mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 12:21:40 +01:00
readme : add quantization info
This commit is contained in:
parent
574406dc7e
commit
f9be42add0
34
README.md
34
README.md
@ -7,31 +7,27 @@
|
||||
|
||||
Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
|
||||
**Warnings**
|
||||
|
||||
- `Q4_2` and `Q4_3` are still in development. Do not expect any kind of backward compatibility until they are finalized
|
||||
|
||||
**Hot topics:**
|
||||
|
||||
- [New quantization methods](https://github.com/ggerganov/llama.cpp#quantization)
|
||||
- [Added LoRA support](https://github.com/ggerganov/llama.cpp/pull/820)
|
||||
- [Add GPU support to ggml](https://github.com/ggerganov/llama.cpp/discussions/915)
|
||||
- [Roadmap Apr 2023](https://github.com/ggerganov/llama.cpp/discussions/784)
|
||||
|
||||
## Description
|
||||
|
||||
The main goal of llama.cpp is to run the llama model using 4-bit quantization on a MacBook.
|
||||
The main goal of `llama.cpp` is to run the LLaMA model using 4-bit integer quantization on a MacBook
|
||||
|
||||
- Plain C/C++ implementation without dependencies
|
||||
- Apple silicon first-class citizen - optimized via ARM NEON and Accelerate framework
|
||||
- AVX2 support for x86 architectures
|
||||
- Mixed F16 / F32 precision
|
||||
- 4-bit quantization support
|
||||
- 4-bit integer quantization support
|
||||
- Runs on the CPU
|
||||
|
||||
This was [hacked in an evening](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022) - I have no idea if it works correctly.
|
||||
Please do not make conclusions about the models based on the results from this implementation.
|
||||
For all I know, it can be completely wrong. This project is for educational purposes.
|
||||
New features will probably be added mostly through community contributions.
|
||||
The original implementation of `llama.cpp` was [hacked in an evening](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022).
|
||||
Since then, the project has improved significantly thanks to many contributions. This project is for educational purposes and serves
|
||||
as the main playground for developing new features for the [ggml](https://github.com/ggerganov/ggml) library.
|
||||
|
||||
**Supported platforms:**
|
||||
|
||||
@ -294,6 +290,24 @@ As the models are currently fully loaded into memory, you will need adequate dis
|
||||
| 30B | 60 GB | 19.5 GB |
|
||||
| 65B | 120 GB | 38.5 GB |
|
||||
|
||||
### Quantization
|
||||
|
||||
Several quantization methods are supported. They differ in the resulting model disk size and inference speed.
|
||||
|
||||
Model | F16 | Q4_0 | Q4_1 | Q4_2 | Q4_3 | Q5_0 | Q5_1 | Q8_0
|
||||
-- | -- | -- | -- | -- | -- | -- | -- | --
|
||||
7B (ppl) | 5.9565 | 6.2103 | 6.1286 | 6.1698 | 6.0617 | 6.0139 | 5.9934 | 5.9571
|
||||
7B (size) | 13.0G | 4.0G | 4.8G | 4.0G | 4.8G | 4.4G | 4.8G | 7.1G
|
||||
7B (ms/tok @ 4th) | 128 | 56 | 61 | 84 | 91 | 91 | 95 | 75
|
||||
7B (ms/tok @ 8th) | 128 | 47 | 55 | 48 | 53 | 53 | 59 | 75
|
||||
7B (bpw) | 16.0 | 5.0 | 6.0 | 5.0 | 6.0 | 5.5 | 6.0 | 9.0
|
||||
-- | -- | -- | -- | -- | -- | -- | -- | --
|
||||
13B (ppl) | 5.2455 | 5.3748 | 5.3471 | 5.3433 | 5.3234 | 5.2768 | 5.2582 | 5.2458
|
||||
13B (size) | 25.0G | 7.6G | 9.1G | 7.6G | 9.1G | 8.4G | 9.1G | 14G
|
||||
13B (ms/tok @ 4th) | 239 | 104 | 113 | 160 | 175 | 176 | 185 | 141
|
||||
13B (ms/tok @ 8th) | 240 | 85 | 99 | 97 | 114 | 108 | 117 | 147
|
||||
13B (bpw) | 16.0 | 5.0 | 6.0 | 5.0 | 6.0 | 5.5 | 6.0 | 9.0
|
||||
|
||||
### Interactive mode
|
||||
|
||||
If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter.
|
||||
|
Loading…
Reference in New Issue
Block a user