mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 09:59:18 +01:00
server: ci: windows build and tests (#5968)
* server: ci: windows build and tests * server: ci: remove tmp push branch * server: ci: EOF EOL * Use builti Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * server: tests: server graceful shutdown, then kill, then hard kill * server: tests: remove python2 unicode string * server: tests: remove wrong comment on server starting, close_fds is always true * server: tests: server kill, if pid exists * server: tests: remove dependency to killall * server: tests: ci windows: pid exists better handling --------- Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
This commit is contained in:
parent
bcebd7dbf6
commit
fa8a809a91
46
.github/workflows/server.yml
vendored
46
.github/workflows/server.yml
vendored
@ -47,6 +47,8 @@ jobs:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@ -58,7 +60,6 @@ jobs:
|
||||
cmake \
|
||||
python3-pip \
|
||||
wget \
|
||||
psmisc \
|
||||
language-pack-en
|
||||
|
||||
- name: Build
|
||||
@ -90,3 +91,46 @@ jobs:
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
PORT=8888 ./tests.sh --stop --no-skipped --no-capture --tags slow
|
||||
|
||||
|
||||
server-windows:
|
||||
runs-on: windows-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_BUILD_SERVER=ON -DCMAKE_BUILD_TYPE=Release ;
|
||||
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS} --target server
|
||||
|
||||
- name: Python setup
|
||||
id: setup_python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.11'
|
||||
|
||||
- name: Tests dependencies
|
||||
id: test_dependencies
|
||||
run: |
|
||||
pip install -r examples/server/tests/requirements.txt
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
behave.exe --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
|
||||
|
||||
- name: Slow tests
|
||||
id: server_integration_tests_slow
|
||||
if: ${{ github.event.schedule != '' || github.event.inputs.slow_tests == 'true' }}
|
||||
run: |
|
||||
cd examples/server/tests
|
||||
behave.exe --stop --no-skipped --no-capture --tags slow
|
||||
|
@ -1,9 +1,10 @@
|
||||
import errno
|
||||
import os
|
||||
import socket
|
||||
import subprocess
|
||||
import time
|
||||
from contextlib import closing
|
||||
from signal import SIGKILL
|
||||
import signal
|
||||
|
||||
|
||||
def before_scenario(context, scenario):
|
||||
@ -29,44 +30,71 @@ def after_scenario(context, scenario):
|
||||
for line in f:
|
||||
print(line)
|
||||
if not is_server_listening(context.server_fqdn, context.server_port):
|
||||
print("\x1b[33;101mERROR: Server stopped listening\x1b[0m")
|
||||
print("\x1b[33;101mERROR: Server stopped listening\x1b[0m\n")
|
||||
|
||||
if not pid_exists(context.server_process.pid):
|
||||
assert False, f"Server not running pid={context.server_process.pid} ..."
|
||||
|
||||
print(f"stopping server pid={context.server_process.pid} ...")
|
||||
context.server_process.kill()
|
||||
server_graceful_shutdown(context)
|
||||
|
||||
# Wait few for socket to free up
|
||||
time.sleep(0.05)
|
||||
|
||||
attempts = 0
|
||||
while is_server_listening(context.server_fqdn, context.server_port):
|
||||
print(f"stopping server pid={context.server_process.pid} ...")
|
||||
os.kill(context.server_process.pid, SIGKILL)
|
||||
while pid_exists(context.server_process.pid) or is_server_listening(context.server_fqdn, context.server_port):
|
||||
server_kill(context)
|
||||
time.sleep(0.1)
|
||||
attempts += 1
|
||||
if attempts > 5:
|
||||
print(f"Server dangling exits, killing all {context.server_path} ...")
|
||||
process = subprocess.run(['killall', '-9', context.server_path],
|
||||
stderr=subprocess.PIPE,
|
||||
universal_newlines=True)
|
||||
print(process)
|
||||
server_kill_hard(context)
|
||||
|
||||
|
||||
def server_graceful_shutdown(context):
|
||||
print(f"shutting down server pid={context.server_process.pid} ...\n")
|
||||
if os.name == 'nt':
|
||||
os.kill(context.server_process.pid, signal.CTRL_C_EVENT)
|
||||
else:
|
||||
os.kill(context.server_process.pid, signal.SIGINT)
|
||||
|
||||
|
||||
def server_kill(context):
|
||||
print(f"killing server pid={context.server_process.pid} ...\n")
|
||||
context.server_process.kill()
|
||||
|
||||
|
||||
def server_kill_hard(context):
|
||||
pid = context.server_process.pid
|
||||
path = context.server_path
|
||||
|
||||
print(f"Server dangling exits, hard killing force {pid}={path}...\n")
|
||||
if os.name == 'nt':
|
||||
process = subprocess.check_output(['taskkill', '/F', '/pid', str(pid)]).decode()
|
||||
print(process)
|
||||
else:
|
||||
os.kill(-pid, signal.SIGKILL)
|
||||
|
||||
|
||||
def is_server_listening(server_fqdn, server_port):
|
||||
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
|
||||
result = sock.connect_ex((server_fqdn, server_port))
|
||||
return result == 0
|
||||
_is_server_listening = result == 0
|
||||
if _is_server_listening:
|
||||
print(f"server is listening on {server_fqdn}:{server_port}...\n")
|
||||
return _is_server_listening
|
||||
|
||||
|
||||
def pid_exists(pid):
|
||||
"""Check whether pid exists in the current process table."""
|
||||
import errno
|
||||
if pid < 0:
|
||||
return False
|
||||
try:
|
||||
os.kill(pid, 0)
|
||||
except OSError as e:
|
||||
return e.errno == errno.EPERM
|
||||
if os.name == 'nt':
|
||||
output = subprocess.check_output(['TASKLIST', '/FI', f'pid eq {pid}']).decode()
|
||||
print(output)
|
||||
return "No tasks are running" not in output
|
||||
else:
|
||||
return True
|
||||
try:
|
||||
os.kill(pid, 0)
|
||||
except OSError as e:
|
||||
return e.errno == errno.EPERM
|
||||
else:
|
||||
return True
|
||||
|
@ -47,7 +47,7 @@ Feature: llama.cpp server
|
||||
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
|
||||
"""
|
||||
And a completion request with no api error
|
||||
Then 64 tokens are predicted matching fun|Annaks|popcorns
|
||||
Then 64 tokens are predicted matching fun|Annaks|popcorns|pictry
|
||||
And the completion is truncated
|
||||
And 109 prompt tokens are processed
|
||||
|
||||
|
@ -18,7 +18,7 @@ from huggingface_hub import hf_hub_download
|
||||
from prometheus_client import parser
|
||||
|
||||
|
||||
@step(u"a server listening on {server_fqdn}:{server_port}")
|
||||
@step("a server listening on {server_fqdn}:{server_port}")
|
||||
def step_server_config(context, server_fqdn, server_port):
|
||||
context.server_fqdn = server_fqdn
|
||||
context.server_port = int(server_port)
|
||||
@ -57,24 +57,24 @@ def step_server_config(context, server_fqdn, server_port):
|
||||
context.prompts = []
|
||||
|
||||
|
||||
@step(u'a model file {hf_file} from HF repo {hf_repo}')
|
||||
@step('a model file {hf_file} from HF repo {hf_repo}')
|
||||
def step_download_hf_model(context, hf_file, hf_repo):
|
||||
context.model_file = hf_hub_download(repo_id=hf_repo, filename=hf_file)
|
||||
if context.debug:
|
||||
print(f"model file: {context.model_file}\n")
|
||||
|
||||
|
||||
@step(u'a model alias {model_alias}')
|
||||
@step('a model alias {model_alias}')
|
||||
def step_model_alias(context, model_alias):
|
||||
context.model_alias = model_alias
|
||||
|
||||
|
||||
@step(u'{seed:d} as server seed')
|
||||
@step('{seed:d} as server seed')
|
||||
def step_seed(context, seed):
|
||||
context.server_seed = seed
|
||||
|
||||
|
||||
@step(u'{ngl:d} GPU offloaded layers')
|
||||
@step('{ngl:d} GPU offloaded layers')
|
||||
def step_n_gpu_layer(context, ngl):
|
||||
if 'N_GPU_LAYERS' in os.environ:
|
||||
new_ngl = int(os.environ['N_GPU_LAYERS'])
|
||||
@ -84,37 +84,37 @@ def step_n_gpu_layer(context, ngl):
|
||||
context.n_gpu_layer = ngl
|
||||
|
||||
|
||||
@step(u'{n_ctx:d} KV cache size')
|
||||
@step('{n_ctx:d} KV cache size')
|
||||
def step_n_ctx(context, n_ctx):
|
||||
context.n_ctx = n_ctx
|
||||
|
||||
|
||||
@step(u'{n_slots:d} slots')
|
||||
@step('{n_slots:d} slots')
|
||||
def step_n_slots(context, n_slots):
|
||||
context.n_slots = n_slots
|
||||
|
||||
|
||||
@step(u'{n_predict:d} server max tokens to predict')
|
||||
@step('{n_predict:d} server max tokens to predict')
|
||||
def step_server_n_predict(context, n_predict):
|
||||
context.n_server_predict = n_predict
|
||||
|
||||
|
||||
@step(u'continuous batching')
|
||||
@step('continuous batching')
|
||||
def step_server_continuous_batching(context):
|
||||
context.server_continuous_batching = True
|
||||
|
||||
|
||||
@step(u'embeddings extraction')
|
||||
@step('embeddings extraction')
|
||||
def step_server_embeddings(context):
|
||||
context.server_embeddings = True
|
||||
|
||||
|
||||
@step(u'prometheus compatible metrics exposed')
|
||||
@step('prometheus compatible metrics exposed')
|
||||
def step_server_metrics(context):
|
||||
context.server_metrics = True
|
||||
|
||||
|
||||
@step(u"the server is starting")
|
||||
@step("the server is starting")
|
||||
def step_start_server(context):
|
||||
start_server_background(context)
|
||||
attempts = 0
|
||||
@ -131,7 +131,7 @@ def step_start_server(context):
|
||||
time.sleep(0.1)
|
||||
|
||||
|
||||
@step(u"the server is {expecting_status}")
|
||||
@step("the server is {expecting_status}")
|
||||
@async_run_until_complete
|
||||
async def step_wait_for_the_server_to_be_started(context, expecting_status):
|
||||
match expecting_status:
|
||||
@ -160,7 +160,7 @@ async def step_wait_for_the_server_to_be_started(context, expecting_status):
|
||||
assert False, "unknown status"
|
||||
|
||||
|
||||
@step(u'all slots are {expected_slot_status_string}')
|
||||
@step('all slots are {expected_slot_status_string}')
|
||||
@async_run_until_complete
|
||||
async def step_all_slots_status(context, expected_slot_status_string):
|
||||
match expected_slot_status_string:
|
||||
@ -176,7 +176,7 @@ async def step_all_slots_status(context, expected_slot_status_string):
|
||||
await request_slots_status(context, expected_slots)
|
||||
|
||||
|
||||
@step(u'a completion request with {api_error} api error')
|
||||
@step('a completion request with {api_error} api error')
|
||||
@async_run_until_complete
|
||||
async def step_request_completion(context, api_error):
|
||||
expect_api_error = api_error == 'raised'
|
||||
@ -194,133 +194,133 @@ async def step_request_completion(context, api_error):
|
||||
assert completion == 401, f"completion must be an 401 status code: {completion}"
|
||||
|
||||
|
||||
@step(u'{predicted_n:d} tokens are predicted matching {re_content}')
|
||||
@step('{predicted_n:d} tokens are predicted matching {re_content}')
|
||||
def step_n_tokens_predicted_with_content(context, predicted_n, re_content):
|
||||
context.completion = context.tasks_result.pop()
|
||||
assert_n_tokens_predicted(context.completion, predicted_n, re_content)
|
||||
|
||||
|
||||
@step(u'{predicted_n:d} tokens are predicted')
|
||||
@step('{predicted_n:d} tokens are predicted')
|
||||
def step_n_tokens_predicted(context, predicted_n):
|
||||
context.completion = context.tasks_result.pop()
|
||||
assert_n_tokens_predicted(context.completion, predicted_n)
|
||||
|
||||
|
||||
@step(u'the completion is truncated')
|
||||
@step('the completion is truncated')
|
||||
def step_assert_completion_truncated(context):
|
||||
step_assert_completion_truncated(context, '')
|
||||
|
||||
|
||||
@step(u'the completion is {truncated} truncated')
|
||||
@step('the completion is {truncated} truncated')
|
||||
def step_assert_completion_truncated(context, truncated):
|
||||
truncated = truncated != "not"
|
||||
assert context.completion['truncated'] == truncated, f'{context.completion}'
|
||||
|
||||
|
||||
@step(u'{n_prompt:d} prompt tokens are processed')
|
||||
@step('{n_prompt:d} prompt tokens are processed')
|
||||
def step_impl(context, n_prompt):
|
||||
assert n_prompt < 0 or n_prompt == context.completion['timings']['prompt_n'], f"n_prompt={context.completion['timings']['prompt_n']}"
|
||||
|
||||
|
||||
@step(u'a user prompt {user_prompt}')
|
||||
@step('a user prompt {user_prompt}')
|
||||
def step_user_prompt(context, user_prompt):
|
||||
context.prompts.append(user_prompt)
|
||||
context.n_prompts = len(context.prompts)
|
||||
|
||||
|
||||
@step(u'a system prompt {system_prompt}')
|
||||
@step('a system prompt {system_prompt}')
|
||||
def step_system_prompt(context, system_prompt):
|
||||
context.system_prompt = system_prompt
|
||||
|
||||
|
||||
@step(u'a model {model}')
|
||||
@step('a model {model}')
|
||||
def step_model(context, model):
|
||||
context.model = model
|
||||
|
||||
|
||||
@step(u'{max_tokens:d} max tokens to predict')
|
||||
@step('{max_tokens:d} max tokens to predict')
|
||||
def step_max_tokens(context, max_tokens):
|
||||
context.n_predict = max_tokens
|
||||
|
||||
|
||||
@step(u'streaming is {enable_streaming}')
|
||||
@step('streaming is {enable_streaming}')
|
||||
def step_streaming(context, enable_streaming):
|
||||
context.enable_streaming = enable_streaming == 'enabled'
|
||||
|
||||
|
||||
@step(u'a user api key {user_api_key}')
|
||||
@step('a user api key {user_api_key}')
|
||||
def step_user_api_key(context, user_api_key):
|
||||
context.user_api_key = user_api_key
|
||||
|
||||
|
||||
@step(u'no user api key')
|
||||
@step('no user api key')
|
||||
def step_no_user_api_key(context):
|
||||
context.user_api_key = None
|
||||
|
||||
|
||||
@step(u'a user api key ')
|
||||
@step('a user api key ')
|
||||
def step_no_user_api_key_space(context):
|
||||
context.user_api_key = None
|
||||
|
||||
|
||||
@step(u'a server api key {server_api_key}')
|
||||
@step('a server api key {server_api_key}')
|
||||
def step_server_api_key(context, server_api_key):
|
||||
context.server_api_key = server_api_key
|
||||
|
||||
|
||||
@step(u'{n_junk:d} as number of junk')
|
||||
@step('{n_junk:d} as number of junk')
|
||||
def step_n_junk(context, n_junk):
|
||||
context.n_junk = n_junk
|
||||
|
||||
|
||||
@step(u'{n_batch:d} as batch size')
|
||||
@step('{n_batch:d} as batch size')
|
||||
def step_n_batch(context, n_batch):
|
||||
context.n_batch = n_batch
|
||||
|
||||
|
||||
@step(u'{seed:d} as seed')
|
||||
@step('{seed:d} as seed')
|
||||
def step_seed(context, seed):
|
||||
context.seed = seed
|
||||
|
||||
|
||||
@step(u'a prefix prompt')
|
||||
@step('a prefix prompt')
|
||||
def step_prompt_prefix(context):
|
||||
context.prompt_prefix = context.text
|
||||
context.prompt_prefix = context_text(context)
|
||||
|
||||
|
||||
@step(u'a junk suffix prompt')
|
||||
@step('a junk suffix prompt')
|
||||
def step_prompt_junk_suffix(context):
|
||||
context.prompt_junk_suffix = context.text
|
||||
context.prompt_junk_suffix = context_text(context)
|
||||
|
||||
|
||||
@step(u'a suffix prompt')
|
||||
@step('a suffix prompt')
|
||||
def step_prompt_suffix(context):
|
||||
context.prompt_suffix = context.text
|
||||
context.prompt_suffix = context_text(context)
|
||||
|
||||
|
||||
@step(u'{n_ga:d} group attention factor'
|
||||
u' to extend context size through self-extend')
|
||||
@step('{n_ga:d} group attention factor'
|
||||
' to extend context size through self-extend')
|
||||
def step_impl(context, n_ga):
|
||||
context.n_ga = n_ga
|
||||
|
||||
|
||||
@step(u'{n_ga_w:d} group attention width to extend context size through self-extend')
|
||||
@step('{n_ga_w:d} group attention width to extend context size through self-extend')
|
||||
def step_impl(context, n_ga_w):
|
||||
context.n_ga_w = n_ga_w
|
||||
|
||||
|
||||
@step(u'a passkey prompt template')
|
||||
@step('a passkey prompt template')
|
||||
def step_prompt_passkey(context):
|
||||
context.prompt_passkey = context.text
|
||||
context.prompt_passkey = context_text(context)
|
||||
|
||||
|
||||
@step(u'{n_prompts:d} fixed prompts')
|
||||
@step('{n_prompts:d} fixed prompts')
|
||||
def step_fixed_prompts(context, n_prompts):
|
||||
context.prompts.extend([str(0)*(context.n_batch if context.n_batch is not None else 512) for i in range(n_prompts)])
|
||||
context.n_prompts = n_prompts
|
||||
|
||||
|
||||
@step(u'a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk')
|
||||
@step('a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk')
|
||||
def step_prompt_passkey(context, passkey, i_pos):
|
||||
prompt = ""
|
||||
for i in range(context.n_junk):
|
||||
@ -334,7 +334,7 @@ def step_prompt_passkey(context, passkey, i_pos):
|
||||
context.n_prompts = len(context.prompts)
|
||||
|
||||
|
||||
@step(u'an OAI compatible chat completions request with {api_error} api error')
|
||||
@step('an OAI compatible chat completions request with {api_error} api error')
|
||||
@async_run_until_complete
|
||||
async def step_oai_chat_completions(context, api_error):
|
||||
if context.debug:
|
||||
@ -369,19 +369,19 @@ async def step_oai_chat_completions(context, api_error):
|
||||
print(f"Completion response: {completion}")
|
||||
|
||||
|
||||
@step(u'a prompt')
|
||||
@step('a prompt')
|
||||
def step_a_prompt(context):
|
||||
context.prompts.append(context.text)
|
||||
context.prompts.append(context_text(context))
|
||||
context.n_prompts = len(context.prompts)
|
||||
|
||||
|
||||
@step(u'a prompt {prompt}')
|
||||
@step('a prompt {prompt}')
|
||||
def step_a_prompt_prompt(context, prompt):
|
||||
context.prompts.append(prompt)
|
||||
context.n_prompts = len(context.prompts)
|
||||
|
||||
|
||||
@step(u'concurrent completion requests')
|
||||
@step('concurrent completion requests')
|
||||
@async_run_until_complete()
|
||||
async def step_concurrent_completion_requests(context):
|
||||
await concurrent_requests(context,
|
||||
@ -397,7 +397,7 @@ async def step_concurrent_completion_requests(context):
|
||||
'user_api_key') else None)
|
||||
|
||||
|
||||
@step(u'concurrent OAI completions requests')
|
||||
@step('concurrent OAI completions requests')
|
||||
@async_run_until_complete
|
||||
async def step_oai_chat_completions(context):
|
||||
await concurrent_requests(context, oai_chat_completions,
|
||||
@ -417,7 +417,7 @@ async def step_oai_chat_completions(context):
|
||||
if hasattr(context, 'user_api_key') else None)
|
||||
|
||||
|
||||
@step(u'concurrent OAI completions requests no v1')
|
||||
@step('concurrent OAI completions requests no v1')
|
||||
@async_run_until_complete
|
||||
async def step_oai_chat_completions(context):
|
||||
await concurrent_requests(context, oai_chat_completions,
|
||||
@ -440,13 +440,13 @@ async def step_oai_chat_completions(context):
|
||||
if hasattr(context, 'user_api_key') else None)
|
||||
|
||||
|
||||
@step(u'all prompts are predicted')
|
||||
@step('all prompts are predicted')
|
||||
@async_run_until_complete
|
||||
async def step_all_prompts_are_predicted(context):
|
||||
await all_prompts_are_predicted(context)
|
||||
|
||||
|
||||
@step(u'all prompts are predicted with {n_expected_predicted:d} tokens')
|
||||
@step('all prompts are predicted with {n_expected_predicted:d} tokens')
|
||||
@async_run_until_complete
|
||||
async def step_all_prompts_are_predicted_with_n_tokens(context, n_expected_predicted):
|
||||
await all_prompts_are_predicted(context, n_expected_predicted)
|
||||
@ -460,14 +460,14 @@ async def all_prompts_are_predicted(context, expected_predicted_n=None):
|
||||
assert len(context.concurrent_tasks) == 0, f"{len(context.concurrent_tasks)} pending requests"
|
||||
|
||||
|
||||
@step(u'embeddings are computed for')
|
||||
@step('embeddings are computed for')
|
||||
@async_run_until_complete
|
||||
async def step_compute_embedding(context):
|
||||
context.n_prompts = 1
|
||||
context.embeddings = await request_embedding(context.text, base_url=context.base_url)
|
||||
context.embeddings = await request_embedding(context_text(context), base_url=context.base_url)
|
||||
|
||||
|
||||
@step(u'all embeddings are the same')
|
||||
@step('all embeddings are the same')
|
||||
@async_run_until_complete
|
||||
async def step_all_embeddings_are_the_same(context):
|
||||
n_embedding_requests = await gather_tasks_results(context)
|
||||
@ -491,7 +491,8 @@ async def step_all_embeddings_are_the_same(context):
|
||||
print(f"{msg}\n")
|
||||
assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg
|
||||
|
||||
@step(u'embeddings are generated')
|
||||
|
||||
@step('embeddings are generated')
|
||||
def step_assert_embeddings(context):
|
||||
assert context.n_prompts == len(context.embeddings), (f"unexpected response:\n"
|
||||
f"context.n_prompts={context.n_prompts}\n"
|
||||
@ -500,17 +501,17 @@ def step_assert_embeddings(context):
|
||||
assert_embeddings(embedding)
|
||||
|
||||
|
||||
@step(u'an OAI compatible embeddings computation request for')
|
||||
@step('an OAI compatible embeddings computation request for')
|
||||
@async_run_until_complete
|
||||
async def step_oai_compute_embeddings(context):
|
||||
context.n_prompts = 1
|
||||
context.embeddings = await request_oai_embeddings(context.text,
|
||||
context.embeddings = await request_oai_embeddings(context_text(context),
|
||||
base_url=context.base_url,
|
||||
user_api_key=context.user_api_key,
|
||||
model=context.model)
|
||||
|
||||
|
||||
@step(u'an OAI compatible embeddings computation request for multiple inputs')
|
||||
@step('an OAI compatible embeddings computation request for multiple inputs')
|
||||
@async_run_until_complete
|
||||
async def step_oai_compute_embeddings_multiple_inputs(context):
|
||||
context.embeddings = await request_oai_embeddings(context.prompts,
|
||||
@ -520,7 +521,7 @@ async def step_oai_compute_embeddings_multiple_inputs(context):
|
||||
context.prompts.clear()
|
||||
|
||||
|
||||
@step(u'concurrent embedding requests')
|
||||
@step('concurrent embedding requests')
|
||||
@async_run_until_complete()
|
||||
async def step_concurrent_embedding_requests(context):
|
||||
await concurrent_requests(context,
|
||||
@ -529,7 +530,7 @@ async def step_concurrent_embedding_requests(context):
|
||||
base_url=context.base_url)
|
||||
|
||||
|
||||
@step(u'concurrent OAI embedding requests')
|
||||
@step('concurrent OAI embedding requests')
|
||||
@async_run_until_complete()
|
||||
async def step_concurrent_oai_embedding_requests(context):
|
||||
await concurrent_requests(context,
|
||||
@ -540,7 +541,7 @@ async def step_concurrent_oai_embedding_requests(context):
|
||||
model=context.model)
|
||||
|
||||
|
||||
@step(u'all embeddings are generated')
|
||||
@step('all embeddings are generated')
|
||||
@async_run_until_complete()
|
||||
async def all_embeddings_are_generated(context):
|
||||
n_embedding_requests = await gather_tasks_results(context)
|
||||
@ -549,10 +550,10 @@ async def all_embeddings_are_generated(context):
|
||||
assert_embeddings(context.tasks_result.pop().pop())
|
||||
|
||||
|
||||
@step(u'tokenizing')
|
||||
@step('tokenizing')
|
||||
@async_run_until_complete
|
||||
async def step_tokenize(context):
|
||||
context.tokenized_text = context.text
|
||||
context.tokenized_text = context_text(context)
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(f'{context.base_url}/tokenize',
|
||||
json={
|
||||
@ -563,7 +564,7 @@ async def step_tokenize(context):
|
||||
context.tokens = tokenize_json['tokens']
|
||||
|
||||
|
||||
@step(u'tokens can be detokenize')
|
||||
@step('tokens can be detokenize')
|
||||
@async_run_until_complete
|
||||
async def step_detokenize(context):
|
||||
assert len(context.tokens) > 0
|
||||
@ -578,7 +579,7 @@ async def step_detokenize(context):
|
||||
assert context.tokenized_text == detokenize_json['content'].strip()
|
||||
|
||||
|
||||
@step(u'an OPTIONS request is sent from {origin}')
|
||||
@step('an OPTIONS request is sent from {origin}')
|
||||
@async_run_until_complete
|
||||
async def step_options_request(context, origin):
|
||||
async with aiohttp.ClientSession() as session:
|
||||
@ -589,12 +590,12 @@ async def step_options_request(context, origin):
|
||||
context.options_response = response
|
||||
|
||||
|
||||
@step(u'CORS header {cors_header} is set to {cors_header_value}')
|
||||
@step('CORS header {cors_header} is set to {cors_header_value}')
|
||||
def step_check_options_header_value(context, cors_header, cors_header_value):
|
||||
assert context.options_response.headers[cors_header] == cors_header_value
|
||||
|
||||
|
||||
@step(u'prometheus metrics are exposed')
|
||||
@step('prometheus metrics are exposed')
|
||||
@async_run_until_complete
|
||||
async def step_prometheus_metrics_exported(context):
|
||||
async with aiohttp.ClientSession() as session:
|
||||
@ -616,14 +617,14 @@ async def step_prometheus_metrics_exported(context):
|
||||
assert metric_exported, "No metrics exported"
|
||||
|
||||
|
||||
@step(u'metric {metric_name} is {metric_value:d}')
|
||||
@step('metric {metric_name} is {metric_value:d}')
|
||||
def step_assert_metric_value(context, metric_name, metric_value):
|
||||
if metric_name not in context.metrics:
|
||||
assert False, f"no metric {metric_name} in {context.metrics.keys()}"
|
||||
assert context.metrics[metric_name].samples[0].value == metric_value, f"metric: {context.metrics[metric_name]}"
|
||||
|
||||
|
||||
@step(u'available models')
|
||||
@step('available models')
|
||||
def step_available_models(context):
|
||||
# openai client always expects an api_key
|
||||
openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope'
|
||||
@ -631,14 +632,14 @@ def step_available_models(context):
|
||||
context.models = openai.Model.list().data
|
||||
|
||||
|
||||
@step(u'{n_model:d} models are supported')
|
||||
@step('{n_model:d} models are supported')
|
||||
def step_supported_models(context, n_model):
|
||||
if context.debug:
|
||||
print("server models available:", context.models)
|
||||
assert len(context.models) == n_model
|
||||
|
||||
|
||||
@step(u'model {i_model:d} is {param} {preposition} {param_value}')
|
||||
@step('model {i_model:d} is {param} {preposition} {param_value}')
|
||||
def step_supported_models(context, i_model, param, preposition, param_value):
|
||||
assert i_model < len(context.models)
|
||||
model = context.models[i_model]
|
||||
@ -1007,12 +1008,22 @@ async def completions_seed(context):
|
||||
else context.server_seed if hasattr(context, 'server_seed') else None
|
||||
|
||||
|
||||
def context_text(context):
|
||||
return context.text.replace('\r', '')
|
||||
|
||||
|
||||
def start_server_background(context):
|
||||
context.server_path = '../../../build/bin/server'
|
||||
if os.name == 'nt':
|
||||
context.server_path = '../../../build/bin/Release/server.exe'
|
||||
else:
|
||||
context.server_path = '../../../build/bin/server'
|
||||
if 'LLAMA_SERVER_BIN_PATH' in os.environ:
|
||||
context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
|
||||
server_listen_addr = context.server_fqdn
|
||||
if os.name == 'nt':
|
||||
server_listen_addr = '0.0.0.0'
|
||||
server_args = [
|
||||
'--host', context.server_fqdn,
|
||||
'--host', server_listen_addr,
|
||||
'--port', context.server_port,
|
||||
'--model', context.model_file
|
||||
]
|
||||
@ -1045,7 +1056,16 @@ def start_server_background(context):
|
||||
if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
|
||||
server_args.extend(['--log-format', "text"])
|
||||
print(f"starting server with: {context.server_path} {server_args}\n")
|
||||
flags = 0
|
||||
if 'nt' == os.name:
|
||||
flags |= subprocess.DETACHED_PROCESS
|
||||
flags |= subprocess.CREATE_NEW_PROCESS_GROUP
|
||||
flags |= subprocess.CREATE_NO_WINDOW
|
||||
|
||||
pkwargs = {
|
||||
'creationflags': flags,
|
||||
}
|
||||
context.server_process = subprocess.Popen(
|
||||
[str(arg) for arg in [context.server_path, *server_args]],
|
||||
close_fds=True)
|
||||
print(f"server pid={context.server_process.pid}")
|
||||
**pkwargs)
|
||||
print(f"server pid={context.server_process.pid}, behave pid={os.getpid()}")
|
||||
|
Loading…
Reference in New Issue
Block a user