -261,10 +254,8 @@ void main() {
[[dont_unroll]]
for (uint block_k = start_k; block_k < end_k; block_k += BK) {
coopmat<MAT_A_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_B_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a_ft;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b_ft;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
// Clamping is expensive, so detect different code paths for each combination
// of A and B needing clamping.
@ -281,16 +272,12 @@ void main() {
#else
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BN, (block_k & ~7), BK), tensorViewTranspose);
#endif
mat_a_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA>(mat_a);
mat_b_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB>(mat_b);
sum = coopMatMulAdd(mat_a_ft, mat_b_ft, sum);
sum = coopMatMulAdd(mat_a, mat_b, sum);
} else if (unclampedA && !unclampedB) {
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, (block_k & ~7), BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutBClamp, ic * BN, BN, block_k, BK), tensorViewTranspose);
mat_a_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA>(mat_a);
mat_b_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB>(mat_b);
sum = coopMatMulAdd(mat_a_ft, mat_b_ft, sum);
sum = coopMatMulAdd(mat_a, mat_b, sum);
} else if (!unclampedA && unclampedB) {
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutAClamp, ir * BM, BM, block_k, BK) DECODEFUNCA);
#ifdef MUL_MAT_ID
@ -298,16 +285,12 @@ void main() {
#else
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BN, (block_k & ~7), BK), tensorViewTranspose);
#endif
mat_a_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA>(mat_a);
mat_b_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB>(mat_b);
sum = coopMatMulAdd(mat_a_ft, mat_b_ft, sum);
sum = coopMatMulAdd(mat_a, mat_b, sum);
} else if (!unclampedA && !unclampedB) {
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutAClamp, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutBClamp, ic * BN, BN, block_k, BK), tensorViewTranspose);
mat_a_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA>(mat_a);
mat_b_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB>(mat_b);
sum = coopMatMulAdd(mat_a_ft, mat_b_ft, sum);
sum = coopMatMulAdd(mat_a, mat_b, sum);
}
}
}

View File

@ -17,13 +17,13 @@
#include <cstring>
#include <cstdlib>
#include <cassert>
#include <algorithm>
#include <sys/stat.h>
#include <sys/types.h>
#ifdef _WIN32
#include <windows.h>
#include <direct.h> // For _mkdir on Windows
#include <algorithm> // For std::replace on w64devkit
#else
#include <unistd.h>
#include <sys/wait.h>
@ -316,8 +316,11 @@ void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool
// For aligned matmul loads
std::string load_vec_a = (coopmat2 || tname == "f32" || tname == "f16") ? load_vec : "2";
string_to_spv(shader_name + "_" + tname + "_f32", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f32_aligned", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
// don't generate f32 variants for coopmat2
if (!coopmat2) {
string_to_spv(shader_name + "_" + tname + "_f32", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f32_aligned", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
}
if (tname != "f16" && tname != "f32") {
string_to_spv(shader_name + "_" + tname + "_f16", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}}), fp16, coopmat, coopmat2, f16acc);
@ -499,6 +502,7 @@ void write_output_files() {
fprintf(hdr, "#include <cstdint>\n\n");
fprintf(src, "#include \"%s\"\n\n", basename(target_hpp).c_str());
std::sort(shader_fnames.begin(), shader_fnames.end());
for (const auto& pair : shader_fnames) {
const std::string& name = pair.first;
#ifdef _WIN32

View File

@ -5339,7 +5339,7 @@ static void ggml_compute_backward(
} break;
case GGML_OP_MUL: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, src1, grad));
ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, grad, src1));
}
if (src1_needs_grads) {
struct ggml_tensor * tmp = ggml_mul(ctx, src0, grad);
@ -5431,21 +5431,25 @@ static void ggml_compute_backward(
// src1.shape [n,p,qq,rr]
if (src0_needs_grads) {
struct ggml_tensor * s1_tg =
GGML_ASSERT(grad->ne[2] == src1->ne[2]);
GGML_ASSERT(grad->ne[3] == src1->ne[3]);
struct ggml_tensor * tmp =
ggml_out_prod(ctx, // [n,m,qq,rr]
src1, // [n,p,qq,rr]
grad); // [m,p,qq,rr]
const int64_t qq = s1_tg->ne[2];
const int64_t rr = s1_tg->ne[3];
const int64_t q1 = src0->ne[2];
const int64_t r1 = src0->ne[3];
const bool ne2_broadcasted = qq > q1;
const bool ne3_broadcasted = rr > r1;
if (ne2_broadcasted || ne3_broadcasted) {
// sum broadcast repetitions of s1_tg into shape of src0
s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
if (!ggml_are_same_shape(tmp, src0)) {
GGML_ASSERT(tmp->ne[0] == src0->ne[0]);
GGML_ASSERT(tmp->ne[1] == src0->ne[1]);
GGML_ASSERT(tmp->ne[3] == 1);
const int64_t nr2 = tmp->ne[2] / src0->ne[2];
const size_t nb2 = tmp->nb[2] * nr2;
const size_t nb3 = tmp->nb[2];
tmp = ggml_view_4d(ctx, tmp, src0->ne[0], src0->ne[1], src0->ne[2], nr2, tmp->nb[1], nb2, nb3, 0);
tmp = ggml_repeat_back(ctx, tmp, src0);
}
ggml_add_or_set(ctx, cgraph, isrc0, s1_tg /*= [n,m,q1,r1]*/);
ggml_add_or_set(ctx, cgraph, isrc0, tmp);
}
if (src1_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc1,
@ -5514,7 +5518,9 @@ static void ggml_compute_backward(
if (src0_needs_grads) {
GGML_ASSERT(!cgraph->grads[isrc0] || ggml_is_contiguous(cgraph->grads[isrc0]));
GGML_ASSERT(ggml_is_contiguous(grad));
ggml_add_or_set(ctx, cgraph, isrc0, grad);
GGML_ASSERT(ggml_nelements(tensor) == ggml_nelements(src0));
ggml_add_or_set(ctx, cgraph, isrc0,
ggml_are_same_shape(tensor, src0) ? grad : ggml_reshape(ctx, grad, src0));
}
} break;
case GGML_OP_RESHAPE: {

View File

@ -510,7 +510,8 @@ extern "C" {
LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
// Get the default chat template. Returns nullptr if not available
LLAMA_API const char * llama_model_chat_template(const struct llama_model * model);
// If name is NULL, returns the default chat template
LLAMA_API const char * llama_model_chat_template(const struct llama_model * model, const char * name);
// Returns the total number of parameters in the model
LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);

View File

@ -0,0 +1,112 @@
ied 4 ½ months
__ggml_vocab_test__
Führer
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
Hello world
__ggml_vocab_test__
Hello world
__ggml_vocab_test__
Hello World
__ggml_vocab_test__
Hello World
__ggml_vocab_test__
Hello World!
__ggml_vocab_test__
Hello, world!
__ggml_vocab_test__
Hello, world!
__ggml_vocab_test__
this is 🦙.cpp
__ggml_vocab_test__
w048 7tuijk dsdfhu
__ggml_vocab_test__
нещо на Български
__ggml_vocab_test__
កាន់តែពិសេសអាចខលចេញ
__ggml_vocab_test__
🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
Hello
__ggml_vocab_test__
(
__ggml_vocab_test__
=
__ggml_vocab_test__
' era
__ggml_vocab_test__
Hello, y'all! How are you 😁 ?我想在apple工作1314151天
__ggml_vocab_test__
!!!!!!
__ggml_vocab_test__
3
__ggml_vocab_test__
33
__ggml_vocab_test__
333
__ggml_vocab_test__
3333
__ggml_vocab_test__
33333
__ggml_vocab_test__
333333
__ggml_vocab_test__
3333333
__ggml_vocab_test__
33333333
__ggml_vocab_test__
333333333
__ggml_vocab_test__
Cửa Việt
__ggml_vocab_test__
discards
__ggml_vocab_test__
🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天 ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL
__ggml_vocab_test__

View File

@ -0,0 +1,46 @@
1122 220 19 220 26062 3951
37 50753 261
220
256
262
197
198
271
1406
1572
9707 1879
21927 1879
9707 4337
21927 4337
21927 4337 0
9707 11 1879 0
21927 11 1879 0
419 374 11162 99 247 13 10821
86 15 19 23 220 22 83 1963 41808 11472 2940 16739
78762 14144 1456 13073 63471 33594 3038 133178 79012
146394 97529 241 44258 233 146568 44258 224 147603 20879 115 146280 44258 223 146280 147272 97529 227 147805 148301 147270 44258 223 146848
145836 320 8252 8 26525 114 378 235 149921 30543 320 35673 99066 97534 8 25521 227 320 3243 42365 429 702 1181 1828 3950 8
9707
21927
220 21927
256 21927
262 21927
262 21927 198 262 21927
320
198 284
6 11385
9707 11 379 64848 0 2585 525 498 26525 223 937 104100 18493 22377 99257 16 18 16 19 16 20 16 35727 21216
17085 2928
18
18 18
18 18 18
18 18 18 18
18 18 18 18 18
18 18 18 18 18 18
18 18 18 18 18 18 18
18 18 18 18 18 18 18 18
18 18 18 18 18 18 18 18 18
34 90063 128324
2560 2347
198 4710 14731 65497 7847 1572 2303 78672 10947 145836 320 8252 8 26525 114 378 235 149921 30543 320 35673 99066 97534 8 25521 227 11162 99 247 149955 220 18 220 18 18 220 18 18 18 220 18 18 18 18 220 18 18 18 18 18 220 18 18 18 18 18 18 220 18 18 18 18 18 18 18 220 18 18 18 18 18 18 18 18 220 18 13 18 220 18 496 18 220 18 1112 18 220 146394 97529 241 44258 233 146568 44258 224 147603 20879 115 146280 44258 223 146280 147272 97529 227 144534 937 104100 18493 22377 99257 16 18 16 19 16 20 16 35727 21216 55460 53237 18658 14144 1456 13073 63471 33594 3038 133178 79012 3355 4605 4605 13874 13874 73594 3014 3014 28149 17085 2928 26610 7646 358 3003 1012 364 83 813 566 594 1052 11 364 787 498 2704 30 364 44 537 2704 358 3278 1281 432 11 364 35 498 1075 1045 15243 30 1205 6 42612 264 63866 43

77
scripts/get_hf_chat_template.py Executable file
View File

@ -0,0 +1,77 @@
#!/usr/bin/env python
'''
Fetches the Jinja chat template of a HuggingFace model.
If a model has multiple chat templates, you can specify the variant name.
Syntax:
./scripts/get_hf_chat_template.py model_id [variant]
Examples:
./scripts/get_hf_chat_template.py NousResearch/Meta-Llama-3-8B-Instruct
./scripts/get_hf_chat_template.py NousResearch/Hermes-3-Llama-3.1-8B tool_use
./scripts/get_hf_chat_template.py meta-llama/Llama-3.2-3B-Instruct
'''
import json
import re
import sys
def get_hf_chat_template(model_id, variant=None):
try:
# Use huggingface_hub library if available.
# Allows access to gated models if the user has access and ran `huggingface-cli login`.
from huggingface_hub import hf_hub_download
with open(hf_hub_download(repo_id=model_id, filename="tokenizer_config.json")) as f:
config_str = f.read()
except ImportError:
import requests
assert re.match(r"^[\w.-]+/[\w.-]+$", model_id), f"Invalid model ID: {model_id}"
response = requests.get(f"https://huggingface.co/{model_id}/resolve/main/tokenizer_config.json")
if response.status_code == 401:
raise Exception('Access to this model is gated, please request access, authenticate with `huggingface-cli login` and make sure to run `pip install huggingface_hub`')
response.raise_for_status()
config_str = response.text
try:
config = json.loads(config_str)
except json.JSONDecodeError:
# Fix https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct/blob/main/tokenizer_config.json
# (Remove extra '}' near the end of the file)
config = json.loads(re.sub(r'\}([\n\s]*\}[\n\s]*\],[\n\s]*"clean_up_tokenization_spaces")', r'\1', config_str))
chat_template = config['chat_template']
if isinstance(chat_template, str):
return chat_template
else:
variants = {
ct['name']: ct['template']
for ct in chat_template
}
def format_variants():
return ', '.join(f'"{v}"' for v in variants.keys())
if variant is None:
if 'default' not in variants:
raise Exception(f'Please specify a chat template variant (one of {format_variants()})')
variant = 'default'
sys.stderr.write(f'Note: picked "default" chat template variant (out of {format_variants()})\n')
elif variant not in variants:
raise Exception(f"Variant {variant} not found in chat template (found {format_variants()})")
return variants[variant]
def main(args):
if len(args) < 1:
raise ValueError("Please provide a model ID and an optional variant name")
model_id = args[0]
variant = None if len(args) < 2 else args[1]
template = get_hf_chat_template(model_id, variant)
sys.stdout.write(template)
if __name__ == '__main__':
main(sys.argv[1:])

View File

@ -29,7 +29,7 @@ add_library(llama
unicode-data.cpp
)
target_include_directories(llama PUBLIC . ../include)
target_include_directories(llama PUBLIC . ../include ../common)
target_compile_features (llama PUBLIC cxx_std_17) # don't bump
target_link_libraries(llama PUBLIC ggml)

View File

@ -179,6 +179,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
{ LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
{ LLM_KV_TOKENIZER_CHAT_TEMPLATE, "tokenizer.chat_template" },
{ LLM_KV_TOKENIZER_CHAT_TEMPLATE_N, "tokenizer.chat_template.%s" },
{ LLM_KV_TOKENIZER_FIM_PRE_ID, "tokenizer.ggml.fim_pre_token_id" },
{ LLM_KV_TOKENIZER_FIM_SUF_ID, "tokenizer.ggml.fim_suf_token_id" },
{ LLM_KV_TOKENIZER_FIM_MID_ID, "tokenizer.ggml.fim_mid_token_id" },
@ -1443,10 +1444,11 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_CONVNEXT_GAMMA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
};
LLM_KV::LLM_KV(llm_arch arch) : arch(arch) {}
LLM_KV::LLM_KV(llm_arch arch, const char * suffix) : arch(arch), suffix(suffix) {}
std::string LLM_KV::operator()(llm_kv kv) const {
return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
return suffix ? ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch), suffix)
: ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
}
std::string LLM_TN_IMPL::str() const {

View File

@ -177,6 +177,7 @@ enum llm_kv {
LLM_KV_TOKENIZER_HF_JSON,
LLM_KV_TOKENIZER_RWKV,
LLM_KV_TOKENIZER_CHAT_TEMPLATE,
LLM_KV_TOKENIZER_CHAT_TEMPLATE_N,
LLM_KV_TOKENIZER_FIM_PRE_ID,
LLM_KV_TOKENIZER_FIM_SUF_ID,
LLM_KV_TOKENIZER_FIM_MID_ID,
@ -335,9 +336,10 @@ enum llm_tensor_layer {
};
struct LLM_KV {
LLM_KV(llm_arch arch);
LLM_KV(llm_arch arch, const char * suffix = nullptr);
llm_arch arch;
const char * suffix;
std::string operator()(llm_kv kv) const;
};

View File

@ -152,7 +152,7 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
return LLM_CHAT_TEMPLATE_MINICPM;
} else if (tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
return LLM_CHAT_TEMPLATE_DEEPSEEK_2;
} else if (tmpl_contains(LU8("'<Assistant>' + message['content'] + '<end▁of▁sentence>'"))) {
} else if (tmpl_contains(LU8("<Assistant>")) && tmpl_contains(LU8("<User>")) && tmpl_contains(LU8("<end▁of▁sentence>"))) {
return LLM_CHAT_TEMPLATE_DEEPSEEK_3;
} else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) {
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb

View File

@ -7,6 +7,7 @@
#include <cstring>
#include <climits>
#include <stdexcept>
#include <cerrno>
#ifdef __has_include
#if __has_include(<unistd.h>)

View File

@ -2203,6 +2203,50 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
}
} break;
case LLM_ARCH_PHIMOE:
{
const int64_t n_embd_head = n_embd / n_head;
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
if (layer.wqkv == nullptr) {
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
}
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
}
} break;
case LLM_ARCH_PLAMO:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -3911,8 +3955,10 @@ uint64_t llama_model_size(const struct llama_model * model) {
return model->size();
}
const char * llama_model_chat_template(const struct llama_model * model) {
const auto & it = model->gguf_kv.find(LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE));
const char * llama_model_chat_template(const struct llama_model * model, const char * name) {
const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE_N)
: LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
const auto & it = model->gguf_kv.find(key);
if (it == model->gguf_kv.end()) {
return nullptr;
}

View File

@ -1523,7 +1523,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
pre_type = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
clean_spaces = false;
} else if (
tokenizer_pre == "qwen2") {
tokenizer_pre == "qwen2" ||
tokenizer_pre == "deepseek-r1-qwen") {
pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
clean_spaces = false;
} else if (

View File

@ -1302,6 +1302,59 @@ struct test_repeat : public test_case {
}
};
// GGML_OP_REPEAT_BACK
struct test_repeat_back : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
const std::array<int, 4> nr;
const bool v; // whether src is a noncontiguous view
std::string vars() override {
return VARS_TO_STR4(type, ne, nr, v);
}
size_t op_size(ggml_tensor * t) override {
return ggml_nbytes(t) * 2;
}
test_repeat_back(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {8, 6, 4, 2},
std::array<int, 4> nr = {2, 2, 2, 2},
bool v = false)
: type(type), ne(ne), nr(nr), v(v) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
ggml_set_name(src, "src");
if (v) {
GGML_ASSERT(ne[0] % 2 == 0);
GGML_ASSERT(ne[1] % 2 == 0);
GGML_ASSERT(ne[2] % 2 == 0);
GGML_ASSERT(ne[3] % 2 == 0);
GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
}
ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(target, "target");
ggml_tensor * out = ggml_repeat_back(ctx, src, target);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_DUP
struct test_dup : public test_case {
const ggml_type type;
@ -1849,6 +1902,10 @@ struct test_mul_mat : public test_case {
return 5e-4;
}
int64_t grad_nmax() override {
return 20000;
}
uint64_t op_flops(ggml_tensor * t) override {
GGML_UNUSED(t);
return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
@ -1878,8 +1935,12 @@ struct test_mul_mat : public test_case {
a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
ggml_set_param(ctx, a);
ggml_set_param(ctx, b);
if (!ggml_is_quantized(type_a)) {
if (bs[1] == 1 && nr[1] == 1) {
ggml_set_param(ctx, a);
}
ggml_set_param(ctx, b);
}
ggml_set_name(a, "a");
ggml_set_name(b, "b");
@ -1890,8 +1951,12 @@ struct test_mul_mat : public test_case {
} else {
a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
ggml_set_param(ctx, a);
ggml_set_param(ctx, b);
if (!ggml_is_quantized(type_a)) {
if (bs[1] == 1 && nr[1] == 1) {
ggml_set_param(ctx, a);
}
ggml_set_param(ctx, b);
}
ggml_set_name(a, "a");
ggml_set_name(b, "b");
}
@ -3798,6 +3863,16 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
}
for (bool view : {false, true}) {
test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
test_cases.emplace_back(new test_repeat_back(GGML_TYPE_I32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
test_cases.emplace_back(new test_repeat_back(GGML_TYPE_I16, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
}
test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
@ -3909,38 +3984,35 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
for (int i = 1; i < 9; ++i) {
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_0, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_1, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q5_0, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q5_1, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_K, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q5_K, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q6_K, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_IQ4_NL, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
for (ggml_type type_a : all_types) {
for (int i = 1; i < 10; ++i) {
test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
}
}
#if 1
for (ggml_type type_a : base_types) {
for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
// test cases without permutation
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 2}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 2}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {2, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 2}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {2, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 2}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 2}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {2, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {2, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 2}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {2, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 1}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 2}));
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 2}));
// test cases with permutation
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));

View File

@ -7,6 +7,16 @@
#include "llama.h"
#include "common.h"
#include "chat-template.hpp"
static std::string normalize_newlines(const std::string & s) {
#ifdef _WIN32
static const std::regex nl_regex("\r\n");
return std::regex_replace(s, nl_regex, "\n");
#else
return s;
#endif
}
int main(void) {
std::vector<llama_chat_message> conversation {
@ -21,156 +31,228 @@ int main(void) {
std::string name;
std::string template_str;
std::string expected_output;
std::string expected_output_jinja;
std::string bos_token = "";
std::string eos_token = "";
bool supported_with_jinja = true;
};
std::vector<TestCase> test_cases {
{
/* .name= */ "teknium/OpenHermes-2.5-Mistral-7B",
/* .template_str= */ "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\\n' + message['content'] + '<|im_end|>' + '\\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\\n' }}{% endif %}",
/* .expected_output= */ "<|im_start|>system\nYou are a helpful assistant<|im_end|>\n<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\nHi there<|im_end|>\n<|im_start|>user\nWho are you<|im_end|>\n<|im_start|>assistant\n I am an assistant <|im_end|>\n<|im_start|>user\nAnother question<|im_end|>\n<|im_start|>assistant\n",
/* .expected_output_jinja= */ "",
/* .bos_token= */ "",
/* .eos_token= */ "",
},
{
/* .name= */ "mistralai/Mistral-7B-Instruct-v0.2 (NOTE: Old pre-v1 without a system prompt)",
/* .template_str= */ "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
/* .expected_output= */ "[INST] You are a helpful assistant\nHello [/INST]Hi there</s>[INST] Who are you [/INST] I am an assistant </s>[INST] Another question [/INST]",
/* .expected_output_jinja= */ "",
/* .bos_token= */ "",
/* .eos_token= */ "</s>",
},
{
/* .name= */ "TheBloke/FusionNet_34Bx2_MoE-AWQ",
/* .template_str= */ "{%- for idx in range(0, messages|length) -%}\\n{%- if messages[idx]['role'] == 'user' -%}\\n{%- if idx > 1 -%}\\n{{- bos_token + '[INST] ' + messages[idx]['content'] + ' [/INST]' -}}\\n{%- else -%}\\n{{- messages[idx]['content'] + ' [/INST]' -}}\\n{%- endif -%}\\n{% elif messages[idx]['role'] == 'system' %}\\n{{- '[INST] <<SYS>>\\\\n' + messages[idx]['content'] + '\\\\n<</SYS>>\\\\n\\\\n' -}}\\n{%- elif messages[idx]['role'] == 'assistant' -%}\\n{{- ' ' + messages[idx]['content'] + ' ' + eos_token -}}\\n{% endif %}\\n{% endfor %}",
/* .expected_output= */ "[INST] <<SYS>>\nYou are a helpful assistant\n<</SYS>>\n\nHello [/INST]Hi there</s><s>[INST] Who are you [/INST] I am an assistant </s><s>[INST] Another question [/INST]",
/* .template_str= */ "{%- for idx in range(0, messages|length) -%}\n{%- if messages[idx]['role'] == 'user' -%}\n{%- if idx > 1 -%}\n{{- bos_token + '[INST] ' + messages[idx]['content'] + ' [/INST]' -}}\n{%- else -%}\n{{- messages[idx]['content'] + ' [/INST]' -}}\n{%- endif -%}\n{% elif messages[idx]['role'] == 'system' %}\n{{- '[INST] <<SYS>>\\n' + messages[idx]['content'] + '\\n<</SYS>>\\n\\n' -}}\n{%- elif messages[idx]['role'] == 'assistant' -%}\n{{- ' ' + messages[idx]['content'] + ' ' + eos_token -}}\n{% endif %}\n{% endfor %}",
/* .expected_output= */ "[INST] <<SYS>>\nYou are a helpful assistant\n<</SYS>>\n\nHello [/INST]Hi there</s><s>[INST] Who are you [/INST] I am an assistant </s><s>[INST] Another question [/INST]",
/* .expected_output_jinja= */ "[INST] <<SYS>>\nYou are a helpful assistant\n<</SYS>>\n\nHello [/INST] Hi there </s><s>[INST] Who are you [/INST] I am an assistant </s><s>[INST] Another question [/INST]",
/* .bos_token= */ "<s>",
/* .eos_token= */ "</s>",
},
{
/* .name= */ "bofenghuang/vigogne-2-70b-chat",
/* .template_str= */ "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif true == true and not '<<SYS>>' in messages[0]['content'] %}{% set loop_messages = messages %}{% set system_message = 'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez autant que vous le pouvez.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\\\n' + system_message + '\\\\n<</SYS>>\\\\n\\\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'system' %}{{ '<<SYS>>\\\\n' + content.strip() + '\\\\n<</SYS>>\\\\n\\\\n' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
/* .expected_output= */ "[INST] <<SYS>>\nYou are a helpful assistant\n<</SYS>>\n\nHello [/INST]Hi there</s>[INST] Who are you [/INST]I am an assistant</s>[INST] Another question [/INST]",
/* .template_str= */ "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif true == true and not '<<SYS>>' in messages[0]['content'] %}{% set loop_messages = messages %}{% set system_message = 'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez autant que vous le pouvez.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'system' %}{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
/* .expected_output= */ "[INST] <<SYS>>\nYou are a helpful assistant\n<</SYS>>\n\nHello [/INST]Hi there</s>[INST] Who are you [/INST]I am an assistant</s>[INST] Another question [/INST]",
/* .expected_output_jinja= */ "[INST] <<SYS>>\nYou are a helpful assistant\n<</SYS>>\n\nHello [/INST] Hi there </s>[INST] Who are you [/INST] I am an assistant </s>[INST] Another question [/INST]",
/* .bos_token= */ "",
/* .eos_token= */ "</s>",
},
{
/* .name= */ "mlabonne/AlphaMonarch-7B",
/* .template_str= */ "{% for message in messages %}{{bos_token + message['role'] + '\\n' + message['content'] + eos_token + '\\n'}}{% endfor %}{% if add_generation_prompt %}{{ bos_token + 'assistant\\n' }}{% endif %}",
/* .expected_output= */ "system\nYou are a helpful assistant</s>\n<s>user\nHello</s>\n<s>assistant\nHi there</s>\n<s>user\nWho are you</s>\n<s>assistant\n I am an assistant </s>\n<s>user\nAnother question</s>\n<s>assistant\n",
/* .expected_output= */ "system\nYou are a helpful assistant</s>\n<s>user\nHello</s>\n<s>assistant\nHi there</s>\n<s>user\nWho are you</s>\n<s>assistant\n I am an assistant </s>\n<s>user\nAnother question</s>\n<s>assistant\n",
/* .expected_output_jinja= */ "<s>system\nYou are a helpful assistant</s>\n<s>user\nHello</s>\n<s>assistant\nHi there</s>\n<s>user\nWho are you</s>\n<s>assistant\n I am an assistant </s>\n<s>user\nAnother question</s>\n<s>assistant\n",
/* .bos_token= */ "<s>",
/* .eos_token= */ "</s>",
},
{
/* .name= */ "google/gemma-7b-it",
/* .template_str= */ "{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\\n' + message['content'] | trim + '<end_of_turn>\\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\\n'}}{% endif %}",
/* .expected_output= */ "<start_of_turn>user\nYou are a helpful assistant\n\nHello<end_of_turn>\n<start_of_turn>model\nHi there<end_of_turn>\n<start_of_turn>user\nWho are you<end_of_turn>\n<start_of_turn>model\nI am an assistant<end_of_turn>\n<start_of_turn>user\nAnother question<end_of_turn>\n<start_of_turn>model\n",
/* .expected_output= */ "<start_of_turn>user\nYou are a helpful assistant\n\nHello<end_of_turn>\n<start_of_turn>model\nHi there<end_of_turn>\n<start_of_turn>user\nWho are you<end_of_turn>\n<start_of_turn>model\nI am an assistant<end_of_turn>\n<start_of_turn>user\nAnother question<end_of_turn>\n<start_of_turn>model\n",
/* .expected_output_jinja= */ "<start_of_turn>user\nYou are a helpful assistant\nHello<end_of_turn>\n<start_of_turn>model\nHi there<end_of_turn>\n<start_of_turn>user\nWho are you<end_of_turn>\n<start_of_turn>model\nI am an assistant<end_of_turn>\n<start_of_turn>user\nAnother question<end_of_turn>\n<start_of_turn>model\n",
},
{
/* .name= */ "OrionStarAI/Orion-14B-Chat",
/* .template_str= */ "{% for message in messages %}{% if loop.first %}{{ bos_token }}{% endif %}{% if message['role'] == 'user' %}{{ 'Human: ' + message['content'] + '\\n\\nAssistant: ' + eos_token }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token }}{% endif %}{% endfor %}",
/* .expected_output= */ "Human: You are a helpful assistant\n\nHello\n\nAssistant: </s>Hi there</s>Human: Who are you\n\nAssistant: </s> I am an assistant </s>Human: Another question\n\nAssistant: </s>",
/* .expected_output= */ "Human: You are a helpful assistant\n\nHello\n\nAssistant: </s>Hi there</s>Human: Who are you\n\nAssistant: </s> I am an assistant </s>Human: Another question\n\nAssistant: </s>",
/* .expected_output_jinja= */ "Human: You are a helpful assistant\nHello\n\nAssistant: </s>Hi there</s>Human: Who are you\n\nAssistant: </s> I am an assistant </s>Human: Another question\n\nAssistant: </s>",
/* .bos_token= */ "",
/* .eos_token= */ "</s>",
},
{
/* .name= */ "openchat/openchat-3.5-0106",
// The included chat_template differs from the author's suggestions here: https://huggingface.co/openchat/openchat_3.5/discussions/5#65448109b4a3f3a2f486fd9d
// So we match against the included template but implement the suggested version.
/* .template_str= */ "{{ bos_token }}{% for message in messages %}{{ 'GPT4 Correct ' + message['role'].title() + ': ' + message['content'] + '<|end_of_turn|>'}}{% endfor %}{% if add_generation_prompt %}{{ 'GPT4 Correct Assistant:' }}{% endif %}",
/* .expected_output= */ "You are a helpful assistant<|end_of_turn|>GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi there<|end_of_turn|>GPT4 Correct User: Who are you<|end_of_turn|>GPT4 Correct Assistant: I am an assistant <|end_of_turn|>GPT4 Correct User: Another question<|end_of_turn|>GPT4 Correct Assistant:",
/* .expected_output= */ "You are a helpful assistant<|end_of_turn|>GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi there<|end_of_turn|>GPT4 Correct User: Who are you<|end_of_turn|>GPT4 Correct Assistant: I am an assistant <|end_of_turn|>GPT4 Correct User: Another question<|end_of_turn|>GPT4 Correct Assistant:",
/* .expected_output_jinja= */ "GPT4 Correct System: You are a helpful assistant<|end_of_turn|>GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi there<|end_of_turn|>GPT4 Correct User: Who are you<|end_of_turn|>GPT4 Correct Assistant: I am an assistant <|end_of_turn|>GPT4 Correct User: Another question<|end_of_turn|>GPT4 Correct Assistant:",
},
{
/* .name= */ "deepseek-ai/deepseek-coder-33b-instruct",
/* .template_str= */ "{% if not add_generation_prompt is defined %}\n{% set add_generation_prompt = false %}\n{% endif %}\n{%- set ns = namespace(found=false) -%}\n{%- for message in messages -%}\n {%- if message['role'] == 'system' -%}\n {%- set ns.found = true -%}\n {%- endif -%}\n{%- endfor -%}\n{{bos_token}}{%- if not ns.found -%}\n{{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\\n'}}\n{%- endif %}\n{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n{{ message['content'] }}\n {%- else %}\n {%- if message['role'] == 'user' %}\n{{'### Instruction:\\n' + message['content'] + '\\n'}}\n {%- else %}\n{{'### Response:\\n' + message['content'] + '\\n<|EOT|>\\n'}}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{% if add_generation_prompt %}\n{{'### Response:'}}\n{% endif %}",
/* .expected_output= */ "You are a helpful assistant### Instruction:\nHello\n### Response:\nHi there\n<|EOT|>\n### Instruction:\nWho are you\n### Response:\n I am an assistant \n<|EOT|>\n### Instruction:\nAnother question\n### Response:\n",
/* .expected_output_jinja= */ "",
},
{
/* .name= */ "eachadea/vicuna-13b-1.1",
// No template included in tokenizer_config.json, so this template likely needs to be manually set.
/* .template_str= */ "{%- for message in messages %}{%- if message['role'] == 'system' -%}{{- '' + message['content'] + '\n\n' -}}{%- else -%}{%- if message['role'] == 'user' -%}{{-'USER: ' + message['content'] + '\n'-}}{%- else -%}{{-'ASSISTANT: ' + message['content'] + '</s>\n' -}}{%- endif -%}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{-'ASSISTANT:'-}}{%- endif -%}",
/* .expected_output= */ "You are a helpful assistant\n\nUSER: Hello\nASSISTANT: Hi there</s>\nUSER: Who are you\nASSISTANT: I am an assistant </s>\nUSER: Another question\nASSISTANT:",
/* .expected_output_jinja= */ "",
/* .bos_token= */ "",
/* .eos_token= */ "",
},
{
/* .name= */ "Orca-Vicuna",
// No template included in tokenizer_config.json, so this template likely needs to be manually set.
/* .template_str= */ "{%- for message in messages %}{%- if message['role'] == 'system' -%}{{-'SYSTEM: ' + message['content'] + '\n' -}}{%- else -%}{%- if message['role'] == 'user' -%}{{-'USER: ' + message['content'] + '\n'-}}{%- else -%}{{-'ASSISTANT: ' + message['content'] + '</s>\n' -}}{%- endif -%}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{-'ASSISTANT:'-}}{%- endif -%}",
/* .expected_output= */ "SYSTEM: You are a helpful assistant\nUSER: Hello\nASSISTANT: Hi there</s>\nUSER: Who are you\nASSISTANT: I am an assistant </s>\nUSER: Another question\nASSISTANT:",
/* .expected_output_jinja= */ "",
/* .bos_token= */ "",
/* .eos_token= */ "",
},
{
/* .name= */ "CohereForAI/c4ai-command-r-plus",
/* .template_str= */ "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif false == true %}{% set loop_messages = messages %}{% set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% if system_message != false %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}",
/* .expected_output= */ "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>You are a helpful assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>Hi there<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Who are you<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>I am an assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Another question<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>",
/* .expected_output_jinja= */ "",
},
{
/* .name= */ "Llama-3",
/* .template_str= */ "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
/* .expected_output= */ "<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHello<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nHi there<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWho are you<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nI am an assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nAnother question<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n",
/* .expected_output_jinja= */ "",
},
{
/* .name= */ "Phi-3-mini",
/* .template_str= */ "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
/* .expected_output= */ "<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
/* .expected_output= */ "<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
/* .expected_output_jinja= */ "<|user|>\nYou are a helpful assistant\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
},
{
/* .name= */ "Phi-3-small",
/* .template_str= */ "{{ bos_token }}{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
/* .expected_output= */ "<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
/* .expected_output_jinja= */ "",
},
{
/* .name= */ "Phi-3-medium",
/* .template_str= */ "{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
/* .expected_output= */ "<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
/* .expected_output= */ "<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
/* .expected_output_jinja= */ "<|user|>\nYou are a helpful assistant\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
},
{
/* .name= */ "Phi-3-vision",
/* .template_str= */ "{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{- '<|assistant|>\n' -}}{% endif %}",
/* .expected_output= */ "<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
/* .expected_output_jinja= */ "",
/* .bos_token= */ "",
/* .eos_token= */ "",
},
{
/* .name= */ "ChatGLM3",
/* .template_str= */ "{% for message in messages %}{% if loop.first %}[gMASK]sop<|{{ message['role'] }}|>\n {{ message['content'] }}{% else %}<|{{ message['role'] }}|>\n {{ message['content'] }}{% endif %}{% endfor %}{% if add_generation_prompt %}<|assistant|>{% endif %}",
/* .expected_output= */ "[gMASK]sop<|system|>\n You are a helpful assistant<|user|>\n Hello<|assistant|>\n Hi there<|user|>\n Who are you<|assistant|>\n I am an assistant <|user|>\n Another question<|assistant|>",
/* .expected_output= */ "[gMASK]sop<|system|>\n You are a helpful assistant<|user|>\n Hello<|assistant|>\n Hi there<|user|>\n Who are you<|assistant|>\n I am an assistant <|user|>\n Another question<|assistant|>",
/* .expected_output_jinja= */ "[gMASK]sop<|system|>\nYou are a helpful assistant<|user|>\nHello<|assistant|>\nHi there<|user|>\nWho are you<|assistant|>\n I am an assistant <|user|>\nAnother question<|assistant|>",
},
{
/* .name= */ "ChatGLM4",
/* .template_str= */ u8"[gMASK]<sop>{% for item in messages %}{% if item['tools'] is defined %}<|system|>\n你是一个名为 ChatGLM 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。\n\n# 可用工具{% set tools = item['tools'] %}{% for tool in tools %}{% if tool['type'] == 'function' %}\n\n## {{ tool['function']['name'] }}\n\n{{ tool['function'] | tojson(indent=4) }}\n......{% endif %}{% endfor %}{% endif %}{% if item['content'] %}<|{{ item['role'] }}|>{{ item['metadata'] }}\n{{ item['content'] }}{% endif %}{% endfor %}{% if add_generation_prompt %}<|assistant|>{% endif %}",
/* .expected_output= */ "[gMASK]<sop><|system|>\nYou are a helpful assistant<|user|>\nHello<|assistant|>\nHi there<|user|>\nWho are you<|assistant|>\n I am an assistant <|user|>\nAnother question<|assistant|>",
/* .expected_output_jinja= */ "",
/* .bos_token= */ "",
/* .eos_token= */ "",
},
{
/* .name= */ "MiniCPM-3B-OpenHermes-2.5-v2-GGUF",
/* .template_str= */ u8"{% for message in messages %}{% if message['role'] == 'user' %}{{'<用户>' + message['content'].strip() + '<AI>'}}{% else %}{{message['content'].strip()}}{% endif %}{% endfor %}",
/* .expected_output= */ u8"You are a helpful assistant<用户>Hello<AI>Hi there<用户>Who are you<AI>I am an assistant<用户>Another question<AI>",
/* .expected_output_jinja= */ "",
/* .bos_token= */ "",
/* .eos_token= */ "",
},
{
/* .name= */ "DeepSeek-V2",
/* .template_str= */ "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{{ bos_token }}{% for message in messages %}{% if message['role'] == 'user' %}{{ 'User: ' + message['content'] + '\n\n' }}{% elif message['role'] == 'assistant' %}{{ 'Assistant: ' + message['content'] + eos_token }}{% elif message['role'] == 'system' %}{{ message['content'] + '\n\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}",
/* .expected_output= */ u8"You are a helpful assistant\n\nUser: Hello\n\nAssistant: Hi there<end▁of▁sentence>User: Who are you\n\nAssistant: I am an assistant <end▁of▁sentence>User: Another question\n\nAssistant:",
/* .expected_output_jinja= */ "",
/* .bos_token= */ "",
/* .eos_token= */ "<end▁of▁sentence>",
},
{
/* .name= */ "ibm-granite/granite-3.0-8b-instruct",
/* .template_str= */ "{%- if tools %}\n {{- '<|start_of_role|>available_tools<|end_of_role|>\n' }}\n {%- for tool in tools %}\n {{- tool | tojson(indent=4) }}\n {%- if not loop.last %}\n {{- '\n\n' }}\n {%- endif %}\n {%- endfor %}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n {{- '<|start_of_role|>system<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- elif message['role'] == 'user' %}\n {{- '<|start_of_role|>user<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- elif message['role'] == 'assistant' %}\n {{- '<|start_of_role|>assistant<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- elif message['role'] == 'assistant_tool_call' %}\n {{- '<|start_of_role|>assistant<|end_of_role|><|tool_call|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- elif message['role'] == 'tool_response' %}\n {{- '<|start_of_role|>tool_response<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- endif %}\n {%- if loop.last and add_generation_prompt %}\n {{- '<|start_of_role|>assistant<|end_of_role|>' }}\n {%- endif %}\n{%- endfor %}",
/* .expected_output= */ "<|start_of_role|>system<|end_of_role|>You are a helpful assistant<|end_of_text|>\n<|start_of_role|>user<|end_of_role|>Hello<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|>Hi there<|end_of_text|>\n<|start_of_role|>user<|end_of_role|>Who are you<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|> I am an assistant <|end_of_text|>\n<|start_of_role|>user<|end_of_role|>Another question<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|>\n",
/* .expected_output= */ "<|start_of_role|>system<|end_of_role|>You are a helpful assistant<|end_of_text|>\n<|start_of_role|>user<|end_of_role|>Hello<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|>Hi there<|end_of_text|>\n<|start_of_role|>user<|end_of_role|>Who are you<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|> I am an assistant <|end_of_text|>\n<|start_of_role|>user<|end_of_role|>Another question<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|>\n",
/* .expected_output_jinja= */ "<|start_of_role|>system<|end_of_role|>You are a helpful assistant<|end_of_text|>\n<|start_of_role|>user<|end_of_role|>Hello<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|>Hi there<|end_of_text|>\n<|start_of_role|>user<|end_of_role|>Who are you<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|> I am an assistant <|end_of_text|>\n<|start_of_role|>user<|end_of_role|>Another question<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|>",
},
{
/* .name= */ "mistralai/Mistral-7B-Instruct-v0.2 (mistralai 'v1' template with a system prompt)",
/* .template_str= */ "{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set loop_messages = messages %}\n{%- endif %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}\n {{- raise_exception('After the optional system message, conversation roles must alternate user/assistant/user/assistant/...') }}\n {%- endif %}\n {%- if message['role'] == 'user' %}\n {%- if loop.first and system_message is defined %}\n {{- ' [INST] ' + system_message + '\\n\\n' + message['content'] + ' [/INST]' }}\n {%- else %}\n {{- ' [INST] ' + message['content'] + ' [/INST]' }}\n {%- endif %}\n {%- elif message['role'] == 'assistant' %}\n {{- ' ' + message['content'] + eos_token}}\n {%- else %}\n {{- raise_exception('Only user and assistant roles are supported, with the exception of an initial optional system message!') }}\n {%- endif %}\n{%- endfor %}\n",
/* .expected_output= */ " [INST] You are a helpful assistant\n\nHello [/INST] Hi there</s> [INST] Who are you [/INST] I am an assistant </s> [INST] Another question [/INST]",
/* .expected_output_jinja= */ "",
/* .bos_token= */ "",
/* .eos_token= */ "</s>",
},
{
/* .name= */ "Mistral-Large-Instruct-2407 (mistralai 'v3' template; modified to have system prompt at start)",
/* .template_str= */ "{%- if messages[0][\"role\"] == \"system\" %}\n {%- set system_message = messages[0][\"content\"] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n{%- set user_messages = loop_messages | selectattr(\"role\", \"equalto\", \"user\") | list %}\n\n{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}\n{%- set ns = namespace() %}\n{%- set ns.index = 0 %}\n{%- for message in loop_messages %}\n {%- if not (message.role == \"tool\" or message.role == \"tool_results\" or (message.tool_calls is defined and message.tool_calls is not none)) %}\n {%- if (message[\"role\"] == \"user\") != (ns.index % 2 == 0) %}\n {{- raise_exception(\"After the optional system message, conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif %}\n {%- set ns.index = ns.index + 1 %}\n {%- endif %}\n{%- endfor %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n {%- if message[\"role\"] == \"user\" %}\n {%- if tools is not none and (message == user_messages[-1]) %}\n {{- \"[AVAILABLE_TOOLS] [\" }}\n {%- for tool in tools %}\n {%- set tool = tool.function %}\n {{- '{\"type\": \"function\", \"function\": {' }}\n {%- for key, val in tool.items() if key != \"return\" %}\n {%- if val is string %}\n {{- '\"' + key + '\": \"' + val + '\"' }}\n {%- else %}\n {{- '\"' + key + '\": ' + val|tojson }}\n {%- endif %}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \"}}\" }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- else %}\n {{- \"]\" }}\n {%- endif %}\n {%- endfor %}\n {{- \"[/AVAILABLE_TOOLS]\" }}\n {%- endif %}\n {%- if loop.last and system_message is defined %}\n {{- \"[INST] \" + system_message + \"\\n\\n\" + message[\"content\"] + \"[/INST]\" }}\n {%- else %}\n {{- \"[INST] \" + message[\"content\"] + \"[/INST]\" }}\n {%- endif %}\n {%- elif message.tool_calls is defined and message.tool_calls is not none %}\n {{- \"[TOOL_CALLS] [\" }}\n {%- for tool_call in message.tool_calls %}\n {%- set out = tool_call.function|tojson %}\n {{- out[:-1] }}\n {%- if not tool_call.id is defined or tool_call.id|length != 9 %}\n {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n {%- endif %}\n {{- ', \"id\": \"' + tool_call.id + '\"}' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- else %}\n {{- \"]\" + eos_token }}\n {%- endif %}\n {%- endfor %}\n {%- elif message[\"role\"] == \"assistant\" %}\n {{- \" \" + message[\"content\"]|trim + eos_token}}\n {%- elif message[\"role\"] == \"tool_results\" or message[\"role\"] == \"tool\" %}\n {%- if message.content is defined and message.content.content is defined %}\n {%- set content = message.content.content %}\n {%- else %}\n {%- set content = message.content %}\n {%- endif %}\n {{- '[TOOL_RESULTS] {\"content\": ' + content|string + \", \" }}\n {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}\n {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n {%- endif %}\n {{- '\"call_id\": \"' + message.tool_call_id + '\"}[/TOOL_RESULTS]' }}\n {%- else %}\n {{- raise_exception(\"Only user and assistant roles are supported, with the exception of an initial optional system message!\") }}\n {%- endif %}\n{%- endfor %}\n",
/* .expected_output= */ "[INST] You are a helpful assistant\n\nHello[/INST] Hi there</s>[INST] Who are you[/INST] I am an assistant</s>[INST] Another question[/INST]",
/* .expected_output= */ "[INST] You are a helpful assistant\n\nHello[/INST] Hi there</s>[INST] Who are you[/INST] I am an assistant</s>[INST] Another question[/INST]",
/* .expected_output_jinja= */ "[INST] Hello[/INST] Hi there</s>[INST] Who are you[/INST] I am an assistant</s>[INST] You are a helpful assistant\n\nAnother question[/INST]",
/* .bos_token= */ "",
/* .eos_token= */ "</s>",
},
{
/* .name= */ "Mistral-Nemo-Instruct-2407 (mistralai 'v3-tekken' template; modified to have system prompt at start)",
/* .template_str= */ "{%- if messages[0][\"role\"] == \"system\" %}\n {%- set system_message = messages[0][\"content\"] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n{%- set user_messages = loop_messages | selectattr(\"role\", \"equalto\", \"user\") | list %}\n\n{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}\n{%- set ns = namespace() %}\n{%- set ns.index = 0 %}\n{%- for message in loop_messages %}\n {%- if not (message.role == \"tool\" or message.role == \"tool_results\" or (message.tool_calls is defined and message.tool_calls is not none)) %}\n {%- if (message[\"role\"] == \"user\") != (ns.index % 2 == 0) %}\n {{- raise_exception(\"After the optional system message, conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif %}\n {%- set ns.index = ns.index + 1 %}\n {%- endif %}\n{%- endfor %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n {%- if message[\"role\"] == \"user\" %}\n {%- if tools is not none and (message == user_messages[-1]) %}\n {{- \"[AVAILABLE_TOOLS][\" }}\n {%- for tool in tools %}\n {%- set tool = tool.function %}\n {{- '{\"type\": \"function\", \"function\": {' }}\n {%- for key, val in tool.items() if key != \"return\" %}\n {%- if val is string %}\n {{- '\"' + key + '\": \"' + val + '\"' }}\n {%- else %}\n {{- '\"' + key + '\": ' + val|tojson }}\n {%- endif %}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \"}}\" }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- else %}\n {{- \"]\" }}\n {%- endif %}\n {%- endfor %}\n {{- \"[/AVAILABLE_TOOLS]\" }}\n {%- endif %}\n {%- if loop.last and system_message is defined %}\n {{- \"[INST]\" + system_message + \"\\n\\n\" + message[\"content\"] + \"[/INST]\" }}\n {%- else %}\n {{- \"[INST]\" + message[\"content\"] + \"[/INST]\" }}\n {%- endif %}\n {%- elif (message.tool_calls is defined and message.tool_calls is not none) %}\n {{- \"[TOOL_CALLS][\" }}\n {%- for tool_call in message.tool_calls %}\n {%- set out = tool_call.function|tojson %}\n {{- out[:-1] }}\n {%- if not tool_call.id is defined or tool_call.id|length != 9 %}\n {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n {%- endif %}\n {{- ', \"id\": \"' + tool_call.id + '\"}' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- else %}\n {{- \"]\" + eos_token }}\n {%- endif %}\n {%- endfor %}\n {%- elif message[\"role\"] == \"assistant\" %}\n {{- message[\"content\"] + eos_token}}\n {%- elif message[\"role\"] == \"tool_results\" or message[\"role\"] == \"tool\" %}\n {%- if message.content is defined and message.content.content is defined %}\n {%- set content = message.content.content %}\n {%- else %}\n {%- set content = message.content %}\n {%- endif %}\n {{- '[TOOL_RESULTS]{\"content\": ' + content|string + \", \" }}\n {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}\n {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n {%- endif %}\n {{- '\"call_id\": \"' + message.tool_call_id + '\"}[/TOOL_RESULTS]' }}\n {%- else %}\n {{- raise_exception(\"Only user and assistant roles are supported, with the exception of an initial optional system message!\") }}\n {%- endif %}\n{%- endfor %}\n",
/* .expected_output= */ "[INST]You are a helpful assistant\n\nHello[/INST]Hi there</s>[INST]Who are you[/INST] I am an assistant </s>[INST]Another question[/INST]",
/* .expected_output= */ "[INST]You are a helpful assistant\n\nHello[/INST]Hi there</s>[INST]Who are you[/INST] I am an assistant </s>[INST]Another question[/INST]",
/* .expected_output_jinja= */ "[INST]Hello[/INST]Hi there</s>[INST]Who are you[/INST] I am an assistant </s>[INST]You are a helpful assistant\n\nAnother question[/INST]",
/* .bos_token= */ "",
/* .eos_token= */ "</s>",
},
{
/* .name= */ "mistralai/Mistral-Large-Instruct-2411 (mistralai 'v7' template)",
/* .template_str= */ "{{ bos_token }}{% for message in messages %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + '[/INST]' }}{% elif message['role'] == 'system' %}{{ '[SYSTEM_PROMPT] ' + message['content'] + '[/SYSTEM_PROMPT]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + message['content'] + eos_token }}{% else %}{{ raise_exception('Only user, system and assistant roles are supported!') }}{% endif %}{% endfor %}",
/* .expected_output= */ "[SYSTEM_PROMPT] You are a helpful assistant[/SYSTEM_PROMPT][INST] Hello[/INST] Hi there</s>[INST] Who are you[/INST] I am an assistant </s>[INST] Another question[/INST]",
/* .expected_output_jinja= */ "",
/* .bos_token= */ "",
/* .eos_token= */ "</s>",
},
{
/* .name= */ "ai-sage/GigaChat-20B-A3B-instruct",
/* .template_str= */ "{% if messages[0]['role'] == 'system' -%}\n {%- set loop_messages = messages[1:] -%}\n {%- set system_message = bos_token + messages[0]['content'] + additional_special_tokens[1] -%}\n{%- else -%}\n {%- set loop_messages = messages -%}\n {%- set system_message = bos_token + '' -%}\n{%- endif -%}\n{%- for message in loop_messages %}\n {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}\n {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}\n {% endif %}\n \n {%- if loop.index0 == 0 -%}\n {{ system_message -}}\n {%- endif -%}\n {%- if message['role'] == 'user' -%}\n {{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}\n {{ 'available functions' + additional_special_tokens[0] + additional_special_tokens[2] + additional_special_tokens[3] + additional_special_tokens[1] -}}\n {%- endif -%}\n {%- if message['role'] == 'assistant' -%}\n {{ message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1] -}}\n {%- endif -%}\n {%- if loop.last and add_generation_prompt -%}\n {{ 'assistant' + additional_special_tokens[0] -}}\n {%- endif -%}\n{%- endfor %}",
/* .expected_output= */ "<s>You are a helpful assistant<|message_sep|>user<|role_sep|>Hello<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|>Hi there<|message_sep|>user<|role_sep|>Who are you<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|> I am an assistant <|message_sep|>user<|role_sep|>Another question<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|>",
/* .expected_output_jinja= */ "",
/* .bos_token= */ "",
/* .eos_token= */ "",
/* .supported_with_jinja= */ false, // Requires additional_special_tokens as extra context
},
{
/* .name= */ "Infinigence/Megrez-3B-Instruct",
/* .template_str= */ u8"{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|role_start|>system<|role_end|>你是Megrez-3B-Instruct将针对用户的问题给出详细的、积极的回答。<|turn_end|>' }}{% endif %}{{ '<|role_start|>' + message['role'] + '<|role_end|>' + message['content'] + '<|turn_end|>' }}{% endfor %}{% if add_generation_prompt %}{{ '<|role_start|>assistant<|role_end|>' }}{% endif %}",
/* .expected_output= */ "<|role_start|>system<|role_end|>You are a helpful assistant<|turn_end|><|role_start|>user<|role_end|>Hello<|turn_end|><|role_start|>assistant<|role_end|>Hi there<|turn_end|><|role_start|>user<|role_end|>Who are you<|turn_end|><|role_start|>assistant<|role_end|> I am an assistant <|turn_end|><|role_start|>user<|role_end|>Another question<|turn_end|><|role_start|>assistant<|role_end|>",
/* .expected_output_jinja= */ "",
/* .bos_token= */ "",
/* .eos_token= */ "",
},
{
/* .name= */ "phi-4",
/* .template_str= */ "{% for message in messages %}{% if (message['role'] == 'system') %}{{'<|im_start|>system<|im_sep|>' + message['content'] + '<|im_end|>'}}{% elif (message['role'] == 'user') %}{{'<|im_start|>user<|im_sep|>' + message['content'] + '<|im_end|><|im_start|>assistant<|im_sep|>'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|im_end|>'}}{% endif %}{% endfor %}",
/* .expected_output= */ "<|im_start|>system<|im_sep|>You are a helpful assistant<|im_end|><|im_start|>user<|im_sep|>Hello<|im_end|><|im_start|>assistant<|im_sep|>Hi there<|im_end|><|im_start|>user<|im_sep|>Who are you<|im_end|><|im_start|>assistant<|im_sep|> I am an assistant <|im_end|><|im_start|>user<|im_sep|>Another question<|im_end|><|im_start|>assistant<|im_sep|>",
/* .expected_output_jinja= */ "",
/* .bos_token= */ "",
/* .eos_token= */ "",
},
};
std::vector<char> formatted_chat(1024);
@ -190,6 +272,7 @@ int main(void) {
// test invalid chat template
res = llama_chat_apply_template("INVALID TEMPLATE", conversation.data(), conversation.size(), true, formatted_chat.data(), formatted_chat.size());
assert(res < 0);
const auto add_generation_prompt = true;
for (const auto & test_case : test_cases) {
printf("\n\n=== %s ===\n\n", test_case.name.c_str());
@ -198,26 +281,59 @@ int main(void) {
test_case.template_str.c_str(),
conversation.data(),
conversation.size(),
true,
add_generation_prompt,
formatted_chat.data(),
formatted_chat.size()
);
formatted_chat.resize(res);
std::string output(formatted_chat.data(), formatted_chat.size());
printf("%s\n", output.c_str());
printf("-------------------------\n");
assert(output == test_case.expected_output);
if (output != test_case.expected_output) {
printf("Expected:\n%s\n", test_case.expected_output.c_str());
printf("-------------------------\n");
printf("Actual:\n%s\n", output.c_str());
fflush(stdout);
assert(output == test_case.expected_output);
}
}
json messages = json::array();
for (const auto & msg : conversation) {
messages.push_back({
{"role", msg.role},
{"content", msg.content},
});
}
for (const auto & test_case : test_cases) {
if (!test_case.supported_with_jinja) {
continue;
}
printf("\n\n=== %s (jinja) ===\n\n", test_case.name.c_str());
try {
minja::chat_template tmpl(test_case.template_str, test_case.bos_token, test_case.eos_token);
auto output = normalize_newlines(tmpl.apply(messages, json(), add_generation_prompt));
auto expected_output = normalize_newlines(test_case.expected_output_jinja.empty() ? test_case.expected_output : test_case.expected_output_jinja);
if (output != expected_output) {
printf("Expected:\n%s\n", expected_output.c_str());
printf("-------------------------\n");
printf("Actual:\n%s\n", output.c_str());
fflush(stdout);
assert(output == expected_output);
}
} catch (const std::exception & e) {
printf("ERROR: %s\n", e.what());
assert(false);
}
}
// test llama_chat_format_single for system message
printf("\n\n=== llama_chat_format_single (system message) ===\n\n");
std::vector<common_chat_msg> chat2;
common_chat_msg sys_msg{"system", "You are a helpful assistant"};
auto fmt_sys = [&](std::string tmpl) {
auto output = common_chat_format_single(nullptr, tmpl, chat2, sys_msg, false);
printf("fmt_sys(%s) : %s\n", tmpl.c_str(), output.c_str());
auto fmt_sys = [&](std::string tmpl_str) {
minja::chat_template tmpl(tmpl_str, "", "");
auto output = common_chat_format_single(tmpl, chat2, sys_msg, false, /* use_jinja= */ false);
printf("fmt_sys(%s) : %s\n", tmpl_str.c_str(), output.c_str());
printf("-------------------------\n");
return output;
};
@ -241,9 +357,10 @@ int main(void) {
chat2.push_back({"assistant", "I am assistant"});
common_chat_msg new_msg{"user", "How are you"};
auto fmt_single = [&](std::string tmpl) {
auto output = common_chat_format_single(nullptr, tmpl, chat2, new_msg, true);
printf("fmt_single(%s) : %s\n", tmpl.c_str(), output.c_str());
auto fmt_single = [&](std::string tmpl_str) {
minja::chat_template tmpl(tmpl_str, "", "");
auto output = common_chat_format_single(tmpl, chat2, new_msg, true, /* use_jinja= */ false);
printf("fmt_single(%s) : %s\n", tmpl_str.c_str(), output.c_str());
printf("-------------------------\n");
return output;
};
@ -258,7 +375,5 @@ int main(void) {
assert(fmt_single("llama3") == "<|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n");
assert(fmt_single("gigachat") == "user<|role_sep|>How are you<|message_sep|>available functions<|role_sep|>[]<|message_sep|>assistant<|role_sep|>");
printf("Test chat templates: OK\n");
return 0;
}