Generalize quantize_fns for simpler FP16 handling

This commit is contained in:
Stephan Walter 2023-04-29 19:46:37 +02:00
parent 46088f7231
commit f9c585f008
8 changed files with 170 additions and 608 deletions

View File

@ -147,7 +147,7 @@ void test_roundtrip_on_chunk(
const ggml_tensor * layer, const ggml_tensor * layer,
int64_t offset, int64_t offset,
int64_t chunk_size, int64_t chunk_size,
const quantize_fns_t & qfns, const ggml_type_traits_t & qfns,
bool use_reference, bool use_reference,
float * input_scratch, float * input_scratch,
char * quantized_scratch, char * quantized_scratch,
@ -163,11 +163,11 @@ void test_roundtrip_on_chunk(
} }
if (use_reference) { if (use_reference) {
qfns.quantize_row_q_reference(input_scratch, quantized_scratch, chunk_size); qfns.from_float_reference(input_scratch, quantized_scratch, chunk_size);
} else { } else {
qfns.quantize_row_q(input_scratch, quantized_scratch, chunk_size); qfns.from_float(input_scratch, quantized_scratch, chunk_size);
} }
qfns.dequantize_row_q(quantized_scratch, output_scratch, chunk_size); qfns.to_float(quantized_scratch, output_scratch, chunk_size);
update_error_stats(chunk_size, input_scratch, output_scratch, stats); update_error_stats(chunk_size, input_scratch, output_scratch, stats);
} }
@ -177,7 +177,7 @@ void test_roundtrip_on_chunk(
void test_roundtrip_on_layer( void test_roundtrip_on_layer(
std::string & name, std::string & name,
bool print_layer_stats, bool print_layer_stats,
const quantize_fns_t & qfns, const ggml_type_traits_t & qfns,
bool use_reference, bool use_reference,
const ggml_tensor * layer, const ggml_tensor * layer,
std::vector<float> & input_scratch, std::vector<float> & input_scratch,
@ -388,8 +388,8 @@ int main(int argc, char ** argv) {
if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) { if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
continue; continue;
} }
quantize_fns_t qfns = ggml_internal_get_quantize_fn(i); ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
if (qfns.quantize_row_q && qfns.dequantize_row_q) { if (qfns.from_float && qfns.to_float) {
if (params.verbose) { if (params.verbose) {
printf("testing %s ...\n", ggml_type_name(type)); printf("testing %s ...\n", ggml_type_name(type));
} }

649
ggml.c
View File

@ -463,14 +463,14 @@ ggml_fp16_t ggml_fp32_to_fp16(float x) {
return GGML_FP32_TO_FP16(x); return GGML_FP32_TO_FP16(x);
} }
void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) { void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
for (size_t i = 0; i < n; i++) { for (int i = 0; i < n; i++) {
y[i] = GGML_FP16_TO_FP32(x[i]); y[i] = GGML_FP16_TO_FP32(x[i]);
} }
} }
void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) { void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
size_t i = 0; int i = 0;
#if defined(__F16C__) #if defined(__F16C__)
for (; i + 7 < n; i += 8) { for (; i + 7 < n; i += 8) {
__m256 x_vec = _mm256_loadu_ps(x + i); __m256 x_vec = _mm256_loadu_ps(x + i);
@ -1609,109 +1609,112 @@ static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, in
} }
} }
static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy); static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = { static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
[GGML_TYPE_F32] = {
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
.vec_dot_type = GGML_TYPE_F32,
},
[GGML_TYPE_F16] = {
.to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
.from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
.from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
.vec_dot_type = GGML_TYPE_F16,
},
[GGML_TYPE_Q4_0] = { [GGML_TYPE_Q4_0] = {
.dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0, .to_float = (ggml_to_float_t) dequantize_row_q4_0,
.quantize_row_q = quantize_row_q4_0, .from_float = quantize_row_q4_0,
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
.quantize_row_q_dot = quantize_row_q8_0, .vec_dot = ggml_vec_dot_q4_0_q8_0,
.vec_dot_q = ggml_vec_dot_q4_0_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0, .vec_dot_type = GGML_TYPE_Q8_0,
}, },
[GGML_TYPE_Q4_1] = { [GGML_TYPE_Q4_1] = {
.dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1, .to_float = (ggml_to_float_t) dequantize_row_q4_1,
.quantize_row_q = quantize_row_q4_1, .from_float = quantize_row_q4_1,
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
.quantize_row_q_dot = quantize_row_q8_1, .vec_dot = ggml_vec_dot_q4_1_q8_1,
.vec_dot_q = ggml_vec_dot_q4_1_q8_1,
.vec_dot_type = GGML_TYPE_Q8_1, .vec_dot_type = GGML_TYPE_Q8_1,
}, },
[GGML_TYPE_Q5_0] = { [GGML_TYPE_Q5_0] = {
.dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0, .to_float = (ggml_to_float_t) dequantize_row_q5_0,
.quantize_row_q = quantize_row_q5_0, .from_float = quantize_row_q5_0,
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
.quantize_row_q_dot = quantize_row_q8_0, .vec_dot = ggml_vec_dot_q5_0_q8_0,
.vec_dot_q = ggml_vec_dot_q5_0_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0, .vec_dot_type = GGML_TYPE_Q8_0,
}, },
[GGML_TYPE_Q5_1] = { [GGML_TYPE_Q5_1] = {
.dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1, .to_float = (ggml_to_float_t) dequantize_row_q5_1,
.quantize_row_q = quantize_row_q5_1, .from_float = quantize_row_q5_1,
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
.quantize_row_q_dot = quantize_row_q8_1, .vec_dot = ggml_vec_dot_q5_1_q8_1,
.vec_dot_q = ggml_vec_dot_q5_1_q8_1,
.vec_dot_type = GGML_TYPE_Q8_1, .vec_dot_type = GGML_TYPE_Q8_1,
}, },
[GGML_TYPE_Q8_0] = { [GGML_TYPE_Q8_0] = {
.dequantize_row_q = dequantize_row_q8_0, .to_float = dequantize_row_q8_0,
.quantize_row_q = quantize_row_q8_0, .from_float = quantize_row_q8_0,
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
.quantize_row_q_dot = quantize_row_q8_0, .vec_dot = ggml_vec_dot_q8_0_q8_0,
.vec_dot_q = ggml_vec_dot_q8_0_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0, .vec_dot_type = GGML_TYPE_Q8_0,
}, },
[GGML_TYPE_Q8_1] = { [GGML_TYPE_Q8_1] = {
.dequantize_row_q = NULL, // TODO .from_float = quantize_row_q8_1,
.quantize_row_q = quantize_row_q8_1, .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
.quantize_row_q_dot = quantize_row_q8_1,
.vec_dot_q = NULL, // TODO
.vec_dot_type = GGML_TYPE_Q8_1, .vec_dot_type = GGML_TYPE_Q8_1,
}, },
#ifdef GGML_USE_K_QUANTS #ifdef GGML_USE_K_QUANTS
[GGML_TYPE_Q2_K] = { [GGML_TYPE_Q2_K] = {
.dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_K, .to_float = (ggml_to_float_t) dequantize_row_q2_K,
.quantize_row_q = quantize_row_q2_K, .from_float = quantize_row_q2_K,
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_K_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
.quantize_row_q_dot = quantize_row_q8_K, .vec_dot = ggml_vec_dot_q2_K_q8_K,
.vec_dot_q = ggml_vec_dot_q2_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K, .vec_dot_type = GGML_TYPE_Q8_K,
}, },
[GGML_TYPE_Q3_K] = { [GGML_TYPE_Q3_K] = {
.dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_K, .to_float = (ggml_to_float_t) dequantize_row_q3_K,
.quantize_row_q = quantize_row_q3_K, .from_float = quantize_row_q3_K,
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_K_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
.quantize_row_q_dot = quantize_row_q8_K, .vec_dot = ggml_vec_dot_q3_K_q8_K,
.vec_dot_q = ggml_vec_dot_q3_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K, .vec_dot_type = GGML_TYPE_Q8_K,
}, },
[GGML_TYPE_Q4_K] = { [GGML_TYPE_Q4_K] = {
.dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_K, .to_float = (ggml_to_float_t) dequantize_row_q4_K,
.quantize_row_q = quantize_row_q4_K, .from_float = quantize_row_q4_K,
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_K_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
.quantize_row_q_dot = quantize_row_q8_K, .vec_dot = ggml_vec_dot_q4_K_q8_K,
.vec_dot_q = ggml_vec_dot_q4_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K, .vec_dot_type = GGML_TYPE_Q8_K,
}, },
[GGML_TYPE_Q5_K] = { [GGML_TYPE_Q5_K] = {
.dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_K, .to_float = (ggml_to_float_t) dequantize_row_q5_K,
.quantize_row_q = quantize_row_q5_K, .from_float = quantize_row_q5_K,
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_K_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
.quantize_row_q_dot = quantize_row_q8_K, .vec_dot = ggml_vec_dot_q5_K_q8_K,
.vec_dot_q = ggml_vec_dot_q5_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K, .vec_dot_type = GGML_TYPE_Q8_K,
}, },
[GGML_TYPE_Q6_K] = { [GGML_TYPE_Q6_K] = {
.dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_K, .to_float = (ggml_to_float_t) dequantize_row_q6_K,
.quantize_row_q = quantize_row_q6_K, .from_float = quantize_row_q6_K,
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_K_reference, .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
.quantize_row_q_dot = quantize_row_q8_K, .vec_dot = ggml_vec_dot_q6_K_q8_K,
.vec_dot_q = ggml_vec_dot_q6_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K, .vec_dot_type = GGML_TYPE_Q8_K,
}, },
[GGML_TYPE_Q8_K] = {
.from_float = quantize_row_q8_K,
}
#endif #endif
}; };
// For internal test use // For internal test use
quantize_fns_t ggml_internal_get_quantize_fn(size_t i) { ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
GGML_ASSERT(i < GGML_TYPE_COUNT); GGML_ASSERT(i < GGML_TYPE_COUNT);
return quantize_fns[i]; return type_traits[i];
} }
@ -2257,7 +2260,7 @@ inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x)
inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; } inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; } inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) { static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
#ifdef GGML_SIMD #ifdef GGML_SIMD
float sumf = 0.0f; float sumf = 0.0f;
const int np = (n & ~(GGML_F32_STEP - 1)); const int np = (n & ~(GGML_F32_STEP - 1));
@ -2294,7 +2297,7 @@ inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float
*s = sumf; *s = sumf;
} }
inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) { static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
ggml_float sumf = 0.0; ggml_float sumf = 0.0;
#if defined(GGML_SIMD) #if defined(GGML_SIMD)
@ -7694,8 +7697,8 @@ static void ggml_compute_forward_dup_f16(
id += ne00 * (ne01 - ir1); id += ne00 * (ne01 - ir1);
} }
} }
} else if (ggml_is_quantized(dst->type)) { } else if (type_traits[dst->type].from_float) {
quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q; ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith; float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
size_t id = 0; size_t id = 0;
@ -7965,26 +7968,8 @@ static void ggml_compute_forward_dup_f32(
id += rs * (ne01 - ir1); id += rs * (ne01 - ir1);
} }
} }
} else if (dst->type == GGML_TYPE_F16) { } else if (type_traits[dst->type].from_float) {
size_t id = 0; ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (ggml_is_quantized(dst->type)) {
quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
size_t id = 0; size_t id = 0;
size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]); size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
@ -8455,8 +8440,8 @@ static void ggml_compute_forward_add_q_f32(
const int nth = params->nth; const int nth = params->nth;
const enum ggml_type type = src0->type; const enum ggml_type type = src0->type;
dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q; ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q; ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
// we don't support permuted src0 or src1 // we don't support permuted src0 or src1
GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]); GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
@ -8773,8 +8758,8 @@ static void ggml_compute_forward_add1_q_f32(
const size_t nb3 = dst->nb[3]; const size_t nb3 = dst->nb[3];
const enum ggml_type type = src0->type; const enum ggml_type type = src0->type;
dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q; ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q; ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
// we don't support permuted src0 // we don't support permuted src0
GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]); GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
@ -10616,378 +10601,7 @@ static bool ggml_compute_forward_mul_mat_use_blas(
} }
#endif #endif
static void ggml_compute_forward_mul_mat_f32( static void ggml_compute_forward_mul_mat(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
const int64_t ne10 = src1->ne[0];
#endif
const int64_t ne11 = src1->ne[1];
#ifndef NDEBUG
const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3];
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
const int64_t ne2 = dst->ne[2];
const int64_t ne3 = dst->ne[3];
const int nb00 = src0->nb[0];
#endif
const int nb01 = src0->nb[1];
const int nb02 = src0->nb[2];
const int nb03 = src0->nb[3];
#ifndef NDEBUG
const int nb10 = src1->nb[0];
#endif
const int nb11 = src1->nb[1];
const int nb12 = src1->nb[2];
const int nb13 = src1->nb[3];
const int nb0 = dst->nb[0];
const int nb1 = dst->nb[1];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
const int ith = params->ith;
const int nth = params->nth;
assert(ne02 == ne12);
assert(ne03 == ne13);
assert(ne2 == ne12);
assert(ne3 == ne13);
// we don't support permuted src0 or src1
assert(nb00 == sizeof(float));
assert(nb10 == sizeof(float));
// dst cannot be transposed or permuted
assert(nb0 == sizeof(float));
assert(nb0 <= nb1);
assert(nb1 <= nb2);
assert(nb2 <= nb3);
assert(ne0 == ne01);
assert(ne1 == ne11);
assert(ne2 == ne02);
assert(ne3 == ne03);
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
#if defined(GGML_USE_CLBLAST)
if (ggml_cl_can_mul_mat(src0, src1, dst)) {
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
}
return;
}
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
if (params->ith != 0) {
return;
}
if (params->type == GGML_TASK_INIT) {
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
ne11, ne01, ne10,
1.0f, y, ne10,
x, ne00,
0.0f, d, ne01);
}
}
//printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
return;
}
#endif
if (params->type == GGML_TASK_INIT) {
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
// parallelize by src0 rows using ggml_vec_dot_f32
// total rows in src0
const int nr = ne01*ne02*ne03;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 indices
const int i03 = ir/(ne02*ne01);
const int i02 = (ir - i03*ne02*ne01)/ne01;
const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
for (int64_t ic = 0; ic < ne11; ++ic) {
// src1 indices
const int i13 = i03;
const int i12 = i02;
const int i11 = ic;
// dst indices
const int i0 = i01;
const int i1 = i11;
const int i2 = i02;
const int i3 = i03;
ggml_vec_dot_f32(ne00,
(float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
(float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
(float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
}
}
//int64_t t1 = ggml_perf_time_us();
//static int64_t acc = 0;
//acc += t1 - t0;
//if (t1 - t0 > 10) {
// printf("\n");
// printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
// printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
// printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
// printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
// printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
//}
}
static void ggml_compute_forward_mul_mat_f16_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3];
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
const int64_t ne2 = dst->ne[2];
const int64_t ne3 = dst->ne[3];
//const int64_t ne = ne0*ne1*ne2*ne3;
const int nb00 = src0->nb[0];
const int nb01 = src0->nb[1];
const int nb02 = src0->nb[2];
const int nb03 = src0->nb[3];
const int nb10 = src1->nb[0];
const int nb11 = src1->nb[1];
const int nb12 = src1->nb[2];
const int nb13 = src1->nb[3];
const int nb0 = dst->nb[0];
const int nb1 = dst->nb[1];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
const int ith = params->ith;
const int nth = params->nth;
GGML_ASSERT(ne02 == ne12);
GGML_ASSERT(ne03 == ne13);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// TODO: we don't support permuted src0
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
GGML_ASSERT(ne2 == ne02);
GGML_ASSERT(ne3 == ne03);
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
#if defined(GGML_USE_CLBLAST)
if (ggml_cl_can_mul_mat(src0, src1, dst)) {
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
}
return;
}
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
GGML_ASSERT(nb10 == sizeof(float));
if (params->ith != 0) {
return;
}
if (params->type == GGML_TASK_INIT) {
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
float * const wdata = params->wdata;
{
size_t id = 0;
for (int64_t i01 = 0; i01 < ne01; ++i01) {
for (int64_t i00 = 0; i00 < ne00; ++i00) {
wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
}
}
assert(id*sizeof(float) <= params->wsize);
}
const float * x = wdata;
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
// zT = y * xT
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
ne11, ne01, ne10,
1.0f, y, ne10,
x, ne00,
0.0f, d, ne01);
}
}
/*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
return;
}
#endif
if (params->type == GGML_TASK_INIT) {
ggml_fp16_t * const wdata = params->wdata;
size_t id = 0;
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
for (int64_t i10 = 0; i10 < ne10; ++i10) {
wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
}
}
}
}
GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
// fp16 -> half the size, so divide by 2
// TODO: do not support transposed src1
assert(nb10/2 == sizeof(ggml_fp16_t));
// parallelize by src0 rows using ggml_vec_dot_f16
// total rows in src0
const int nr = ne01*ne02*ne03;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
ggml_fp16_t * wdata = params->wdata;
for (int ir = ir0; ir < ir1; ++ir) {
// src0 indices
const int i03 = ir/(ne02*ne01);
const int i02 = (ir - i03*ne02*ne01)/ne01;
const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
const int i13 = i03;
const int i12 = i02;
const int i0 = i01;
const int i2 = i02;
const int i3 = i03;
ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
for (int64_t ic = 0; ic < ne11; ++ic) {
ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
}
}
//int64_t t1 = ggml_time_us();
//static int64_t acc = 0;
//acc += t1 - t0;
//if (t1 - t0 > 10) {
// printf("\n");
// printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
// printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
// printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
// printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
//}
}
static void ggml_compute_forward_mul_mat_q_f32(
const struct ggml_compute_params * params, const struct ggml_compute_params * params,
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
const struct ggml_tensor * src1, const struct ggml_tensor * src1,
@ -11034,9 +10648,9 @@ static void ggml_compute_forward_mul_mat_q_f32(
GGML_ASSERT(ne3 == ne13); GGML_ASSERT(ne3 == ne13);
const enum ggml_type type = src0->type; const enum ggml_type type = src0->type;
quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot; ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q; enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type; ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
// we don't support permuted src0 or src1 // we don't support permuted src0 or src1
GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]); GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
@ -11079,27 +10693,27 @@ static void ggml_compute_forward_mul_mat_q_f32(
return; return;
} }
float * const wdata = params->wdata;
dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i02 = 0; i02 < ne02; i02++) {
const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
{ if (type != GGML_TYPE_F32) {
float * const wdata = params->wdata;
ggml_to_float_t const to_float = type_traits[type].to_float;
size_t id = 0; size_t id = 0;
for (int64_t i01 = 0; i01 < ne01; ++i01) { for (int64_t i01 = 0; i01 < ne01; ++i01) {
dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00); to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
id += ne00; id += ne00;
} }
assert(id*sizeof(float) <= params->wsize); assert(id*sizeof(float) <= params->wsize);
x = wdata;
} }
const float * x = wdata;
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
ne11, ne01, ne10, ne11, ne01, ne10,
1.0f, y, ne10, 1.0f, y, ne10,
@ -11115,14 +10729,16 @@ static void ggml_compute_forward_mul_mat_q_f32(
#endif #endif
if (params->type == GGML_TASK_INIT) { if (params->type == GGML_TASK_INIT) {
char * wdata = params->wdata; if (src1->type != vec_dot_type) {
const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type]; char * wdata = params->wdata;
const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
for (int64_t i13 = 0; i13 < ne13; ++i13) { for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) { for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) { for (int64_t i11 = 0; i11 < ne11; ++i11) {
quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10); from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
wdata += row_size; wdata += row_size;
}
} }
} }
} }
@ -11146,7 +10762,7 @@ static void ggml_compute_forward_mul_mat_q_f32(
const int ir0 = dr*ith; const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr); const int ir1 = MIN(ir0 + dr, nr);
void * wdata = params->wdata; void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type]; const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
for (int ir = ir0; ir < ir1; ++ir) { for (int ir = ir0; ir < ir1; ++ir) {
@ -11170,7 +10786,7 @@ static void ggml_compute_forward_mul_mat_q_f32(
assert(ne00 % 32 == 0); assert(ne00 % 32 == 0);
for (int64_t ic = 0; ic < ne11; ++ic) { for (int64_t ic = 0; ic < ne11; ++ic) {
vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size)); vec_dot(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
} }
} }
@ -11187,40 +10803,6 @@ static void ggml_compute_forward_mul_mat_q_f32(
//} //}
} }
static void ggml_compute_forward_mul_mat(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
{
ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_out_prod // ggml_compute_forward_out_prod
@ -11645,7 +11227,7 @@ static void ggml_compute_forward_get_rows_q(
const int nc = src0->ne[0]; const int nc = src0->ne[0];
const int nr = ggml_nelements(src1); const int nr = ggml_nelements(src1);
const enum ggml_type type = src0->type; const enum ggml_type type = src0->type;
dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q; ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
assert( dst->ne[0] == nc); assert( dst->ne[0] == nc);
assert( dst->ne[1] == nr); assert( dst->ne[1] == nr);
@ -17002,11 +16584,13 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
//printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks); //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
size_t cur = 0; size_t cur = 0;
const enum ggml_type vec_dot_type = type_traits[node->src0->type].vec_dot_type;
#if defined(GGML_USE_CUBLAS) #if defined(GGML_USE_CUBLAS)
if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) { if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
node->n_tasks = 1; // TODO: this actually is doing nothing node->n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning // the threads are still spinning
cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
} }
else else
#elif defined(GGML_USE_CLBLAST) #elif defined(GGML_USE_CLBLAST)
@ -17017,37 +16601,18 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
} }
else else
#endif #endif
if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
node->n_tasks = 1; // TODO: this actually is doing nothing node->n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning // the threads are still spinning
if (node->src0->type != GGML_TYPE_F32) {
// here we need memory just for single 2D matrix from src0 // here we need memory just for single 2D matrix from src0
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]); cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
} else {
cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
} }
#else } else
cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
#endif #endif
} else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) { if (node->src1->type != vec_dot_type) {
cur = 0; cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[vec_dot_type];
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
node->n_tasks = 1;
}
#endif
} else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
node->n_tasks = 1;
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
} else
#endif
{
const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
}
} else { } else {
GGML_ASSERT(false); GGML_ASSERT(false);
} }

31
ggml.h
View File

@ -224,8 +224,8 @@ extern "C" {
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x); GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x); GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n); GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n); GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
struct ggml_object; struct ggml_object;
struct ggml_context; struct ggml_context;
@ -1490,26 +1490,19 @@ extern "C" {
// Internal types and functions exposed for tests and benchmarks // Internal types and functions exposed for tests and benchmarks
// //
#ifdef __cplusplus typedef void (*ggml_to_float_t)(const void * x, float * y, int k);
// restrict not standard in C++ typedef void (*ggml_from_float_t)(const float * x, void * y, int k);
#define GGML_RESTRICT typedef void (*ggml_vec_dot_t)(const int n, float * s, const void * x, const void * y);
#else
#define GGML_RESTRICT restrict
#endif
typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
typedef void (*quantize_row_q_t) (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
typedef void (*vec_dot_q_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
typedef struct { typedef struct {
dequantize_row_q_t dequantize_row_q; ggml_to_float_t to_float;
quantize_row_q_t quantize_row_q; ggml_from_float_t from_float;
quantize_row_q_t quantize_row_q_reference; ggml_from_float_t from_float_reference;
quantize_row_q_t quantize_row_q_dot; ggml_vec_dot_t vec_dot;
vec_dot_q_t vec_dot_q; enum ggml_type vec_dot_type;
enum ggml_type vec_dot_type; } ggml_type_traits_t;
} quantize_fns_t;
quantize_fns_t ggml_internal_get_quantize_fn(size_t i); ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i);
#ifdef __cplusplus #ifdef __cplusplus
} }

View File

@ -2252,10 +2252,10 @@ static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llam
} }
float * f32_output = (float *) output.addr; float * f32_output = (float *) output.addr;
quantize_fns_t qtype; ggml_type_traits_t qtype;
if (ggml_is_quantized(tensor.type)) { if (ggml_is_quantized(tensor.type)) {
qtype = ggml_internal_get_quantize_fn(tensor.type); qtype = ggml_internal_get_type_traits(tensor.type);
if (qtype.dequantize_row_q == NULL) { if (qtype.to_float == NULL) {
throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor.type))); throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor.type)));
} }
} else if (tensor.type != GGML_TYPE_F16) { } else if (tensor.type != GGML_TYPE_F16) {
@ -2266,7 +2266,7 @@ static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llam
if (tensor.type == GGML_TYPE_F16) { if (tensor.type == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor.data, f32_output, nelements); ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor.data, f32_output, nelements);
} else if (ggml_is_quantized(tensor.type)) { } else if (ggml_is_quantized(tensor.type)) {
qtype.dequantize_row_q(tensor.data, f32_output, nelements); qtype.to_float(tensor.data, f32_output, nelements);
} else { } else {
LLAMA_ASSERT(false); // unreachable LLAMA_ASSERT(false); // unreachable
} }
@ -2291,7 +2291,7 @@ static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llam
if (typ == GGML_TYPE_F16) { if (typ == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels); ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
} else { } else {
qtype.dequantize_row_q(inbuf, outbuf, nels); qtype.to_float(inbuf, outbuf, nels);
} }
}; };
workers.push_back(std::thread(compute, tensor.type, tensor.data + in_buff_offs, f32_output + out_buff_offs, thr_elems)); workers.push_back(std::thread(compute, tensor.type, tensor.data + in_buff_offs, f32_output + out_buff_offs, thr_elems));

View File

@ -136,7 +136,7 @@ int main(int argc, char** argv) {
auto ggml_type = type == 0 ? GGML_TYPE_Q4_0 : GGML_TYPE_Q4_1; auto ggml_type = type == 0 ? GGML_TYPE_Q4_0 : GGML_TYPE_Q4_1;
auto funcs = ggml_internal_get_quantize_fn(ggml_type); auto funcs = ggml_internal_get_type_traits(ggml_type);
Stat simple, ggml; Stat simple, ggml;
@ -156,8 +156,8 @@ int main(int argc, char** argv) {
t1 = std::chrono::high_resolution_clock::now(); t1 = std::chrono::high_resolution_clock::now();
float fs; float fs;
if (type == 0) funcs.vec_dot_q(kVecSize * QK4_1, &fs, x40.data(), y.data()); if (type == 0) funcs.vec_dot(kVecSize * QK4_1, &fs, x40.data(), y.data());
else funcs.vec_dot_q(kVecSize * QK4_1, &fs, x41.data(), y.data()); else funcs.vec_dot(kVecSize * QK4_1, &fs, x41.data(), y.data());
t2 = std::chrono::high_resolution_clock::now(); t2 = std::chrono::high_resolution_clock::now();
t = 1e-3*std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count(); t = 1e-3*std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count();
if (iloop > 3) ggml.addResult(fs, t); if (iloop > 3) ggml.addResult(fs, t);

View File

@ -235,7 +235,7 @@ int main(int argc, char** argv) {
int n4 = useQ4_1 ? kVecSize / QK4_1 : kVecSize / QK4_0; n4 = 64*((n4 + 63)/64); int n4 = useQ4_1 ? kVecSize / QK4_1 : kVecSize / QK4_0; n4 = 64*((n4 + 63)/64);
int n8 = kVecSize / QK8_0; n8 = 64*((n8 + 63)/64); int n8 = kVecSize / QK8_0; n8 = 64*((n8 + 63)/64);
auto funcs = useQ4_1 ? ggml_internal_get_quantize_fn(GGML_TYPE_Q4_1) : ggml_internal_get_quantize_fn(GGML_TYPE_Q4_0); auto funcs = useQ4_1 ? ggml_internal_get_type_traits(GGML_TYPE_Q4_1) : ggml_internal_get_type_traits(GGML_TYPE_Q4_0);
std::vector<block_q4_0> q40; std::vector<block_q4_0> q40;
std::vector<block_q4_1> q41; std::vector<block_q4_1> q41;
@ -261,9 +261,9 @@ int main(int argc, char** argv) {
// Note, we do not include this in the timing as in practical application // Note, we do not include this in the timing as in practical application
// we already have the quantized model weights. // we already have the quantized model weights.
if (useQ4_1) { if (useQ4_1) {
funcs.quantize_row_q(x1.data(), q41.data(), kVecSize); funcs.from_float(x1.data(), q41.data(), kVecSize);
} else { } else {
funcs.quantize_row_q(x1.data(), q40.data(), kVecSize); funcs.from_float(x1.data(), q40.data(), kVecSize);
} }
// Now measure time the dot product needs using the "scalar" version above // Now measure time the dot product needs using the "scalar" version above
@ -282,9 +282,10 @@ int main(int argc, char** argv) {
dot_q4_q8(kVecSize, &result, q40.data(), q8.data()); dot_q4_q8(kVecSize, &result, q40.data(), q8.data());
} }
else { else {
funcs.quantize_row_q_dot(y1.data(), q8.data(), kVecSize); auto vdot = ggml_internal_get_type_traits(funcs.vec_dot_type);
if (useQ4_1) funcs.vec_dot_q(kVecSize, &result, q41.data(), q8.data()); vdot.from_float(y1.data(), q8.data(), kVecSize);
else funcs.vec_dot_q(kVecSize, &result, q40.data(), q8.data()); if (useQ4_1) funcs.vec_dot(kVecSize, &result, q41.data(), q8.data());
else funcs.vec_dot(kVecSize, &result, q40.data(), q8.data());
} }
sumq += result; sumq += result;
t2 = std::chrono::high_resolution_clock::now(); t2 = std::chrono::high_resolution_clock::now();

View File

@ -40,26 +40,26 @@ float array_rmse(const float * a1, const float * a2, size_t n) {
} }
// Total quantization error on test data // Total quantization error on test data
float total_quantization_error(quantize_fns_t & qfns, size_t test_size, const float * test_data) { float total_quantization_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data) {
std::vector<uint8_t> tmp_q(2*test_size); std::vector<uint8_t> tmp_q(2*test_size);
std::vector<float> tmp_out(test_size); std::vector<float> tmp_out(test_size);
qfns.quantize_row_q(test_data, tmp_q.data(), test_size); qfns.from_float(test_data, tmp_q.data(), test_size);
qfns.dequantize_row_q(tmp_q.data(), tmp_out.data(), test_size); qfns.to_float(tmp_q.data(), tmp_out.data(), test_size);
return array_rmse(test_data, tmp_out.data(), test_size); return array_rmse(test_data, tmp_out.data(), test_size);
} }
// Total quantization error on test data // Total quantization error on test data
float reference_quantization_error(quantize_fns_t & qfns, size_t test_size, const float * test_data) { float reference_quantization_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data) {
std::vector<uint8_t> tmp_q(2*test_size); std::vector<uint8_t> tmp_q(2*test_size);
std::vector<float> tmp_out(test_size); std::vector<float> tmp_out(test_size);
std::vector<float> tmp_out_ref(test_size); std::vector<float> tmp_out_ref(test_size);
qfns.quantize_row_q(test_data, tmp_q.data(), test_size); qfns.from_float(test_data, tmp_q.data(), test_size);
qfns.dequantize_row_q(tmp_q.data(), tmp_out.data(), test_size); qfns.to_float(tmp_q.data(), tmp_out.data(), test_size);
qfns.quantize_row_q_reference(test_data, tmp_q.data(), test_size); qfns.from_float_reference(test_data, tmp_q.data(), test_size);
qfns.dequantize_row_q(tmp_q.data(), tmp_out_ref.data(), test_size); qfns.to_float(tmp_q.data(), tmp_out_ref.data(), test_size);
return array_rmse(tmp_out.data(), tmp_out_ref.data(), test_size); return array_rmse(tmp_out.data(), tmp_out_ref.data(), test_size);
} }
@ -73,15 +73,17 @@ float dot_product(const float * a1, const float * a2, size_t test_size) {
} }
// Total dot product error // Total dot product error
float dot_product_error(quantize_fns_t & qfns, size_t test_size, const float * test_data1, const float *test_data2) { float dot_product_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data1, const float *test_data2) {
std::vector<uint8_t> tmp_q1(2*test_size); std::vector<uint8_t> tmp_q1(2*test_size);
std::vector<uint8_t> tmp_q2(2*test_size); std::vector<uint8_t> tmp_q2(2*test_size);
qfns.quantize_row_q (test_data1, tmp_q1.data(), test_size); auto vdot = ggml_internal_get_type_traits(qfns.vec_dot_type);
qfns.quantize_row_q_dot(test_data2, tmp_q2.data(), test_size);
qfns.from_float(test_data1, tmp_q1.data(), test_size);
vdot.from_float(test_data2, tmp_q2.data(), test_size);
float result = INFINITY; float result = INFINITY;
qfns.vec_dot_q(test_size, &result, tmp_q1.data(), tmp_q2.data()); qfns.vec_dot(test_size, &result, tmp_q1.data(), tmp_q2.data());
const float dot_ref = dot_product(test_data1, test_data2, test_size); const float dot_ref = dot_product(test_data1, test_data2, test_size);
@ -123,9 +125,9 @@ int main(int argc, char * argv[]) {
for (int i = 0; i < GGML_TYPE_COUNT; i++) { for (int i = 0; i < GGML_TYPE_COUNT; i++) {
ggml_type type = (ggml_type) i; ggml_type type = (ggml_type) i;
quantize_fns_t qfns = ggml_internal_get_quantize_fn(i); ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
if (qfns.quantize_row_q && qfns.dequantize_row_q) { if (qfns.from_float && qfns.to_float) {
const float total_error = total_quantization_error(qfns, test_size, test_data.data()); const float total_error = total_quantization_error(qfns, test_size, test_data.data());
const float max_quantization_error = const float max_quantization_error =
type == GGML_TYPE_Q2_K ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS : type == GGML_TYPE_Q2_K ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS :

View File

@ -123,9 +123,9 @@ void usage(char * argv[]) {
printf(" --type TYPE set test type as"); printf(" --type TYPE set test type as");
for (int i = 0; i < GGML_TYPE_COUNT; i++) { for (int i = 0; i < GGML_TYPE_COUNT; i++) {
ggml_type type = (ggml_type) i; ggml_type type = (ggml_type) i;
quantize_fns_t qfns = ggml_internal_get_quantize_fn(type); ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
if (ggml_type_name(type) != NULL) { if (ggml_type_name(type) != NULL) {
if (qfns.quantize_row_q && qfns.dequantize_row_q) { if (qfns.from_float && qfns.to_float) {
printf(" %s", ggml_type_name(type)); printf(" %s", ggml_type_name(type));
} }
} }
@ -271,12 +271,12 @@ int main(int argc, char * argv[]) {
for (int i = 0; i < GGML_TYPE_COUNT; i++) { for (int i = 0; i < GGML_TYPE_COUNT; i++) {
ggml_type type = (ggml_type) i; ggml_type type = (ggml_type) i;
quantize_fns_t qfns = ggml_internal_get_quantize_fn(i); ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
if (!params.include_types.empty() && ggml_type_name(type) && std::find(params.include_types.begin(), params.include_types.end(), ggml_type_name(type)) == params.include_types.end()) { if (!params.include_types.empty() && ggml_type_name(type) && std::find(params.include_types.begin(), params.include_types.end(), ggml_type_name(type)) == params.include_types.end()) {
continue; continue;
} }
if (qfns.quantize_row_q && qfns.dequantize_row_q) { if (qfns.from_float && qfns.to_float) {
printf("%s\n", ggml_type_name(type)); printf("%s\n", ggml_type_name(type));
if (params.op_quantize_row_q_reference) { if (params.op_quantize_row_q_reference) {
@ -284,7 +284,7 @@ int main(int argc, char * argv[]) {
for (size_t size : params.test_sizes) { for (size_t size : params.test_sizes) {
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
auto quantize_fn = [&](void ) { auto quantize_fn = [&](void ) {
qfns.quantize_row_q_reference(test_data1, test_q1, size); qfns.from_float_reference(test_data1, test_q1, size);
return test_q1[0]; return test_q1[0];
}; };
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
@ -298,7 +298,7 @@ int main(int argc, char * argv[]) {
for (size_t size : params.test_sizes) { for (size_t size : params.test_sizes) {
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
auto quantize_fn = [&](void ) { auto quantize_fn = [&](void ) {
qfns.quantize_row_q(test_data1, test_q1, size); qfns.from_float(test_data1, test_q1, size);
return test_q1[0]; return test_q1[0];
}; };
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
@ -309,11 +309,11 @@ int main(int argc, char * argv[]) {
if (params.op_dequantize_row_q) { if (params.op_dequantize_row_q) {
printf(" dequantize_row_q\n"); printf(" dequantize_row_q\n");
qfns.quantize_row_q(test_data1, test_q1, largest); qfns.from_float(test_data1, test_q1, largest);
for (size_t size : params.test_sizes) { for (size_t size : params.test_sizes) {
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
auto quantize_fn = [&](void ) { auto quantize_fn = [&](void ) {
qfns.dequantize_row_q(test_q1, test_out, size); qfns.to_float(test_q1, test_out, size);
return test_out[0]; return test_out[0];
}; };
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
@ -327,7 +327,8 @@ int main(int argc, char * argv[]) {
for (size_t size : params.test_sizes) { for (size_t size : params.test_sizes) {
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
auto quantize_fn = [&](void ) { auto quantize_fn = [&](void ) {
qfns.quantize_row_q_dot(test_data1, test_q1, size); auto vdot = ggml_internal_get_type_traits(qfns.vec_dot_type);
vdot.from_float(test_data1, test_q1, size);
return test_q1[0]; return test_q1[0];
}; };
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
@ -338,13 +339,13 @@ int main(int argc, char * argv[]) {
if (params.op_vec_dot_q) { if (params.op_vec_dot_q) {
printf(" vec_dot_q\n"); printf(" vec_dot_q\n");
qfns.quantize_row_q(test_data1, test_q1, largest); qfns.from_float(test_data1, test_q1, largest);
qfns.quantize_row_q(test_data2, test_q2, largest); qfns.from_float(test_data2, test_q2, largest);
for (size_t size : params.test_sizes) { for (size_t size : params.test_sizes) {
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024)); printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
auto quantize_fn = [&](void ) { auto quantize_fn = [&](void ) {
float result; float result;
qfns.vec_dot_q(size, &result, test_q1, test_q2); qfns.vec_dot(size, &result, test_q1, test_q2);
return result; return result;
}; };
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type); size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);