Q4_2 quantization with rmse-optimized scale and quants (#1062)

* Q4_2 quantization with rmse-optimized scale and quants

For quantize-stats we get
q4_2: rmse 0.00159301, maxerr 0.17480469, 95pct<0.0030, median<0.0012

For 7B perplexity with BLAS enabled we get 6.2038 after 655 chunks.

Quantization is slow (~90 seconds on my Mac for 7B) as not
multi-threaded as in PR #896.

* ggml : satisfy the sanitizer builds

Not sure why this makes them fail

* Better follow ggml conventions for function names

* Fixed type as per reviewer comment

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Kawrakow 2023-04-19 20:20:14 +02:00 committed by GitHub
parent 884e7d7a2b
commit f7d05095b4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

90
ggml.c
View File

@ -19,6 +19,7 @@
#include <inttypes.h> #include <inttypes.h>
#include <stdio.h> #include <stdio.h>
#include <float.h> #include <float.h>
#include <limits.h>
// if C99 - static_assert is noop // if C99 - static_assert is noop
// ref: https://stackoverflow.com/a/53923785/4039976 // ref: https://stackoverflow.com/a/53923785/4039976
@ -1135,12 +1136,94 @@ static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * r
} }
} }
static inline int nearest_int(float fval) {
assert(fval <= 4194303.f);
float val = fval + 12582912.f;
int i; memcpy(&i, &val, sizeof(int));
return (i & 0x007fffff) - 0x00400000;
}
static float kquantize_q4_with_bounds(int n, int nmin, int nmax, const float * restrict X, int nCandidates,
const float * restrict candidates, int8_t * restrict L) {
assert (nmin >= INT8_MIN);
assert (nmax <= INT8_MAX);
float amax = 0;
for (int i=0; i<n; ++i) amax = MAX(amax, fabsf(X[i]));
if (!amax) { // all zero
for (int i=0; i<n; ++i) L[i] = 0;
return 1.f;
}
float best = 0, bestScale = 0;
for (int si=0; si<nCandidates; ++si) {
float iscale = candidates[si]/amax;
float sumlxP = 0; int suml2P = 0;
float sumlxM = 0; int suml2M = 0;
for (int i=0; i<n; ++i) {
int l = nearest_int(iscale*X[i]);
int lp = MAX(nmin, MIN(nmax, +l));
int lm = MAX(nmin, MIN(nmax, -l));
sumlxP += X[i]*lp; suml2P += lp*lp;
sumlxM += X[i]*lm; suml2M += lm*lm;
}
float sumlxP2 = sumlxP*sumlxP;
float sumlxM2 = sumlxM*sumlxM;
if (sumlxP2*suml2M > sumlxM2*suml2P) {
if (sumlxP2 > best*suml2P) {
best = sumlxP2/suml2P; bestScale = iscale;
}
} else {
if (sumlxM2 > best*suml2M) {
best = sumlxM2/suml2M; bestScale = -iscale;
}
}
}
float sumlx = 0; int suml2 = 0;
for (int i=0; i<n; ++i) {
int l = nearest_int(bestScale*X[i]);
l = MAX(nmin, MIN(nmax, l));
sumlx += X[i]*l; suml2 += l*l;
L[i] = l;
}
float scale = sumlx/suml2;
return scale;
}
static void quantize_row_q4_2_rmse(const float * restrict x, block_q4_2 * restrict y, int k) {
#define CANDIDATE_COUNT 8
static const float candidates[CANDIDATE_COUNT] = { +8.7f, +8.3f, +8.1f, +7.8f, +7.3f, +7.0f, +6.3f, +5.7f };
assert(k % QK4_2 == 0);
int8_t L[QK4_2];
const int nb = k / QK4_2;
for (int i = 0; i < nb; i++) {
float scale = kquantize_q4_with_bounds(QK4_2, -8, 7, x, CANDIDATE_COUNT, candidates, L);
y[i].d = GGML_FP32_TO_FP16(scale);
for (int l = 0; l < QK4_2; l += 2) {
const uint8_t vi0 = (uint8_t)(L[l+0] + 8);
const uint8_t vi1 = (uint8_t)(L[l+1] + 8);
assert(vi0 < 16);
assert(vi1 < 16);
y[i].qs[l/2] = vi0 | (vi1 << 4);
}
x += QK4_2;
}
}
static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) { static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
assert(k % QK4_2 == 0); assert(k % QK4_2 == 0);
block_q4_2 * restrict y = vy; block_q4_2 * restrict y = vy;
quantize_row_q4_2_reference(x, y, k); //quantize_row_q4_2_reference(x, y, k);
// This produces the exact same format, just better match to the input floats ("better" as measured by RMSE)
quantize_row_q4_2_rmse(x, y, k);
} }
// reference implementation for deterministic creation of model files // reference implementation for deterministic creation of model files
@ -1569,7 +1652,7 @@ static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
[GGML_TYPE_Q4_2] = { [GGML_TYPE_Q4_2] = {
.dequantize_row_q = dequantize_row_q4_2, .dequantize_row_q = dequantize_row_q4_2,
.quantize_row_q = quantize_row_q4_2, .quantize_row_q = quantize_row_q4_2,
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference, .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_rmse, //quantize_row_q4_2_reference,
.quantize_row_q_dot = quantize_row_q8_0, .quantize_row_q_dot = quantize_row_q8_0,
.vec_dot_q = ggml_vec_dot_q4_2_q8_0, .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
}, },
@ -11770,7 +11853,8 @@ size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t *
for (int j = 0; j < n; j += k) { for (int j = 0; j < n; j += k) {
block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2; block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
quantize_row_q4_2_reference(src + j, y, k); //quantize_row_q4_2_reference(src + j, y, k);
quantize_row_q4_2_rmse(src + j, y, k);
for (int i = 0; i < nb; i++) { for (int i = 0; i < nb; i++) {
for (int l = 0; l < QK4_2; l += 2) { for (int l = 0; l < QK4_2; l += 2) {